16

Polyndmes

Dans tout le chapitre, K désigne R ou C.

16.1 Ensemble des polynéomes a une indéterminée

16.1.1 Définition et regles de calcul

Définition 1: Polynéme

Un polynéme & ceefficients dans K est la donnée d’une suite presque nulle (a,,),en € K,
i.e. une suite a valeurs dans K pour laquelle il existe un entier ng € N tel que pour tout

n = ng,a, = 0 et on note alors
no—1

P= Z apX*,
k=0

ol X est appelée I'indéterminée du polynome P.
Les scalaires (ag, ..., an,—1) sont appelés les ceefficients du polynéme P.
L’ensemble des polynémes a une indéterminée a coefficients dans K se note K[X].

Remarque 1. e Un polynome de la forme P(X) = a, X" est appelé un monome.

e Un polyndéme est dit constant s’il est de la forme P(X) = a, ot a € K. En particulier, si
a =0, on dit que c’est le polynome nul et on le note Og[x;.

Exemple 1. e Si ayg =0,a; =1 et pour tout n > 2,a,, =0, alors P = X.
e Siag =1 et pour tout n > 1,a, =0, alors P = 1.

e Siay=2,a1 =—-3,as =0,a3 = —4 et pour tout n >4, a, =0, alors P = —4X3 —3X +2.
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Définition 2: Opérations sur les polynémes

Soient P(X Z ar X" et Q(X Z b X" deux polynémes de K[X].
k=0 k=0
1. On définit pour tout (A, ) € K2 le polynome AP + u@ € K[X] par

ax(n,
AP 4 uQ = Z (Aay, + ub) X*
k=0
avec éventuellement ap =0si k >net bp =0si k > m.
2. On définit le produit PQ € K[X] par

n—+m
o= | ¥ an | x
k=0 | itj=k
0<i<n
o<j<m
3. Pour tout k € N, on définit P* par
1 sik =0
PF={ Px...xP sik>0.
—_———
k fois
4. On définit P o @) par
n
PoQ=> aQ"
k=0

Exemple 2. Soient P=2X2+X —let Q = X3 —5X + 2.

Alors 2P +3Q =3X3 +4X? - 13X +4 et PQ =2X"+ X* —11X3 - X2 4+ 7X — 2.

Remarque 2. Puisque le produit dans K est commutatif, on constate que le produit dans K[X]
est commutatif. En particulier, on retrouve la formule du bnéme de Newton.

Proposition 1: Formule du bindome de Newton

Soient (P, Q) € K[X]2.
Soit n € N.
On a

a3 (1) 32 (D)t

k=0 k=0
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16.1.2 Degré d’un polynome

Définition 3: Degré d’un polynéme

n
Soit P = Zaka ot n € Net (ag,...,a,) € R
k=0
On suppose que P n’est pas le polynéme nul, c’est a dire qu’il existe k € [0,n], tel que

ay, # 0.
d

Soit d = max{k € [0,n],ar # 0}, i.e. d € [0,n] et P = Zaka avec ag # 0 (et pour
k=0
tout k € [d+ 1,n],ar = 0).

On dit que I'entier naturel d est le degré du polynéme P et on note

d = deg(P).

Le ceefficient aq est appelé le ceefficient dominant de P. Si ag = 1, on dit que le polyndéme
P est unitaire.

Remarque 3. e Si a,, # 0, alors deg(P) = d = n et dans ce cas [d + 1,n] est vide.

e Par convention, le degré du polynéme nul est —oo, ce qu’on note deg(0) = —oo.

e Concretement, le degré d’un polynéme non nul est la plus grande puissance de X appa-
raissant dans le polynome.

e Les polynomes constants non nuls sont de degré 0.

e Pour tout n € N, I’ensemble des polynomes a coefficients dans K de degré inférieur ou égal
a n est noté K, [X]. En particulier, Ko[X] est ’ensemble des polynémes constants dans K.

Exemple 3. e Pour tout n € N, deg(X") = n.
e deg(2X2 + X — 1) = 3 et le ceefficient dominant de ce polynéme est 2.

Proposition 2: Opérations sur les degrés

n m
Soient P(X) = Zaka et Q(X) = Ekak deux polynomes de K[X] avec a,, # 0 et
k=0 k=0
b # 0.
1. Pour tout A € K*, AP est un polynoéme de degré deg(P) et on a

n

AP(X) = (Aap)X*.
k=0

2. On a
deg(P + Q) < max(deg(P),deg(Q)).

L’inégalité est une égalité si deg(P) # deg(Q).
3. On a deg(PQ) = deg(P) + deg(Q).

4. Si @ est non constant, alors

deg(P o Q) = deg(P) deg(Q).

Remarque 4. ¢ Si A=0,A\P =0.
e SiQ =0,alors P+Q = P et PQ = 0. On retrouve deg(PQ) = deg(P) + deg(Q) avec la
convention deg(P) + (—o0) = —oc.
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Démonstration.
1. Soit A € K*.

n

n
On a alors pour tout AP = )\Z apX* = Z()\aka), avec Aa, # 0, d’ou le résultat.
k=0 k=0
2. e Supposons que deg(P) # deg(Q). Sans perte de généralité, on peut supposer (quitte a
échanger P et Q) que deg(Q) < deg(P), i.e. m < n.

On pose alors pour tout k € [m + 1,n], b, = 0.

Il vient
n

P+Q=>Y apX"+> bXF = (ap +bp) X",

k=0 k=0 k=0
avec an + by, = an # 0 donc deg(P + Q) = n = deg(P) = max(deg(P), deg(Q)).
e Supposons que deg(P) = deg(Q), i.e. n = m. On a comme précédemment

P+Q= Z(ak + bk)Xk.
k=0

Ainsi, deg(P + Q) = n si a, + by, # 0 et deg(P + Q) < n si a, + b, = 0 donc dans tous
les cas, deg(P + Q) < n = max(deg(P),deg(Q)).

3. On a

n ) m ) n+m
ST ] orES) I of (D SR B
=0 7=0 k=0 i+j=k
1<i<n
1<jsm

Pour k =n+m, on a Z a;bj = anby, # 0 donc deg(PQ) = n+m = deg(P) + deg(Q).
i+j=k
1<i<n
1<js<m

4. On a
n n m k n
PoQ=Y mQ" =3 a (beXi) = > (B X 4 b))
k=0 k=0 /=0 k=0

donc si m # 0, i.e. si () n’est pas constant, on constate que le coefficient dominant de Po@Q
est apby, # 0 et est situé devant 2™ d’ou le résultat.

