
16
Polynômes

Dans tout le chapitre, K désigne R ou C.

16.1 Ensemble des polynômes à une indéterminée

16.1.1 Définition et règles de calcul

Définition 1: Polynôme

Un polynôme à cœfficients dans K est la donnée d’une suite presque nulle (an)n∈N ∈ KN,
i.e. une suite à valeurs dans K pour laquelle il existe un entier n0 ∈ N tel que pour tout
n ⩾ n0, an = 0 et on note alors

P =

n0−1∑
k=0

akX
k,

où X est appelée l’indéterminée du polynôme P.
Les scalaires (a0, . . . , an0−1) sont appelés les cœfficients du polynôme P.
L’ensemble des polynômes à une indéterminée à cœfficients dans K se note K[X].

Remarque 1. • Un polynôme de la forme P (X) = anX
n est appelé un monôme.

• Un polynôme est dit constant s’il est de la forme P (X) = a, où a ∈ K. En particulier, si
a = 0, on dit que c’est le polynôme nul et on le note 0K[X].

Exemple 1. • Si a0 = 0, a1 = 1 et pour tout n ⩾ 2, an = 0, alors P = X.

• Si a0 = 1 et pour tout n ⩾ 1, an = 0, alors P = 1.

• Si a0 = 2, a1 = −3, a2 = 0, a3 = −4 et pour tout n ⩾ 4, an = 0, alors P = −4X3 − 3X +2.
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Définition 2: Opérations sur les polynômes

Soient P (X) =

n∑
k=0

akX
k et Q(X) =

m∑
k=0

bkX
k deux polynômes de K[X].

1. On définit pour tout (λ, µ) ∈ K2 le polynôme λP + µQ ∈ K[X] par

λP + µQ =

max(n,m)∑
k=0

(λak + µbk)X
k

avec éventuellement ak = 0 si k > n et bk = 0 si k > m.

2. On définit le produit PQ ∈ K[X] par

PQ =

n+m∑
k=0


∑

i+j=k
0⩽i⩽n
0⩽j⩽m

aibj

Xk.

3. Pour tout k ∈ N, on définit P k par

P k =

 1 si k = 0
P × · · · × P︸ ︷︷ ︸

k fois

si k > 0.

4. On définit P ◦Q par

P ◦Q =
n∑

k=0

akQ
k.

Exemple 2. Soient P = 2X2 +X − 1 et Q = X3 − 5X + 2.

Alors 2P + 3Q = 3X3 + 4X2 − 13X + 4 et PQ = 2X5 +X4 − 11X3 −X2 + 7X − 2.

Remarque 2. Puisque le produit dans K est commutatif, on constate que le produit dans K[X]
est commutatif. En particulier, on retrouve la formule du bnôme de Newton.

Proposition 1: Formule du binôme de Newton

Soient (P,Q) ∈ K[X]2.
Soit n ∈ N.
On a

(P +Q)n =

n∑
k=0

(
n

k

)
P kQn−k =

n∑
k=0

(
n

k

)
Pn−kQk.
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16.1.2 Degré d’un polynôme

Définition 3: Degré d’un polynôme

Soit P =
n∑

k=0

akX
k où n ∈ N et (a0, . . . , an) ∈ Rn+1.

On suppose que P n’est pas le polynôme nul, c’est à dire qu’il existe k ∈ J0, nK, tel que
ak ̸= 0.

Soit d = max{k ∈ J0, nK, ak ̸= 0}, i.e. d ∈ J0, nK et P =
d∑

k=0

akX
k avec ad ̸= 0 (et pour

tout k ∈ Jd+ 1, nK, ak = 0).
On dit que l’entier naturel d est le degré du polynôme P et on note

d = deg(P ).

Le cœfficient ad est appelé le cœfficient dominant de P. Si ad = 1, on dit que le polynôme
P est unitaire.

Remarque 3. • Si an ̸= 0, alors deg(P ) = d = n et dans ce cas Jd+ 1, nK est vide.

• Par convention, le degré du polynôme nul est −∞, ce qu’on note deg(0) = −∞.

• Concrètement, le degré d’un polynôme non nul est la plus grande puissance de X appa-
raissant dans le polynôme.

• Les polynômes constants non nuls sont de degré 0.

• Pour tout n ∈ N, l’ensemble des polynômes à cœfficients dans K de degré inférieur ou égal
à n est noté Kn[X]. En particulier, K0[X] est l’ensemble des polynômes constants dans K.

Exemple 3. • Pour tout n ∈ N,deg(Xn) = n.

• deg(2X3 +X − 1) = 3 et le cœfficient dominant de ce polynôme est 2.

Proposition 2: Opérations sur les degrés

Soient P (X) =
n∑

k=0

akX
k et Q(X) =

m∑
k=0

bkX
k deux polynômes de K[X] avec an ̸= 0 et

bm ̸= 0.

1. Pour tout λ ∈ K∗, λP est un polynôme de degré deg(P ) et on a

λP (X) =
n∑

k=0

(λak)X
k.

2. On a
deg(P +Q) ⩽ max(deg(P ), deg(Q)).

L’inégalité est une égalité si deg(P ) ̸= deg(Q).

3. On a deg(PQ) = deg(P ) + deg(Q).

4. Si Q est non constant, alors

deg(P ◦Q) = deg(P ) deg(Q).

Remarque 4. • Si λ = 0, λP = 0.

• Si Q = 0, alors P +Q = P et PQ = 0. On retrouve deg(PQ) = deg(P ) + deg(Q) avec la
convention deg(P ) + (−∞) = −∞.
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Démonstration.

1. Soit λ ∈ K∗.

On a alors pour tout λP = λ
n∑

k=0

akX
k =

n∑
k=0

(λakX
k), avec λan ̸= 0, d’où le résultat.