Remarque 5. o Si deg(P) = deg(Q), on peut avoir deg(P + Q) < max(deg(P),deg(Q)).

En effet,si P = X+1et Q@ = —X, on a deg(P) = deg(Q) = 1 donc max(deg(P), deg(Q)) =1
et P+ Q =1 donc deg(P + Q) = 0 < max(deg(P),deg(Q)).

e Si () est constant, on peut avoir deg(PoQ) # deg(P) deg(Q). Par exemple, si P(X) = X —1
et Q(X) =1, alors PoQ(X) = 0 donc deg(Po@Q) = —o0, tandis que deg(P) deg(Q) = 1x0 = 0.

e Le produit de deux polynémes non nuls est non nul. En effet, si deg(P) > 0 et deg(Q) > 0,
alors deg(PQ) = deg(P) + deg(Q) > 0 donc PQ # 0.

Exemple 4. o Soit P =2X3 — X et Q =3X2?+ X +2. On a deg(P) = 3 et deg(Q) = 2.
Alors PQ = 6X° +2X* 4+ X3 — X2 — 2X donc deg(PQ) = 5 = deg(P) + deg(Q) et

QoP=302X>-X)?+2X3-X4+2=12X°—12X* +2X3 +3X? - X +2

donc deg(Q o P) = 6 = deg(P) x deg(Q).
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16.1.3 Divisibilité et division euclidienne

Définition 4: Divisibilité dans K[X]

Soient (P, Q) € K[X]?.
On dit que P divise @ s’il existe un polynéme R € K[X] tel que

Q = PR.

Dans ce cas, on dit que @ est divisible par P ou est un multiple de P et que P est un
diviseur de Q.

Remarque 6. e Le polynome nul est divisible par tous les polynémes de K[X].
e Les polynomes constants non nuls divisent tous les polynémes.

1
En effet, pour tout A\ € K*, pour tout P € K[X], P = \ x <)\P> )

Exemple 5. o Pour tout n € N*, X divise X" puisque X" = X x X"~ L
e Pour tout a € K, pour tout n € N*, X — a divise X" — o’ car

n—1
X"—d"=(X—a) Za”_l_ka.

k=0

e Le polynome X2 — 2X + 3 divise X? — X + 6 car (X? —2X +3)(X +2) = X? - X +6.

Théoréme 1: Théoréme de la division euclidienne

Soient (A, B) € K[X]? avec B # 0.
Alors il existe un unique couple (@, R) € (K[X])? tel que

{ A = BQ+R
deg(R) < deg(B)

On dit que Q est le quotient de la division euclidienne de A par B et que R en est le
reste.

Démonstration.
e Existence :

m
Notons B = Z b X* avec deg(B) = m > 0 par hypothése. En particulier, b, # 0.
k=0
L’existence du couple (@, R) est évidente si deg(A) < deg(B). En effet, il suffit alors de
prendre Q =0 et R = A.

Montrons alors par récurrence sur n > m le résultat suivant :

< SiA € K,[X], alors il existe(Q, R) € (K[X])? avec deg(R) < deg(B)tel que A = BQ+R. >

> Initialisation : Pour n = m, on a deg(A) < n = m. On a déja vu que le résultat est
évident si deg(A) < deg(B).

m
Supposons donc que deg(A) = m et posons A = Z ap X"
k=0
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m
a
Posons R = A — b—m Z b X*. En comparant les degrés et les coefficients dominants de A
™ k=0

m
Z—m Z b X", on constate qu’ils sont identiques donc deg(R) < m = deg(B) et on a bien
™ k=0

A:BQ+RavecQ:‘bLm.

La propriété est donc vraie au rang n = m.
> Hérédité : Soit n > m fixé. Supposons la propriété vraie au rang n. Montrons qu’elle est
vraie au rang n + 1.
n+1
Posons A = Z apX* € Ky41[X]. Si apt1 = 0, alors A € K,,[X] et la propriété est vraie par
hypothese de régufrence.

et de

a
Supposons donc que a1 # 0. Posons alors S = A — ntl yntl-mp
m

On a deg ((?HX"H_WB) =n+1—-—m+deg(B) =n+1 = deg(A) et son ceeflicient
m
dominant est ayp1.

. an+1 _ A p ~ . .
Ainsi, A et =L X" T1="B ont méme degré et méme ceefficient dominant donc
m

deg(S) = deg <A - ag“ X”H_mQ) < deg(A) =n+1,

ie S e K,[X].
Par hypothese de récurrence, il existe (Q1, R1) € (K[X])? avec deg(R;1) < deg(B) tel que
S = BQ1 + Ry. Il vient alors A =S + %X"H*mB =B (Q1 + ag“xnﬂm) + Ry.
m m
an,

En posant Q) = Q1—|—T+1X”+17m et R = Ry, on abien A = BQ+ R avec deg(R) < deg(B),

ce qui prouve la propriété au rang n + 1 et achéve la récurrence.

L’existence est donc prouvée.

e Unicité :

Supposons qu'il existe (Q, Q1, R, R1) € (K[X])* avec deg(R) < deg(B) et deg(R;) < deg(B)
tels que A = BQ + R = BQ1 + R;.

AinSi, B(Q - Ql) = Rl - R.

On a deg B(Q — Q1) = deg(R1 — R) < max(deg(Ry),deg(R)) < deg(B).

Or, si on avait Q # Q1, on aurait Q—Q1 # 0 donc deg(B(Q—Q1)) = deg(B)+deg(Q — Q1) >

>0

deg(B), ce qui menerait a une contradiction.

Ainsi, Q = @1 et il en découle que R = R; d’ou 'unicité du couple (@, R). [ |

Exemple 6. Soit A =2X"+ X° —3X4+5X? - X +1let B=X*+X%2-2X -3,
La division euclidienne de A par B est

2XT 4+ X° —3X 45X - X +1=(X"+X?-2X -3)(2X3 - X +1) +7X3 +2X? —2X +4.

Onadonc A=BQ+ Ravec Q=2X>—-X+1let R=7X3+2X%2-2X +4oudeg(R)=3<
deg(B) = 4.

Remarque 7. A linstar de ’algorithme d’Euclide sur les entiers, on peut élaborer un algo-
rithme de divison euclidienne sur les polynomes de la maniere suivante : étant donnés deux
polynémes Ag et By avec By # 0, on réalise la division euclidienne de Ag par By :

Ao = BoQo + Ry avec deg(Ry) < deg(By).
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Tant que R, # 0, on pose A,+1 = By, et B,+1 = R, puis on réalise la division euclidienne
de Apy1 par Bpy1 =R, #0:
Ap+1 = Bny1Qni1 + Rpup1 avecdeg(Ry11) < deg(Bp+1) = deg(Ry).

On obtient donc une suite strictement décroissante d’entiers
deg(Ro) > deg(R1) > - -+ > deg(Rp) > deg(Rpnt1).

Nécessairement, au bout d’un certain nombre d’étapes, il existera un entier p tel que R, = 0.
Lorsqu’on divise le dernier reste non nul R,_; par son ccefficient dominant, le polynome obtenu
est alors le PGCD des polynémes Ag et By.

Exemple 7. Posons Ag = X* — X2+ X +1et By = X3 —1.
Ona Ay =XBy— X?+2X —1donc Ry = —X?+2X — 1. Posons A; = By et B; = Ry.
On a alors A; = B1(—X —2)+3X — 3 donc R; = 3X — 3.
Posons A = By = Rg= —X?+2X —let Bo=R; =3X — 3.

1
On constate que By divise Ay puisque Ay = —g(X —1)Bs donc Ry = 0.

1
Le dernier reste non nul est R; = 3X — 3 donc le PGCD de Ay et By est §R1 =X-1

16.2 Racines et factorisation

16.2.1 Fonction polynomiale

Définition 5: Fonction polynomiale

n
Soit P =) " ar X" € K[X].
k=0
On appelle fonction polynomiale associée a P la fonction

K — K

n
P k-
A — E apx
k=0

Exemple 8. e Les fonctions affines P : © — ax + b, ou (a,b) € K2 sont des fonctions
polynomiales.

e Les fonctions puissances entieres P : x —— z™, ou n € N, étudiées dans le chapitre
< Fonctions d’une variable réelles »sont des fonctions polynomiales.

Remarque 8. e Quitte a considérer sa fonction polynomiale associée, on peut donc évaluer un
polynome en un nombre complexe.
Par exemple, si P = X3 4+ X2 — 1, alors P(2) =23 +22 -1 =11.
n

e Une méthode efficace pour évaluer un polynoéme P = Z%X k¥ en un scalaire a est la

k=0
méthode de Horner : au lieu de calculer toutes les puissances de « jusqu’a o™, puis de faire le

produit avec les ccefficients du polynéme et enfin la somme des résultats obtenus, il est plus
judicieux de faire comme suit :
Pla)=((...((apa+ ap—1)a+ ap—2)a+ ... )a+ ar)a + «a,

ce qui fait beaucoup moins de produits a calculer.
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Exemple 9. Soit P = X3 — X2 +2X — 5. Alors
P4)=((1x4—-1)x4+2)x4—-5=51.

En pratique, on commet souvent ’abus de confondre un polynome et la fonction polynomiale
associée a celui-ci. Cet abus est justifié par ce qui suit, & savoir qu’un polynoéme est entierement
déterminé par sa fonction polynomiale associée.

Proposition 3: Unicité de 1’écriture du polynéme nul

n
Soit P :x +— Zakxk, oun € Net (ag,...,a,) € KL,
k=0
P est la fonction nulle si et seulement si pour tout k € [0,n],ar = 0.

Démonstration. e Si pour tout k € [0,n],ar = 0, il est clair que P est le polynéme nul.
e Montrons par récurrence sur n € N la propriété suivante :

< Si pour toutx € R, P(x Zakx =0, alors pour tout k € [0,n],ar = 0. >
k=0

Pour n = 0, on a pour tout € R, P(z) = ap = 0 donc la propriété est vraie au rang n = 0.
Soit n € N fixé. On suppose la propriété vraie au rang n. Montrons qu’elle est vraie au rang

n—+ 1.
n+1

Soient (ag, - ..,an+1) € K" 2 tels que pour tout x € R, P(x Zakx

La fonction P est constante égale & 0 sur R donc P est derlvable sur R et on a pour tout

rzeR,
n+1 n

0= P(x Z kapz* ' = Z(k + 1)ak+1xk.

k=0
Par hypothese de récurrence, on en dedult que pour tout k € [0,n](k + 1)ar+1 = 0 d’ou pour
tout k € [1,n + 1], a; = 0.
Ainsi, pour tout z € R, P(z) = ag = 0, donc pour tout k € [0,n + 1], ax, = 0, ce qui prouve
la propriété au rang n + 1 et acheve la récurrence. |

16.2.2 Polynome dérivé

Définition 6: Polynéme dérivé

Soit P = Zaka € K[X], avec a,, # 0.

On appelle polynéme dérivé de P le polynome

n—1

P'=>"(k+1)ap X",
k=0

\.

Remarque 9. e La fonction P’ : o — P’ ( ) est la dérivée sur R de la fonction P : 2 — P(x).

En effet, si pour tout z € R, P(x Z arz® avec a, # 0, alors pour tout z € R,
k=0
n n—1
= Z kagz" ' = Z(k + 1)ak+1wk.
k=1 k=0

Année 2025-2026 8 /22 Alex Panetta



PCSI Lycée Fénelon

e Ce lien entre polynome dérivé et dérivée de la fonction polynomiale associée permet
d’étendre les opérations connues sur les dérivées aux polynomes. En particulier, les formules
donnant la dérivée d’'une combinaison linéaire, d’un produit, ou encore la formule de Leibniz
restent valables pour les polynomes.

e Sin =0, ie. si P est constant, alors P’ = 0 (en effet, la somme va de 0 & —1 et est donc
vide). Réciproquement, si P’ = 0, alors P est un polynéme constant.

e Le polynome dérivé du polynoémé nul est le polynéme nul.

Exemple 10. Si P(X) = —2X% + X3 +3X2 — 1, alors P/(X) = —10X* + 3X?2 + 6X.

Proposition 4: Degré du polynéme dérivé

Soit P € K[X] de degré n € N*.
Alors deg(P') =n — 1.

n
Démonstration. Soit n € N*. Soit P(X) = Zaka avec a, # 0 de telle sorte que

k=0
deg(P) = n.
n—1
Alors P'(X) = (k+ 1)app X",
k=0

Le coefficient dominant de P’ est na, # 0 et il est situé devant X"~ ! donc

deg(P')=n—-1€N.

Remarque 10. Si deg(P) = 0, alors deg(P’) = —o0.

Proposition 5: Dérivée p-eme

n
Soit P = Zaka, avec a,, # 0, i.e. deg(P) = n.