2. • Supposons que deg(P ) ̸= deg(Q). Sans perte de généralité, on peut supposer (quitte à
échanger P et Q) que deg(Q) < deg(P ), i.e. m < n.

On pose alors pour tout k ∈ Jm+ 1, nK, bk = 0.

Il vient

P +Q =

n∑
k=0

akX
k +

n∑
k=0

bkX
k =

n∑
k=0

(ak + bk)X
k,

avec an + bn = an ̸= 0 donc deg(P +Q) = n = deg(P ) = max(deg(P ),deg(Q)).

• Supposons que deg(P ) = deg(Q), i.e. n = m. On a comme précédemment

P +Q =
n∑

k=0

(ak + bk)X
k.

Ainsi, deg(P + Q) = n si an + bn ̸= 0 et deg(P + Q) < n si an + bn = 0 donc dans tous
les cas, deg(P +Q) ⩽ n = max(deg(P ),deg(Q)).

3. On a

PQ =

(
n∑

i=0

aiX
i

) m∑
j=0

bjX
j

 =

n+m∑
k=0


∑

i+j=k
1⩽i⩽n
1⩽j⩽m

aibj

Xk.

Pour k = n+m, on a
∑

i+j=k
1⩽i⩽n
1⩽j⩽m

aibj = anbm ̸= 0 donc deg(PQ) = n+m = deg(P ) + deg(Q).

4. On a

P ◦Q =
n∑

k=0

akQ
k =

n∑
k=0

ak

(
m∑
i=0

biX
i

)k

=

n∑
k=0

ak(b
k
mXkm + · · ·+ bk0)

donc si m ̸= 0, i.e. si Q n’est pas constant, on constate que le cœfficient dominant de P ◦Q
est anb

n
m ̸= 0 et est situé devant xnm d’où le résultat.

■

Remarque 5. • Si deg(P ) = deg(Q), on peut avoir deg(P +Q) < max(deg(P ),deg(Q)).
En effet, si P = X+1 et Q = −X, on a deg(P ) = deg(Q) = 1 donc max(deg(P ),deg(Q)) = 1

et P +Q = 1 donc deg(P +Q) = 0 < max(deg(P ),deg(Q)).
• Si Q est constant, on peut avoir deg(P ◦Q) ̸= deg(P ) deg(Q). Par exemple, si P (X) = X−1

et Q(X) = 1, alors P ◦Q(X) = 0 donc deg(P ◦Q) = −∞, tandis que deg(P ) deg(Q) = 1×0 = 0.
• Le produit de deux polynômes non nuls est non nul. En effet, si deg(P ) ⩾ 0 et deg(Q) ⩾ 0,

alors deg(PQ) = deg(P ) + deg(Q) ⩾ 0 donc PQ ̸= 0.

Exemple 4. • Soit P = 2X3 −X et Q = 3X2 +X + 2. On a deg(P ) = 3 et deg(Q) = 2.
Alors PQ = 6X5 + 2X4 +X3 −X2 − 2X donc deg(PQ) = 5 = deg(P ) + deg(Q) et

Q ◦ P = 3(2X3 −X)2 + 2X3 −X + 2 = 12X6 − 12X4 + 2X3 + 3X2 −X + 2

donc deg(Q ◦ P ) = 6 = deg(P )× deg(Q).
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16.1.3 Divisibilité et division euclidienne

Définition 4: Divisibilité dans K[X]

Soient (P,Q) ∈ K[X]2.
On dit que P divise Q s’il existe un polynôme R ∈ K[X] tel que

Q = PR.

Dans ce cas, on dit que Q est divisible par P ou est un multiple de P et que P est un
diviseur de Q.

Remarque 6. • Le polynôme nul est divisible par tous les polynômes de K[X].

• Les polynômes constants non nuls divisent tous les polynômes.

En effet, pour tout λ ∈ K∗, pour tout P ∈ K[X], P = λ×
(
1

λ
P

)
.

Exemple 5. • Pour tout n ∈ N∗, X divise Xn puisque Xn = X ×Xn−1.

• Pour tout a ∈ K, pour tout n ∈ N∗, X − a divise Xn − an car

Xn − an = (X − a)

n−1∑
k=0

an−1−kXk.

• Le polynôme X2 − 2X + 3 divise X3 −X + 6 car (X2 − 2X + 3)(X + 2) = X3 −X + 6.

Théorème 1: Théorème de la division euclidienne

Soient (A,B) ∈ K[X]2 avec B ̸= 0.
Alors il existe un unique couple (Q,R) ∈ (K[X])2 tel que{

A = BQ+R
deg(R) < deg(B)

.

On dit que Q est le quotient de la division euclidienne de A par B et que R en est le
reste.

Démonstration.

• Existence :

Notons B =

m∑
k=0

bkX
k avec deg(B) = m ⩾ 0 par hypothèse. En particulier, bm ̸= 0.

L’existence du couple (Q,R) est évidente si deg(A) < deg(B). En effet, il suffit alors de
prendre Q = 0 et R = A.

Montrons alors par récurrence sur n ⩾ m le résultat suivant :

≪ SiA ∈ Kn[X], alors il existe(Q,R) ∈ (K[X])2 avec deg(R) < deg(B) tel queA = BQ+R. ≫

▷ Initialisation : Pour n = m, on a deg(A) ⩽ n = m. On a déjà vu que le résultat est
évident si deg(A) < deg(B).