Soit p € I\];: g)n note P®) la dérivée p-eme de P.
Alors s
p) _ Z (k Z!p)!akﬂ,Xk sip<n
= 0 sip >n
En particulier, si p < n, deg(P®) = n — p.
Démonstration. Soit k € [0, n]. ‘
k!

On sait que la dérivée p-eme de x — ¥ est z — zF7P si p € [0,k] et O sinon.

(k —p)!

Par linéarité de la dérivation, on trouve que si p € [0, n],

= k! — (k+p)!
() — k— k
P = E ak(k—p)!X P = E I AppX
k=p k=0

et si p>n, PP =0. [ |
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16.2.3 Racines d’un polynoéme

Définition 7: Racines d’un polynéme

Soit P € K[X]. Soit a € K.
On dit que « est une racine (ou un zéro) de P si

P(a) =0.

Exemple 11. e Le polynome P = X + 1 admet comme unique racine @ = —1.

e Le polynéme P = X2 —2X + 1 = (X — 1)? admet comme unique racine o = 1.

e Le polynéme P = X? —5X + 6 = (X — 2)(X — 3) admet comme racines a; = 2 et ap = 3.

e Le polynéme P = X3 — 1 admet comme unique racine réelle o = 1. Il admet trois racines
complexes : 1,j et 5.

e Le polynome P = X2+ 1 n’admet aucune racine réelle mais admet deux racines complexes
que sont ¢ et —1i.

Proposition 6

Soit P € R[X] de degré impair.
Alors P admet au moins une racine réelle.

Démonstration. Soit n = deg(P) € N*. Alors il existe (ag,...,a,) € R** avec a, # 0

n
tels que pour tout = € R, P(z) = Z apx”.
k=0

Puisque n est impair, on a lim 2" = +oc et lim z" = —oo.
T—+00 T—r—00

e Sia, >0,onaalors lim a,z" =+occet lim apz" = —o0o0, d'ot lim P(x) = 400 et

T—r+400 T——00 T—r400
lim P(x) = —oc.
T—r—00

e Sia, <0,onaalors lim a,z" =—-occet lim apz" =400, dot lim P(x) = —o0 et

T—r+00 T—r—00 T—r+00

lim P(z)= +o0.

T—r—00
Dans les deux cas, la fonction P est continue sur R et prend des valeurs positives et négatives.

D’apres le théoreme des valeurs intermédiaires, il existe nécessairement un réel a tel que

P(a) =0. [

Remarque 11. Ce n’est plus nécessairement le cas pour les polynémes de degré pair puisque
le polynéme P = X2 + 1 n’admet pas de racine réelle. En effet, pour tout réel z, P(z) > 0.

Lemme 1: Division euclidienne par (X — «)

Soit P € K[X], soit a € K.
Il existe un unique polynome @ € K[X] tel que

P=(X—-a)Q+ Pla).

Démonstration. D’apres le théoreme de la division euclidienne, il existe un unique couple
(Q,R) € K[X]? tel que P = (X —a)Q + R et deg(R) < deg(X — «) = 1. Ainsi, deg(R) = 0 ou

deg(R) = —oo donc R est un polynéme constant, éventuellement nul.
De plus, en évaluant ’égalité P = (X — )@ + R en «, on obtient R = P(«a), d’ou le résultat
voulu. |
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Corollaire 1: Factorisation d’un polynéme admettant une racine

Soit P € K[X], soit a € K.

Le scalaire « est racine de P si et seulement s'il existe un polynome @ € K[X] tel que
P = (X — a)Q, autrement dit, (X — «) divise P.

En outre, le polynéme @) est unique s’il existe.

Démonstration. e S’il existe un polynome @ € K[X] tel que P = (X — a)Q, alors

Pla) = (a - a)Q(a) =0,

ce qui implique que « est racine de P.
e Réciproquement, supposons que « est racine de P, i.e. P(a)) = 0.
D’apres le lemme précédent, il existe un unique polynoéme @ € K[X] tel que

P=(X-a)Q+ Pla) =(X —a)Q.

Exemple 12. ¢ X3 — 1= (X — 1)(X2+ X +1).
e X3 - X2 - X +1=(X?-2X+1)(X+1).
X3 —6X2+11X — 6= (X —1)(X%2-5X +6).

Corollaire 2: Factorisation d’un polynéme admettant plusieurs racines

Soit P € K[X] admettant des racines distinctes a1, ..., a,.
Alors il existe @ € K[X] tel que

P=(X—-a1)(X —a2).....(X —p)Q.

Démonstration. D’apres la proposition précédente, il existe Q1 € K[X] tel que
P = (X - Oél)Ql.

Puisque g est une racine de P, on a 0 = P(a2) = (a2 — a1)Q1(2).

Or, ae # ay donc Q1 (az) = 0.

On en déduit qu’il existe Q2 € K[X] tel que @1 = (X —a2)Q2 d’ott P = (X —a1)(X —a2)Q2.
On en déduit que a3 est une racine de (2 et ainsi de suite.

A la fin, on obtient bien un polynéme @ € K[X] tel que

P=(X—-a1)(X —a2).....(X —ap)Q.

Exemple 13. ¢ X3 — X2 - X +1=(X2-2X+1)(X +1) = (X —1)%(X +1).
o X3 —6X2+11X —6=(X —1)(X?-5X +6)= (X —1)(X —2)(X - 3).
o X3—1=(X-1)(X —j)(X - j?).

Corollaire 3: Nombre de racines d’un polynéme non nul

Soit P € K[X] de degré n € N.
Le nombre de racines de P est inférieur ou égal a n.

Démonstration. Soient oy, ..., q), des racines distinctes de P.
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D’apres le corollaire précédent, il existe un polynéme @ € K[X] tel que
P=(X—-a1)(X —a2).....(X —ap)Q.

Notons que @ ne peut pas étre le polynome nul, puisque P ne l'est pas, donc deg(Q) > 0. En
comparant les degrés, on a

n = deg(P) = p + deg(Q) > p,

d’ou le résultat. [}

Remarque 12. e Le polynéme nul admet une infinité de racines. En fait, si on sait qu’un
polynome P est de degré inférieur ou égal a n et qu’il admet un nombre de racines strictement
supérieur a n, alors P est le polynéme nul.

e S’il existe une infinité de scalaires a pour lesquels P(«a) = Q(«), alors le polynéme P — @
admet une infinité de racines donc P — @) est le polyome nul donc P = Q.

En particulier, si I est un intervalle de R non réduit a un singleton tel que pour tout
x € I,P(z)=Q(x), alors P = @ et on peut en déduire que pour tout z € C, P(z) = Q(x).

e Un polynome constant non nul n’admet pas de racines.