Supposons donc que deg(A) = m et posons A =
m∑
k=0

akX
k.
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Posons R = A − am
bm

m∑
k=0

bkX
k. En comparant les degrés et les cœfficients dominants de A

et de
am
bm

m∑
k=0

bkX
k, on constate qu’ils sont identiques donc deg(R) < m = deg(B) et on a bien

A = BQ+R avec Q =
am
bm

.

La propriété est donc vraie au rang n = m.
▷ Hérédité : Soit n ⩾ m fixé. Supposons la propriété vraie au rang n. Montrons qu’elle est

vraie au rang n+ 1.

Posons A =
n+1∑
k=0

akX
k ∈ Kn+1[X]. Si an+1 = 0, alors A ∈ Kn[X] et la propriété est vraie par

hypothèse de récurrence.

Supposons donc que an+1 ̸= 0. Posons alors S = A− an+1

bm
Xn+1−mB.

On a deg

(
an+1

bm
Xn+1−mB

)
= n + 1 − m + deg(B) = n + 1 = deg(A) et son cœfficient

dominant est an+1.

Ainsi, A et
an+1

bm
Xn+1−mB ont même degré et même cœfficient dominant donc

deg(S) = deg

(
A− an+1

bm
Xn+1−mQ

)
< deg(A) = n+ 1,

i.e. S ∈ Kn[X].
Par hypothèse de récurrence, il existe (Q1, R1) ∈ (K[X])2 avec deg(R1) < deg(B) tel que

S = BQ1 +R1. Il vient alors A = S +
an+1

bm
Xn+1−mB = B

(
Q1 +

an+1

bm
Xn+1−m

)
+R1.

En posant Q = Q1+
an+1

bm
Xn+1−m et R = R1, on a bien A = BQ+R avec deg(R) < deg(B),

ce qui prouve la propriété au rang n+ 1 et achève la récurrence.
L’existence est donc prouvée.
• Unicité :
Supposons qu’il existe (Q,Q1, R,R1) ∈ (K[X])4 avec deg(R) < deg(B) et deg(R1) < deg(B)

tels que A = BQ+R = BQ1 +R1.
Ainsi, B(Q−Q1) = R1 −R.
On a degB(Q−Q1) = deg(R1 −R) ⩽ max(deg(R1), deg(R)) < deg(B).
Or, si on avaitQ ̸= Q1, on auraitQ−Q1 ̸= 0 donc deg(B(Q−Q1)) = deg(B)+deg(Q−Q1)︸ ︷︷ ︸

⩾0

⩾

deg(B), ce qui mènerait à une contradiction.
Ainsi, Q = Q1 et il en découle que R = R1 d’où l’unicité du couple (Q,R). ■

Exemple 6. Soit A = 2X7 +X5 − 3X4 + 5X2 −X + 1 et B = X4 +X2 − 2X − 3.
La division euclidienne de A par B est

2X7 +X5 − 3X4 + 5X2 −X + 1 = (X4 +X2 − 2X − 3)(2X3 −X + 1) + 7X3 + 2X2 − 2X + 4.

On a donc A = BQ+R avec Q = 2X3 −X + 1 et R = 7X3 + 2X2 − 2X + 4 où deg(R) = 3 <
deg(B) = 4.

Remarque 7. A l’instar de l’algorithme d’Euclide sur les entiers, on peut élaborer un algo-
rithme de divison euclidienne sur les polynômes de la manière suivante : étant donnés deux
polynômes A0 et B0 avec B0 ̸= 0, on réalise la division euclidienne de A0 par B0 :

A0 = B0Q0 +R0 avec deg(R0) < deg(B0).
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Tant que Rn ̸= 0, on pose An+1 = Bn et Bn+1 = Rn, puis on réalise la division euclidienne
de An+1 par Bn+1 = Rn ̸= 0 :

An+1 = Bn+1Qn+1 +Rn+1 avec deg(Rn+1) < deg(Bn+1) = deg(Rn).

On obtient donc une suite strictement décroissante d’entiers

deg(R0) > deg(R1) > · · · > deg(Rn) > deg(Rn+1).

Nécessairement, au bout d’un certain nombre d’étapes, il existera un entier p tel que Rp = 0.
Lorsqu’on divise le dernier reste non nul Rp−1 par son cœfficient dominant, le polynôme obtenu
est alors le PGCD des polynômes A0 et B0.

Exemple 7. Posons A0 = X4 −X2 +X + 1 et B0 = X3 − 1.

On a A0 = XB0 −X2 + 2X − 1 donc R0 = −X2 + 2X − 1. Posons A1 = B0 et B1 = R0.

On a alors A1 = B1(−X − 2) + 3X − 3 donc R1 = 3X − 3.

Posons A2 = B1 = R0 = −X2 + 2X − 1 et B2 = R1 = 3X − 3.

On constate que B2 divise A2 puisque A2 = −1

3
(X − 1)B2 donc R2 = 0.

Le dernier reste non nul est R1 = 3X − 3 donc le PGCD de A0 et B0 est
1

3
R1 = X − 1.

16.2 Racines et factorisation

16.2.1 Fonction polynomiale

Définition 5: Fonction polynomiale

Soit P =
n∑

k=0

akX
k ∈ K[X].

On appelle fonction polynomiale associée à P la fonction

P :

K −→ K

x 7−→
n∑

k=0

akx
k .

Exemple 8. • Les fonctions affines P : x 7−→ ax + b, où (a, b) ∈ K2 sont des fonctions
polynomiales.

• Les fonctions puissances entières P : x 7−→ xn, où n ∈ N, étudiées dans le chapitre
≪ Fonctions d’une variable réelles ≫sont des fonctions polynomiales.

Remarque 8. • Quitte à considérer sa fonction polynomiale associée, on peut donc évaluer un
polynôme en un nombre complexe.

Par exemple, si P = X3 +X2 − 1, alors P (2) = 23 + 22 − 1 = 11.