Exemple 14. e Le polynome P = X3 —1 = (X —1)(X? + X +1) est de degré 3 et admet pour
unique racine réelle o = 1 car le polynome Q = X2 + X + 1 n’admet pas de racine réelle.

e Le polynome P = X3 —6X2+11X —6 est de degré 3 et admet 3 racines réelles distinctes :
1,2 et 3.

Ainsi, un polynoéme de degré n admet au maximum n racines distinctes. S’il admet exacte-
ment n racines, on connalit sa factorisation :

Corollaire 4: Factorisation d’un polynome admettant autant de racines que
son degré

Soit P € K[X] un polynéme de degré n € N*. On suppose que P admet n racines
distinctes aq, . . ., ay.
Alors

P=a,(X —aj)...(X —ap)

ou a, est le ceefficient dominant de P.

Démonstration. D’apres le Corollaire 3, il existe un polynome @ € K[X] tel que
P=(X—-aj)...(X —an)Q.

En comparant les degrés, on a n = deg(P) = n + deg(Q) donc deg(Q) = 0, i.e. @ est un
polynome constant.

Notons @ = a, € K*.

Alors P = a,(X — aq) ... (X — ay) et en développant, on remarque que a,, est le ceefficient
devant X™, donc a,, est bien le coeflicient dominant de P. |

Remarque 13. On a déja vu que pour un trinéme du second degré P = aX?+bX +c admettant
deux racines distinctes x; et z2, on a P = a(X — z1)(X — z2).

Exemple 15. ¢ 2X* — 10X +12 = 2(X — 2)(X — 3).
o Soit n € N*. Soit w = e’n. On sait que les (wk)ke[[(),n—l]] sont n racines distinctes du

polynome X™ — 1 =0 qui est de degré n et unitaire.
n—1

Ainsi, X" — 1= H(X —wh).
k=0
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Corollaire 5: Unicité de I’écriture des polynomes

n m
Soient P(X) = Zaka et Q(X) = Zkak deux polynémes ou (n,m) €
k=0 k=0
N2, (ag, ..., an) € K" (b, ..., by) € K™ avec a,, # 0 et by, # 0.
Alors P = @ si et seulement si n = m et pour tout k € [0,n], ar = by.

Démonstration. e Si n = m et pour tout k € [0,n], ar = by, il est clair que P = Q.

e Supposons que P = ). Montrons que n = m et que pour tout k € [0,n], ar = b.

Puisque P = @, en considérant les fonctions polynomiales associées a P et & (), on a pour
tout z € K, P(z) = Q(x), i.e. (P—Q)(z)=0.

Ainsi, le polynéme P — Q admet une infinité de racines : c’est donc le polynéme nul.

D’apres 'unicité de I'écriture du polynoéme nul, on en déduit que tous les coefficients de
P — @ sont nuls, ce qui implique que n = m et que pour tout k € [0,n], ax = bg.
|

Remarque 14. e L’écriture d’un polynoéme est donc unique. En particulier, un polynoéme est
entierement déterminé par la donnée de ses coeflicients.

e Ceci légitime les processus d’identification des ceefficients entre deux polynémes.
Par exemple, si pour tout z € R, P(x) = aqa* + agx® + asr? + a1 +ag = 32* — 22 + 20 + 1,
on en déduit que

as = 3
ag = 0
ay = —1
a; = 2
ayg = 1

Définition 8: Ordre de multiplicité d’une racine

Soit P € K[X] un polynéme non nul, soit o € K une racine de P.
On appelle ordre de multiplicité de la racine « le plus grand entier m € N* tel que
(X — a)™ divise P, i.e. le plus grand entier m € N* pour lequel il existe un polynome
Q € K[X] tel que

P=(X—-a)™qQ.
e Sim =1, on dit que « est une racine simple de P.

e Si m = 2, on dit que « est une racine double de P.
e Sim > 2, on dit que « est une racine multiple de P.

Remarque 15. e Si a est une racine d’ordre de multiplicité m de P, alors il existe @ € K[X]
tel que P = (X — a)™Q et dans ce cas, on a nécessairement Q(a) # 0.

Sinon, on aurait @ = (X —a)R, d'otu P = (X — a)™*'R, ce qui contredit le fait que o est
une racine d’ordre m de P.

e Si P est de degré n € N*, 'ordre de multiplicité m de toute racine o de P vérifie m < n.

En effet, si P = (X — «)™Q, alors deg(P) = m + deg(Q) > m.

Exemple 16. Soit P = X3 — X? -~ X +1= (X —1)?(X +1). Alors P admet une racine double
qui est 1 et une racine simple qui est —1.
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Définition 9: Polynéme scindé

Soit P € K[X].
e On dit que P est scindé sur K s'il existe des scalaires (z1,...,2,) € KP deux a deux
distincts et des entiers (my,...,m;,) € (N*)P tels que
P
— [T )™,
k=1

ou a est le ceefficient dominant de P.
e On dit dans ce cas que P est scindé & racines simples si pour tout k € [1,p], m; = 1.

Remarque 16. e Un polynome de degré 1 sur K est scindé (& racines simples) sur K.

En effet, si P = aX + b avec (a,b) € K? et a # 0, alors P = a(X + 2)

e Soit P € R[X] un polynéme de degré 2. Alors P est scindé sur R si et seulement si A > 0.
De plus, P est scindé a racines simples sur R si A > 0.

e Soit P € C[X] un polynéme de degré 2. Alors P est scindé sur C. De plus, P est scindé a
racines simples sur C si et seulement si A # 0.

Exemple 17. o Le polynome P = (X — 1)2(X + 1) est scindé. 1 est une racine double de P et
—1 en est une racine simple.

e Le polynome P = X3 — 1= (X - 1)(X2+ X +1) = (X — 1)(X — 5)(X — 52) nest pas
scindé sur R, mais il est scindé a racines simples sur C.

Proposition 7: Somme et produit des racines d’un polynéme scindé

n
Soit P = Z ar X" € K[X] un polynéme scindé.
k=0
Soient (z1,...,x,) € K" les racines de P (non nécessairement distinctes), i.e.

n
on [ (X = 20)

ol a, # 0 est le coefficient dominant de P.

Alors
Zxk - H = (-1,

?’L

Ces formules sont appelées les relations ceefficients-racines (ou formules de Viete).