• Une méthode efficace pour évaluer un polynôme P =

n∑
k=0

akX
k en un scalaire α est la

méthode de Horner : au lieu de calculer toutes les puissances de α jusqu’à αn, puis de faire le
produit avec les cœfficients du polynôme et enfin la somme des résultats obtenus, il est plus
judicieux de faire comme suit :

P (α) = ((. . . ((anα+ an−1)α+ an−2)α+ . . . )α+ a1)α+ α,

ce qui fait beaucoup moins de produits à calculer.
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Exemple 9. Soit P = X3 −X2 + 2X − 5. Alors

P (4) = ((1× 4− 1)× 4 + 2)× 4− 5 = 51.

En pratique, on commet souvent l’abus de confondre un polynome et la fonction polynomiale
associée à celui-ci. Cet abus est justifié par ce qui suit, à savoir qu’un polynôme est entièrement
déterminé par sa fonction polynomiale associée.

Proposition 3: Unicité de l’écriture du polynôme nul

Soit P : x 7−→
n∑

k=0

akx
k, où n ∈ N et (a0, . . . , an) ∈ Kn+1.

P est la fonction nulle si et seulement si pour tout k ∈ J0, nK, ak = 0.

Démonstration. • Si pour tout k ∈ J0, nK, ak = 0, il est clair que P est le polynôme nul.
• Montrons par récurrence sur n ∈ N la propriété suivante :

≪ Si pour toutx ∈ R, P (x) =

n∑
k=0

akx
k = 0, alors pour tout k ∈ J0, nK, ak = 0. ≫

Pour n = 0, on a pour tout x ∈ R, P (x) = a0 = 0 donc la propriété est vraie au rang n = 0.
Soit n ∈ N fixé. On suppose la propriété vraie au rang n. Montrons qu’elle est vraie au rang

n+ 1.

Soient (a0, . . . , an+1) ∈ Kn+2 tels que pour tout x ∈ R, P (x) =
n+1∑
k=0

akx
k = 0.

La fonction P est constante égale à 0 sur R donc P est dérivable sur R et on a pour tout
x ∈ R,

0 = P ′(x) =

n+1∑
k=1

kakx
k−1 =

n∑
k=0

(k + 1)ak+1x
k.

Par hypothèse de récurrence, on en déduit que pour tout k ∈ J0, nK(k + 1)ak+1 = 0 d’où pour
tout k ∈ J1, n+ 1K, ak = 0.

Ainsi, pour tout x ∈ R, P (x) = a0 = 0, donc pour tout k ∈ J0, n+ 1K, ak = 0, ce qui prouve
la propriété au rang n+ 1 et achève la récurrence. ■

16.2.2 Polynôme dérivé

Définition 6: Polynôme dérivé

Soit P =
n∑

k=0

akX
k ∈ K[X], avec an ̸= 0.

On appelle polynôme dérivé de P le polynôme

P ′ =
n−1∑
k=0

(k + 1)ak+1X
k.

Remarque 9. • La fonction P ′ : x 7−→ P ′(x) est la dérivée sur R de la fonction P : x 7−→ P (x).

En effet, si pour tout x ∈ R, P (x) =
n∑

k=0

akx
k avec an ̸= 0, alors pour tout x ∈ R,

P ′(x) =

n∑
k=1

kakx
k−1 =

n−1∑
k=0

(k + 1)ak+1x
k.
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• Ce lien entre polynôme dérivé et dérivée de la fonction polynomiale associée permet
d’étendre les opérations connues sur les dérivées aux polynômes. En particulier, les formules
donnant la dérivée d’une combinaison linéaire, d’un produit, ou encore la formule de Leibniz
restent valables pour les polynômes.

• Si n = 0, i.e. si P est constant, alors P ′ = 0 (en effet, la somme va de 0 à −1 et est donc
vide). Réciproquement, si P ′ = 0, alors P est un polynôme constant.

• Le polynôme dérivé du polynômé nul est le polynôme nul.

Exemple 10. Si P (X) = −2X5 +X3 + 3X2 − 1, alors P ′(X) = −10X4 + 3X2 + 6X.

Proposition 4: Degré du polynôme dérivé

Soit P ∈ K[X] de degré n ∈ N∗.
Alors deg(P ′) = n− 1.

Démonstration. Soit n ∈ N∗. Soit P (X) =

n∑
k=0

akX
k avec an ̸= 0 de telle sorte que

deg(P ) = n.

Alors P ′(X) =

n−1∑
k=0

(k + 1)ak+1X
k.

Le cœfficient dominant de P ′ est nan ̸= 0 et il est situé devant Xn−1 donc

deg(P ′) = n− 1 ∈ N.

■

Remarque 10. Si deg(P ) = 0, alors deg(P ′) = −∞.

Proposition 5: Dérivée p-ème

Soit P =
n∑

k=0

akX
k, avec an ̸= 0, i.e. deg(P ) = n.

Soit p ∈ N. On note P (p) la dérivée p-ème de P.
Alors

P (p) =


n−p∑
k=0

(k + p)!

k!
ak+pX

k si p ⩽ n

0 si p > n

En particulier, si p ⩽ n, deg(P (p)) = n− p.

Démonstration. Soit k ∈ J0, nK.

On sait que la dérivée p-ème de x 7−→ xk est x 7−→ k!

(k − p)!
xk−p si p ∈ J0, kK et 0 sinon.

Par linéarité de la dérivation, on trouve que si p ∈ J0, nK,

P (p) =
n∑

k=p

ak
k!

(k − p)!
Xk−p =

n−p∑
k=0

(k + p)!

k!
ak+pX

k

et si p > n, P (p) = 0. ■
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16.2.3 Racines d’un polynôme

Définition 7: Racines d’un polynôme

Soit P ∈ K[X]. Soit α ∈ K.
On dit que α est une racine (ou un zéro) de P si

P (α) = 0.

Exemple 11. • Le polynôme P = X + 1 admet comme unique racine α = −1.

• Le polynôme P = X2 − 2X + 1 = (X − 1)2 admet comme unique racine α = 1.

• Le polynôme P = X2 − 5X +6 = (X − 2)(X − 3) admet comme racines α1 = 2 et α2 = 3.

• Le polynôme P = X3 − 1 admet comme unique racine réelle α = 1. Il admet trois racines
complexes : 1, j et j2.

• Le polynôme P = X2+1 n’admet aucune racine réelle mais admet deux racines complexes
que sont i et −i.

Proposition 6

Soit P ∈ R[X] de degré impair.
Alors P admet au moins une racine réelle.

Démonstration. Soit n = deg(P ) ∈ N∗. Alors il existe (a0, . . . , an) ∈ Rn+1 avec an ̸= 0

tels que pour tout x ∈ R, P (x) =
n∑

k=0

akx
k.

Puisque n est impair, on a lim
x→+∞

xn = +∞ et lim
x→−∞

xn = −∞.

• Si an > 0, on a alors lim
x→+∞

anx
n = +∞ et lim

x→−∞
anx

n = −∞, d’où lim
x→+∞

P (x) = +∞ et

lim
x→−∞

P (x) = −∞.

• Si an < 0, on a alors lim
x→+∞

anx
n = −∞ et lim

x→−∞
anx

n = +∞, d’où lim
x→+∞

P (x) = −∞ et

lim
x→−∞

P (x) = +∞.

Dans les deux cas, la fonction P est continue sur R et prend des valeurs positives et négatives.

D’après le théorème des valeurs intermédiaires, il existe nécessairement un réel α tel que
P (α) = 0. ■

Remarque 11. Ce n’est plus nécessairement le cas pour les polynômes de degré pair puisque
le polynôme P = X2 + 1 n’admet pas de racine réelle. En effet, pour tout réel x, P (x) > 0.

Lemme 1: Division euclidienne par (X − α)

Soit P ∈ K[X], soit α ∈ K.
Il existe un unique polynôme Q ∈ K[X] tel que

P = (X − α)Q+ P (α).

Démonstration. D’après le théorème de la division euclidienne, il existe un unique couple
(Q,R) ∈ K[X]2 tel que P = (X − α)Q+R et deg(R) < deg(X − α) = 1. Ainsi, deg(R) = 0 ou
deg(R) = −∞ donc R est un polynôme constant, éventuellement nul.

De plus, en évaluant l’égalité P = (X−α)Q+R en α, on obtient R = P (α), d’où le résultat
voulu. ■
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Corollaire 1: Factorisation d’un polynôme admettant une racine

Soit P ∈ K[X], soit α ∈ K.
Le scalaire α est racine de P si et seulement s’il existe un polynôme Q ∈ K[X] tel que
P = (X − α)Q, autrement dit, (X − α) divise P.
En outre, le polynôme Q est unique s’il existe.

Démonstration. • S’il existe un polynôme Q ∈ K[X] tel que P = (X − α)Q, alors

P (α) = (α− α)Q(α) = 0,

ce qui implique que α est racine de P.

• Réciproquement, supposons que α est racine de P, i.e. P (α) = 0.

D’après le lemme précédent, il existe un unique polynôme Q ∈ K[X] tel que

P = (X − α)Q+ P (α) = (X − α)Q.

■

Exemple 12. • X3 − 1 = (X − 1)(X2 +X + 1).

• X3 −X2 −X + 1 = (X2 − 2X + 1)(X + 1).

•X3 − 6X2 + 11X − 6 = (X − 1)(X2 − 5X + 6).

Corollaire 2: Factorisation d’un polynôme admettant plusieurs racines

Soit P ∈ K[X] admettant des racines distinctes α1, . . . , αp.
Alors il existe Q ∈ K[X] tel que

P = (X − α1)(X − α2) . . . ...(X − αp)Q.

Démonstration. D’après la proposition précédente, il existe Q1 ∈ K[X] tel que

P = (X − α1)Q1.

Puisque α2 est une racine de P, on a 0 = P (α2) = (α2 − α1)Q1(α2).

Or, α2 ̸= α1 donc Q1(α2) = 0.

On en déduit qu’il existe Q2 ∈ K[X] tel que Q1 = (X−α2)Q2 d’où P = (X−α1)(X−α2)Q2.

On en déduit que α3 est une racine de Q2 et ainsi de suite.

A la fin, on obtient bien un polynôme Q ∈ K[X] tel que

P = (X − α1)(X − α2) . . . ...(X − αp)Q.

■

Exemple 13. • X3 −X2 −X + 1 = (X2 − 2X + 1)(X + 1) = (X − 1)2(X + 1).

•X3 − 6X2 + 11X − 6 = (X − 1)(X2 − 5X + 6) = (X − 1)(X − 2)(X − 3).

• X3 − 1 = (X − 1)(X − j)(X − j2).

Corollaire 3: Nombre de racines d’un polynôme non nul

Soit P ∈ K[X] de degré n ∈ N.
Le nombre de racines de P est inférieur ou égal à n.

Démonstration. Soient α1, . . . , αp des racines distinctes de P.
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D’après le corollaire précédent, il existe un polynôme Q ∈ K[X] tel que

P = (X − α1)(X − α2) . . . ...(X − αp)Q.