Démonstration. On a
n n n n
PZZGka: H —Q?k = Qp (Xn+<—Z$k)Xn_l+"'+(—1)nH.%'k>.
k=0 k=1 k=1 k=1

Par unicité des ccefficients d’un polynome, en identifiant les coefficients devant X"~ ! et les
ceefficients constants, on obtient

{ Apn—1 = = —0Qp (Zzzl xk)
ap = (=1)"an[li—; o

d’ou le résultat voulu. |
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P
Remarque 17. Si P = a, H (X —zk)™", ot les racines (x1, . .., xp) sont deux a deux disticintes

k=1
et ol my est la multiplicité de la racine xy, alors les résultats précédents deviennent

P
Ap—1 an
E MmyTp = —— et | | = (—-1)"—.
Qan ap

k=1

Exemple 18. e Soit P =2X5 4+ 2X% - 10X —2X2 + 16X — 8 = 2(X — 1)3(X +2)%

a4 2 ag 8
Alors 3x14+2x(-2)=——=—-Z=—-let 13 x (=2)?2=(-1)°= = - =4.
om 3 X152 (-2) =~ = =S =Lt 1 x (-2 = (1) = 5
oSoitn}Z.Soitw:emTﬁ.
n—1
On sait que X" — 1 = H(X —uwh).
k=0

D’apres les relations précédentes, on retrouve les formules déja vues dans le chapitre « Nombres
complexes > :

n—1 n—1
dwh=0 et[Jw" =(-1)" x (-1) = (-1)"".
k=0 k=0

16.2.4 Formule de Taylor polynomiale et conséquences

Proposition 8: Formule de Taylor

Soit n € N. Soit P € K[X] de degré n. Soit a € K.

Alors -
Px)=>" P k!(a) (X —a)*
k=0

ott P¥) désigne la dérivée k-eme de P.

Démonstration. Raisonnons par récurrence sur n = deg(P).
elnitialisation : Si n = 0, P est un polyndéme constant et on a alors

donc la propriété est vraie au rang n = 0.

eHérédité : Soit n € N. Supposons la propriété vraie au rang n et montrons-la au rang
n+ 1.

Soit P € K[X] de degré n + 1. Alors P’ est de degré n donc par hypotheése de récurrence,
on a pour tout t € R,

n /(k) a

k=0 k=0

Soit € R. En intégrant 1’égalité qu’on vient d’obtenir entre a et z, on trouve :

x nopkD)(g) [ n . pk+) (g _ k17"
/ P’(t)dtzzpk'()/ (t—a)kdt(:}P(:z:)—P(a):ZP k'( ) [(tk+)1 ]
a k=0 ’ a k=0 ) a
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d’ou P(z) = P(a) + Z ﬁ a)ktt = Z — a)*. Puisque I'égalité est vraie
= kD) =
n+1 (a)
pour tout x € R, on en déduit que P = Z (X — a)¥, ce qui prouve la formule au rang
k=0
n + 1 et acheve la récurrence. |

Corollaire 6: Caractérisation de la multiplicité d’une racine

Soit P € K[X]. Soit a € K, soit m € N*.
Alors @ est racine d’ordre m de P si et seulement si Yk € [0,m — 1], P®)(a) = 0 et

(m)(a) # 0.

Démonstration. Raisonnons par double implication.

e Supposons que a est racine d’ordre m de P, i.e. il existe @ € K[X] tel que P = (X —a)™Q,
avec Q(a) # 0.

Alors PP =m(X —a)" 1Q+ (X —a)"Q' = (X —a)" '(mQ+ (X —a)Q') = (X —a)™ 'R
avec R =mQ + (X —a)Q'.

Puisque Q(a) # 0, on a R(a) = mQ(a) # 0 donc a est racine d’ordre m — 1 de P’ (et n’est
donc pas racine de P’ si m = 1).

En réitérant le raisonneemnt, on trouve que a est racine d’ordre m —2 de P”, d’ordre m — 3
de P®) et plus généralement, pour tout k € [0,m — 1], a est racine d’ordre m — k de pk)
Ainsi, a est racine simple de P™! et n’est donc pas racine de P("™) d’on le résultat.
e Réciproquement, supposons que pour tout k € [0,m — 1], P%)(a) = 0 et P™)(a) # 0 (ce
qui implique que n > m car Pt = ).

D’apres la formule de Taylor établie a la question précédente, on a alors

n . pk) (g n pk) (g
P(X)=>)_ P k!( )(X—a)k:(X—a)mZ P k!( )(X—a)k_m.

k=m k=m

P®)(a)
k!

Posons Q(X) = ye=m,

k=m
On a alors P(X) = (X —a)™Q(X) avec Q(a) =

Par définition, ceci signifie que a est racine de P d’ordre m. |

pm)
'(a) # 0 par hypothese.

Exemple 19. o Soit P = X% - X? - X +1= (X - 1)}(X +1).

Ona P =3X2-2X —1=3(X —1)(X +3).

On remarque que puisque 1 est racine double de P, alors 1 est racine simple de P. De méme,
puisque —1 est racine simple de P, alors —1 n’est pas racine de P’.

En revanche, —% est racine de P’ mais —% n’est pas racine de P.

e Soit P = X°+ X% -5X3 - X2 4+8X —4= (X —1)3X +2)2 Puisque 1 est racine de
P de multiplicité 3 et —2 est racine de P de multiplicité 2, alors P'(1) = P”(1) = 0, P®)(1) #
0,P'(—2)=0et P"(-2) #0.

En effet, P/ =5X* +4X3 —15X? —2X +8 = (X — 1)?(X +2)(5X + 4).

Puis P” = 20X3+12X2-30X —2 = (X —1)(202% 4322 +2) et on remarque que P”(—2) # 0.

Enfin, P? = 60X? + 24X — 30 et on remarque que P®)(1) # 0.
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16.3 Polynoémes irréductibles de C[X] et R[X]

16.3.1 Polynoémes irréductibles de C[X]

Théoréme 2: Théoréme de d’Alembert-Gauss

Tout polynéme de C[X] non constant admet au moins une racine complexe.

Démonstration. Hors programme. |

Exemple 20. On sait qu'un polynéme non constant de R[X| peut ne pas avoir de racine dans
R, comme le montre ’exemple de P = X2+ 1. Mais il admet alors toujours au moins une racine
complexe.

Corollaire 7

Tout polynéme de C[X] non constant est scindé sur C.

Démonstration. Montrons la propriété P(n) :< Tout polynéome de C[X]| de degré n est
scindé sur C spar récurrence sur n € N*,

elnitialisation : Pour n = 1, la propriété est immédiate car tout polyndéme de degré 1 est
scindé sur C.

eHérédité : Soit n € N* fixé. Supposons la propriété P(n) vraie et montrons que P(n + 1)
est vraie.