Notons que Q ne peut pas être le polynôme nul, puisque P ne l’est pas, donc deg(Q) ⩾ 0. En
comparant les degrés, on a

n = deg(P ) = p+ deg(Q) ⩾ p,

d’où le résultat. ■

Remarque 12. • Le polynôme nul admet une infinité de racines. En fait, si on sait qu’un
polynôme P est de degré inférieur ou égal à n et qu’il admet un nombre de racines strictement
supérieur à n, alors P est le polynôme nul.

• S’il existe une infinité de scalaires α pour lesquels P (α) = Q(α), alors le polynôme P −Q
admet une infinité de racines donc P −Q est le polyôme nul donc P = Q.

En particulier, si I est un intervalle de R non réduit à un singleton tel que pour tout
x ∈ I, P (x) = Q(x), alors P = Q et on peut en déduire que pour tout x ∈ C, P (x) = Q(x).

• Un polynôme constant non nul n’admet pas de racines.

Exemple 14. • Le polynôme P = X3− 1 = (X − 1)(X2+X +1) est de degré 3 et admet pour
unique racine réelle α = 1 car le polynôme Q = X2 +X + 1 n’admet pas de racine réelle.

• Le polynôme P = X3−6X2+11X−6 est de degré 3 et admet 3 racines réelles distinctes :
1, 2 et 3.

Ainsi, un polynôme de degré n admet au maximum n racines distinctes. S’il admet exacte-
ment n racines, on connâıt sa factorisation :

Corollaire 4: Factorisation d’un polynôme admettant autant de racines que
son degré

Soit P ∈ K[X] un polynôme de degré n ∈ N∗. On suppose que P admet n racines
distinctes α1, . . . , αn.
Alors

P = an(X − α1) . . . (X − αn)

où an est le cœfficient dominant de P.

Démonstration. D’après le Corollaire 3, il existe un polynôme Q ∈ K[X] tel que

P = (X − α1) . . . (X − αn)Q.

En comparant les degrés, on a n = deg(P ) = n + deg(Q) donc deg(Q) = 0, i.e. Q est un
polynôme constant.

Notons Q = an ∈ K∗.
Alors P = an(X − α1) . . . (X − αn) et en développant, on remarque que an est le cœfficient

devant Xn, donc an est bien le cœfficient dominant de P. ■

Remarque 13. On a déjà vu que pour un trinôme du second degré P = aX2+bX+c admettant
deux racines distinctes x1 et x2, on a P = a(X − x1)(X − x2).

Exemple 15. • 2X2 − 10X + 12 = 2(X − 2)(X − 3).

• Soit n ∈ N∗. Soit ω = e
2iπ
n . On sait que les (ωk)k∈J0,n−1K sont n racines distinctes du

polynôme Xn − 1 = 0 qui est de degré n et unitaire.

Ainsi, Xn − 1 =
n−1∏
k=0

(X − ωk).
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Corollaire 5: Unicité de l’écriture des polynômes

Soient P (X) =

n∑
k=0

akX
k et Q(X) =

m∑
k=0

bkX
k deux polynômes où (n,m) ∈

N2, (a0, . . . , an) ∈ Kn+1, (b0, . . . , bm) ∈ Km+1 avec an ̸= 0 et bm ̸= 0.
Alors P = Q si et seulement si n = m et pour tout k ∈ J0, nK, ak = bk.

Démonstration. • Si n = m et pour tout k ∈ J0, nK, ak = bk, il est clair que P = Q.

• Supposons que P = Q. Montrons que n = m et que pour tout k ∈ J0, nK, ak = bk.

Puisque P = Q, en considérant les fonctions polynomiales associées à P et à Q, on a pour
tout x ∈ K, P (x) = Q(x), i.e. (P −Q)(x) = 0.

Ainsi, le polynôme P −Q admet une infinité de racines : c’est donc le polynôme nul.

D’après l’unicité de l’écriture du polynôme nul, on en déduit que tous les cœfficients de
P −Q sont nuls, ce qui implique que n = m et que pour tout k ∈ J0, nK, ak = bk.

■

Remarque 14. • L’écriture d’un polynôme est donc unique. En particulier, un polynôme est
entièrement déterminé par la donnée de ses cœfficients.

• Ceci légitime les processus d’identification des cœfficients entre deux polynômes.

Par exemple, si pour tout x ∈ R, P (x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 3x4 − x2 +2x+1,

on en déduit que 
a4 = 3
a3 = 0
a2 = −1
a1 = 2
a0 = 1

.

Définition 8: Ordre de multiplicité d’une racine

Soit P ∈ K[X] un polynôme non nul, soit α ∈ K une racine de P.
On appelle ordre de multiplicité de la racine α le plus grand entier m ∈ N∗ tel que
(X − α)m divise P, i.e. le plus grand entier m ∈ N∗ pour lequel il existe un polynôme
Q ∈ K[X] tel que

P = (X − α)mQ.

• Si m = 1, on dit que α est une racine simple de P.
• Si m = 2, on dit que α est une racine double de P.
• Si m ⩾ 2, on dit que α est une racine multiple de P.

Remarque 15. • Si α est une racine d’ordre de multiplicité m de P, alors il existe Q ∈ K[X]
tel que P = (X − α)mQ et dans ce cas, on a nécessairement Q(α) ̸= 0.

Sinon, on aurait Q = (X − α)R, d’où P = (X − α)m+1R, ce qui contredit le fait que α est
une racine d’ordre m de P.

• Si P est de degré n ∈ N∗, l’ordre de multiplicité m de toute racine α de P vérifie m ⩽ n.

En effet, si P = (X − α)mQ, alors deg(P ) = m+ deg(Q) ⩾ m.

Exemple 16. Soit P = X3−X2−X +1 = (X − 1)2(X +1). Alors P admet une racine double
qui est 1 et une racine simple qui est −1.
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Définition 9: Polynôme scindé

Soit P ∈ K[X].
• On dit que P est scindé sur K s’il existe des scalaires (x1, . . . , xp) ∈ Kp deux à deux
distincts et des entiers (m1, . . . ,mp) ∈ (N∗)p tels que

P = a

p∏
k=1

(X − xk)
mk ,

où a est le cœfficient dominant de P.
• On dit dans ce cas que P est scindé à racines simples si pour tout k ∈ J1, pK,mk = 1.

Remarque 16. • Un polynôme de degré 1 sur K est scindé (à racines simples) sur K.

En effet, si P = aX + b avec (a, b) ∈ K2 et a ̸= 0, alors P = a(X + b
a).

• Soit P ∈ R[X] un polynôme de degré 2. Alors P est scindé sur R si et seulement si ∆ ⩾ 0.
De plus, P est scindé à racines simples sur R si ∆ > 0.

• Soit P ∈ C[X] un polynôme de degré 2. Alors P est scindé sur C. De plus, P est scindé à
racines simples sur C si et seulement si ∆ ̸= 0.

Exemple 17. • Le polynôme P = (X − 1)2(X + 1) est scindé. 1 est une racine double de P et
−1 en est une racine simple.

• Le polynôme P = X3 − 1 = (X − 1)(X2 + X + 1) = (X − 1)(X − j)(X − j2) n’est pas
scindé sur R, mais il est scindé à racines simples sur C.

Proposition 7: Somme et produit des racines d’un polynôme scindé

Soit P =

n∑
k=0

akX
k ∈ K[X] un polynôme scindé.

Soient (x1, . . . , xn) ∈ Kn les racines de P (non nécessairement distinctes), i.e.

P = an

n∏
k=1

(X − xk),

où an ̸= 0 est le cœfficient dominant de P.
Alors

n∑
k=1

xk = −an−1

an
et

n∏
k=1

xk = (−1)n
a0
an

.

Ces formules sont appelées les relations cœfficients-racines (ou formules de Viète).

Démonstration. On a

P =
n∑

k=0

akX
k = an

n∏
k=1

(X − xk) = an

(
Xn +

(
−

n∑
k=1

xk

)
Xn−1 + · · ·+ (−1)n

n∏
k=1

xk

)
.

Par unicité des cœfficients d’un polynôme, en identifiant les cœfficients devant Xn−1 et les
cœfficients constants, on obtient{

an−1 = = −an (
∑n

k=1 xk)
a0 = (−1)nan

∏n
k=1 xk

d’où le résultat voulu. ■
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Remarque 17. Si P = an

p∏
k=1

(X−xk)
mk , où les racines (x1, . . . , xp) sont deux à deux disticintes

et où mk est la multiplicité de la racine xk, alors les résultats précédents deviennent

p∑
k=1

mkxk = −an−1

an
et

p∏
k=1

xmk
k = (−1)n

a0
an

.

Exemple 18. • Soit P = 2X5 + 2X4 − 10X3 − 2X2 + 16X − 8 = 2(X − 1)3(X + 2)2.

Alors 3× 1 + 2× (−2) = −a4
a5

= −2

2
= −1 et 13 × (−2)2 = (−1)5

a0
a5

=
8

2
= 4.

• Soit n ⩾ 2. Soit ω = e
2iπ
n .

On sait que Xn − 1 =
n−1∏
k=0

(X − ωk).

D’après les relations précédentes, on retrouve les formules déjà vues dans le chapitre ≪Nombres
complexes ≫ :

n−1∑
k=0

ωk = 0 et

n−1∏
k=0

ωk = (−1)n × (−1) = (−1)n−1.

16.2.4 Formule de Taylor polynomiale et conséquences

Proposition 8: Formule de Taylor

Soit n ∈ N. Soit P ∈ K[X] de degré n. Soit a ∈ K.
Alors

P (X) =
n∑

k=0

P (k)(a)

k!
(X − a)k

où P (k) désigne la dérivée k-ème de P .

Démonstration. Raisonnons par récurrence sur n = deg(P ).

•Initialisation : Si n = 0, P est un polynôme constant et on a alors

P (X) = P (a) =

0∑
k=0

P (k)(a)

k!
(X − a)k,

donc la propriété est vraie au rang n = 0.

•Hérédité : Soit n ∈ N. Supposons la propriété vraie au rang n et montrons-la au rang
n+ 1.

Soit P ∈ K[X] de degré n + 1. Alors P ′ est de degré n donc par hypothèse de récurrence,
on a pour tout t ∈ R,

P ′(t) =
n∑

k=0

P ′(k)(a)

k!
(t− a)k =

n∑
k=0

P (k+1)(a)

k!
(t− a)k.

Soit x ∈ R. En intégrant l’égalité qu’on vient d’obtenir entre a et x, on trouve :

∫ x

a
P ′(t)dt =

n∑
k=0

P (k+1)(a)

k!

∫ x

a
(t− a)kdt ⇔ P (x)− P (a) =

n∑
k=0

P (k+1)(a)

k!

[
(t− a)k+1

k + 1

]x
a
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d’où P (x) = P (a) +

n∑
k=0

P (k+1)(a)

(k + 1)!
(x− a)k+1 =

n+1∑
k=0

P (k)(a)

k!
(x− a)k. Puisque l’égalité est vraie

pour tout x ∈ R, on en déduit que P =

n+1∑
k=0

P (k)(a)

k!
(X − a)k, ce qui prouve la formule au rang

n+ 1 et achève la récurrence. ■

Corollaire 6: Caractérisation de la multiplicité d’une racine

Soit P ∈ K[X]. Soit a ∈ K, soit m ∈ N∗.
Alors a est racine d’ordre m de P si et seulement si ∀k ∈ J0,m − 1K, P (k)(a) = 0 et
P (m)(a) ̸= 0.