Soit P un polynéme de degré n + 1. Puisque n + 1 > 0, P n’est pas constant donc d’apres
le théoreme de d’Alembert-Gauss, P admet au moins une racine a € C.

Ainsi, il existe un polynéme @ de degré n tel que P = (X — «)Q. Puisque @ est de degré n,
d’apres ’hypothese de récurrence, on en déduit que @ est scindé sur C. Il existe donc des scalaires

P
(x1,...,2p) € CP et des multiplicités (my,...,mp) € (N*)P tels que Q = a H(X —x)™, olla

k=1
est le ceefficient dominant de Q.
P
Ainsi, P = a(X — «) H(X — x)"™* est scindé sur C, ce qui prouve la propriété au rang
k=1
n + 1 et acheve la récurrence. |

Remarque 18. Evidemment, un polynéme non constant de C[X] n’est pas nécessairement
scindé & racines simples, comme le montre ’exemple de P = (X —4)2.

Définition 10: Polynémes irréductibles de K[X]

Soit P € K[X] un polynéme de degré n € N*.

On dit que P est irréductible sur K si la propriété suivante est vérifiée :

pour tout couple (@, R) € K[X]? tel que P = QR, alors Q ou R est un polynome constant
non nul.

Autrement dit, P ne peut étre divisible que par un polynéme de méme degré que P ou
par un polynoéme constant non nul.

Exemple 21. Le polynome X2 + 1 n’est pas irréductible sur C car X? + 1 = (X —i)(X +1i).

Proposition 9: Polynémes irréductibles de C[X]

Soit P € C[X].
Alors P est irréductible sur C si et seulement si deg(P) = 1.
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Démonstration. Soit P € C[X] de degré n € N*.
e Supposons que n = 1. Supposons qu'il existe (@, R) € C[X]? tel que P = QR.
En comparant les degrés, on a 1 = deg(P) = deg(Q) + deg(R).
des(@) = 0 { deg(Q) = 1
deg(R) = 1 deg(R) = 0~
lynémes @ ou R est constant, ce qui prouve que P est irréductible sur C.

e Supposons que n > 1. D’apres le théoreme de d’Alembert-Gauss, P admet une racine
a € C donc il existe un polynéme @ € C[X] de degré n —1 > 0 tel que P = (X — a)Q.
Puisqu’aucun des deux polynomes X — « ou () n’est constant, on en déduit que P n’est pas
irréductible sur C.

Nécessairement, il vient { donc I'un des deux po-

Ainsi, P est irréductible si et seulement si n = deg(P) = 1. [ |

Théoréme 3: Théoréeme de décomposition en facteurs irréductibles dans C[X]

Soit P € C[X] un polynéme non constant.
Alors P est produit de polynomes irréductibles dans C[X], i.e. il existe des polynomes
(Py,...,P,) € C[X]" de degré 1 et des entiers (myq,...,my) € (N*)" tels que

n
P = H B
i=1
Démonstration. Il s’agit simplement d’utiliser le fait que P est scindé sur C. |

Remarque 19. Ceci signifie que pour tout polynéme P € C[X] non constant, il existe A € C*,
des nombres complexes (z1,...,2,) € C", des entiers non nuls (my,...,m,) € (N*)" tels que

n

Corollaire 8: Caractérisation de la divisibilité dans C[X]

Soient (P, Q) € (C[X])? non constants.

Notons Z(P) (resp. Z(Q)) 'ensemble des racines de P (resp. de Q). Pour chacune des
racines o de P (resp. de @), notons mp(a) (resp. mg(«)) la multiplicité de o en tant
que racine de P (resp. de Q).

Alors P divise @ si et seulement si Z(P) C Z(Q) et pour tout a € P,mp(a) < mg(a).

Démonstration. e Supposons que P divise Q). Alors il existe R € C[X] tel que Q = PR.

> Montrons que Z(P) C Z(Q).

Soit @ € Z(P). Alors P(a) = 0 donc Q(a) = P(a)R(a)) = 0 donc «a € Z(Q), ce qui prouve
que Z(P) C Z(Q).

> Soit a € Z(P) C Z(Q). Montrons que mp(a) < mg(«).

Par définition, (X — a)™P(® divise P donc il existe S € C[X] tel que P = (X — a)™P(® g,
dott Q = (X — a)"?P(®) SR,

Or, par définition mg () est la plus grande puissance de (X —a) qui divise @ donc mp(a) <
mq(a).

e Réciproquement, supposons que Z(P) C Z(Q) et que pour tout o € P, mp(a) < mg(a).

Notons Z(P) = {a1,...,an}.

Alors P = )\H(X — ;)™ ot A € C*. Puisque Z(P) C Z(Q), il existe un polynome
i=1
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R € C[X] tel que

donc P divise Q. |

16.3.2 Polynomes irréductibles de R[X]

Soit P € R[X]. Soit @ € C une racine de P.
Alors @ est également une racine de P. De plus, a et @ ont le méme ordre de multiplicité
en tant que racines de P.

Démonstration. e Montrons que P(@) = 0.

Notons P = Zaka, oun € Net (ap,...,a,) € R". Puisque pour tout k € [0,n], axr € R,

k=0
alors a; = a;. On a alors

e Notons n la multiplicité de a et m la multiplicité de @. Montrons que n = m.

Supposons par 'absurde que n # m. Sans perte de généralité, supposons que n > m (I'autre
cas étant analogue).

Par caractérisation de la multiplicité d’une racine, on a alors P (a) = 0 et PU™) (@) # 0,
puisque n > m, et que la premiere dérivée de P qui n’annule pas a est P,

Or, P ¢ R[X] donc d’aprés le point précédent, puisque P(™(a) = 0, on a également
P (@) = 0, d’ott la contradiction.

Nécessairement, n = m. |

Remarque 20. e On a déja remarqué ce phénomene dans le chapitre <« Nombres complexes >pour
des polyndmes a ceefficients réels de degré 2, dans le cas ou A < 0.

e Ce résultat est évidemment faux pour un polynome a ceefficients dans C. En effet, le
polynéme P = X — ¢ admet ¢ comme racine, mais pas i = —1.

Théoréme 4: Polynémes irréductibles de R[X]

Soit P € R[X].
Alors P est irréductible sur R si et seulement si deg(P) = 1 ou deg(P) = 2 avec A < 0.

Démonstration. Soit P € R[X] de degré n € N*.

e Si n =1, la méme preuve que sur C montre que P est irréductible sur R.

e Supposons que n = 2 (P est donc un trinéme de second degré) et que A < 0. Ainsi P
n’admet pas de racine réelle, mais admet deux racines complexes conjuguées. Si P n’était pas
irréductible sur R, il existerait deux polyndémes ) et R de degré 1 tels que P = QR. Or, tout
polynome de degré 1 sur R admet une racine réelle, donc P aurait une racine réelle, ce qui est
absurde. Ainsi, P est bien irréductible sur R.

e Supposons que n = 2 et que A > 0. Alors P admet une racine réelle o donc il existe
Q € R[X] de degré 1 tel que P = (X — «)@Q donc P n’est pas irréductible sur R.

e Supposons que n > 3. Il y a deux cas :
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> Supposons que P admette une racine réelle a. Alors il existe un polynome @ € R[X] de
dgré n —1 > 2 tel que P = (X — a)Q, donc P n’est pas irréductible sur R.

> Supposons que P n’admette pas de racine réelle. D’apres le théoreme de d’Alembert-
Gauss, P admet au moins une racine complexe a. D’apres le lemme précédent, @ est également
une racine de P donc P est divisible par (X — a)(X — @) = (X? — 2Re(a)X + |a|?), qui est
un polynéme de R[X] de degré 2. On en déduit qu’il existe un polynéme @ € R[X] de degré
n—2>1tel que P = (X?—2Re(a)X + |a|?)Q, donc P n’est pas irrédutible sur R.

Finalement, les seuls polynémes de R[X] irréductibles sont ceux de degré 1, et ceux de degré
2 de discriminant strictement négatif. |

Exemple 22. On a vu que X? + 1 n’est pas irréductible sur C, mais il l’est sur R.

Théoréme 5: Théoréme de décomposition en facteurs irréductibles dans R[X]

Soit P € R[X] un polynéme non constant.
Alors P est produit de polynémes irréductibles dans R[X], i.e. il existe des polynémes
(P1,...,P,) € RIX]" irréductibles et des entiers (my,...,my) € (N*)" tels que

n
p=][rm.
=1

Démonstration. Utilisons la décomposition en facteurs irréductibles de P dans C[X].
On obtient une décomposition de la forme

n p
P=AT[x =)™ J](X = )™ (X — @)™,
i=1 j=1
ot A est le ceefficient dominant de P, (z1,...,x,) sont les racines réelles de P (de multiplicité
(m1,...,my,) éventuellement nulles si P n’admet pas de racine réelle), et (o, @,...,0p, @)

sont les racines complexes conjuguées deux a deux de P, avec les mémes multiplicités pour les

racines qui sont conjuguées.
P

n
On obtient alors P = \ H(X —x;)™ H(X —2Re(0y) X + |aj|2)m3. Tous les polynémes de
i=1 j=1
degré 1 apparaissant dans ce produit sont bien évidemment irréductibles, et ceux de degré 2
également puisqu’ils sont de discriminant strictement négatif, d’ou le résultat.
|

Remarque 21. En pratique, la décomposition en facteurs irréductibles de P € R[X] s’écrit
sous la forme

n p
P= H(X — .’L‘Z)ml H(an2 +b;X + Cj)mj,
i=1 j=1

ot les polynomes (a; X%+ b; X + cj)m9 sont de discriminant strictement négatif.

Exemple 23. Donnons la décomposition en facteurs irréductibles de X*+1 dans C[X] et R[X].
SurC,onazt+1=0s (2?2 =-1=i*<2>=i=¢2 ouz®=—i=¢*2 dou
Sim 3im Tim

XtP41l=(X - (X —eT)(X—eT)(X —eT).

Pour obtenir la décomposition dans R, on multiplie entre eux les termes conjugués deux a deux.
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En effet, on a ¢’ = ¢ 71 = e et 3T = eTi" = d'ot
X441 = (X —€T)(X —eh)(X —eT)(X — ')
= (X2 (T4 e DX+ 1) (X2 — (e T +e 1)X +1)

- (X2—2cos( >X—|—1)(X2—cos<4>X+1)

= (X7 —V2X +1)(X?+V2X +1).

16.4 Décomposition en éléments simples de certaines fonctions
rationnelles

Définition 11: Fonctions rationnelles

P(x)
Q(z)’

On appelle fraction rationnelle toute fonction de la forme x — ou P et @) sont des

polynémes de K[X], avec @ # 0.

Remarque 22. Une telle fonction est définie pour les z tels que Q(x) # 0.

Théoréme 6: Décomposition en éléments simples des fonctions rationnelles a

poOles simples

Soit F: x — (a:)’ ou PeK[X]et Q= H — x;) € K[X] est un polynome scindé a
73

racines simples (les (z1,...,x,) sont appeles les poles simples de F').
Alors il existe T' € K[X] et des scalaires (ay,...,a,) € K" tels que

Ve e K\ {z1,..., 2.}, F(x +Z

_:UZ

Démonstration. Hors-programme. |

Remarque 23. e En pratique, on commence par faire la division euclidienne P = QT + R, ou
P R
deg(R) < deg(Q) et on a 0~ T+ 0 Ainsi, T est le quotient de la division euclidienne de P

par Q). Les scalaires (ay,...,ay,) se trouvent ensuite par identification.
e Ceci est tres utile en pratique pour calculer des intégrales, ou pour calculer des dérivées.

B+3t2+4 34 3t2+4

242t -3  (t—1)(t+3)
La division euclidienne de X3 + 3X? 4+ 4 par X2 +2X — 3 est

Exemple 24. Posons pour tout ¢t € R\ {1, -3}, F(t) =

X34 3X2 4= (X2 42X - 3)(X + 1)+ X +7

t—7
donc pour tout t e R\ {1,-3}, F(t)=t+14+ ————.
Pour tout t € R\ {1,—-3}, on a
t+7 a b t+7 (a+b)t+3a—b
Pyor—3 1-1 t+3 #12-3 2 +2t—3 FT=(atb)t+3a
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Par identification, on en déduit

a+b =1 a = 2
{3a—b—7©{b_—1

2 1
Ai .’ tout t € R 17—3,Ft:t 1 _— .
insi, pour tou \ { HE@)=t+ T 13

0 0 9 1
F = 14— — —— .
/_2 ) /_2<t—|— e t+3>dt

Par linéarité de 'intégrale, on en déduit

Ft) = t+1)dt + 2 —
/_2 Q /—2(+ Jdt + /—zt—l /—2t+3

On a alors

2 1°
_ [ + t] 20— 1)% — Dl +3)1%

2
= —3In(3).
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