Démonstration. Raisonnons par double implication.

• Supposons que a est racine d’ordre m de P, i.e. il existe Q ∈ K[X] tel que P = (X−a)mQ,
avec Q(a) ̸= 0.

Alors P ′ = m(X − a)m−1Q+ (X − a)mQ′ = (X − a)m−1(mQ+ (X − a)Q′) = (X − a)m−1R
avec R = mQ+ (X − a)Q′.

Puisque Q(a) ̸= 0, on a R(a) = mQ(a) ̸= 0 donc a est racine d’ordre m− 1 de P ′ (et n’est
donc pas racine de P ′ si m = 1).

En réitérant le raisonneemnt, on trouve que a est racine d’ordre m− 2 de P ′′, d’ordre m− 3
de P (3) et plus généralement, pour tout k ∈ J0,m− 1K, a est racine d’ordre m− k de P (k).

Ainsi, a est racine simple de Pm−1 et n’est donc pas racine de P (m) d’où le résultat.

• Réciproquement, supposons que pour tout k ∈ J0,m− 1K, P (k)(a) = 0 et P (m)(a) ̸= 0 (ce
qui implique que n ⩾ m car P (n+1) = 0).

D’après la formule de Taylor établie à la question précédente, on a alors

P (X) =
n∑

k=m

P (k)(a)

k!
(X − a)k = (X − a)m

n∑
k=m

P (k)(a)

k!
(X − a)k−m.

Posons Q(X) =

n∑
k=m

P (k)(a)

k!
(X − a)k−m.

On a alors P (X) = (X − a)mQ(X) avec Q(a) =
P (m)(a)

m!
̸= 0 par hypothèse.

Par définition, ceci signifie que a est racine de P d’ordre m. ■

Exemple 19. • Soit P = X3 −X2 −X + 1 = (X − 1)2(X + 1).

On a P ′ = 3X2 − 2X − 1 = 3(X − 1)(X + 1
3).

On remarque que puisque 1 est racine double de P, alors 1 est racine simple de P. De même,
puisque −1 est racine simple de P, alors −1 n’est pas racine de P ′.

En revanche, −1
3 est racine de P ′ mais −1

3 n’est pas racine de P.

• Soit P = X5 + X4 − 5X3 − X2 + 8X − 4 = (X − 1)3(X + 2)2. Puisque 1 est racine de
P de multiplicité 3 et −2 est racine de P de multiplicité 2, alors P ′(1) = P ′′(1) = 0, P (3)(1) ̸=
0, P ′(−2) = 0 et P ′′(−2) ̸= 0.

En effet, P ′ = 5X4 + 4X3 − 15X2 − 2X + 8 = (X − 1)2(X + 2)(5X + 4).

Puis P ′′ = 20X3+12X2−30X−2 = (X−1)(20x2+32x+2) et on remarque que P ′′(−2) ̸= 0.

Enfin, P 3 = 60X2 + 24X − 30 et on remarque que P (3)(1) ̸= 0.
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16.3 Polynômes irréductibles de C[X] et R[X]

16.3.1 Polynômes irréductibles de C[X]

Théorème 2: Théorème de d’Alembert-Gauss

Tout polynôme de C[X] non constant admet au moins une racine complexe.

Démonstration. Hors programme. ■

Exemple 20. On sait qu’un polynôme non constant de R[X] peut ne pas avoir de racine dans
R, comme le montre l’exemple de P = X2+1. Mais il admet alors toujours au moins une racine
complexe.

Corollaire 7

Tout polynôme de C[X] non constant est scindé sur C.

Démonstration. Montrons la propriété P (n) :≪ Tout polynôme de C[X] de degré n est
scindé sur C ≫par récurrence sur n ∈ N∗.

•Initialisation : Pour n = 1, la propriété est immédiate car tout polynôme de degré 1 est
scindé sur C.

•Hérédité : Soit n ∈ N∗ fixé. Supposons la propriété P (n) vraie et montrons que P (n+ 1)
est vraie.

Soit P un polynôme de degré n + 1. Puisque n + 1 > 0, P n’est pas constant donc d’après
le théorème de d’Alembert-Gauss, P admet au moins une racine α ∈ C.

Ainsi, il existe un polynôme Q de degré n tel que P = (X −α)Q. Puisque Q est de degré n,
d’après l’hypothèse de récurrence, on en déduit queQ est scindé sur C. Il existe donc des scalaires

(x1, . . . , xp) ∈ Cp et des multiplicités (m1, . . . ,mp) ∈ (N∗)p tels que Q = a

p∏
k=1

(X − xk)
mk , où a

est le cœfficient dominant de Q.

Ainsi, P = a(X − α)

p∏
k=1

(X − xk)
mk est scindé sur C, ce qui prouve la propriété au rang

n+ 1 et achève la récurrence. ■

Remarque 18. Evidemment, un polynôme non constant de C[X] n’est pas nécessairement
scindé à racines simples, comme le montre l’exemple de P = (X − i)2.

Définition 10: Polynômes irréductibles de K[X]

Soit P ∈ K[X] un polynôme de degré n ∈ N∗.
On dit que P est irréductible sur K si la propriété suivante est vérifiée :
pour tout couple (Q,R) ∈ K[X]2 tel que P = QR, alors Q ou R est un polynôme constant
non nul.
Autrement dit, P ne peut être divisible que par un polynôme de même degré que P ou
par un polynôme constant non nul.

Exemple 21. Le polynôme X2 + 1 n’est pas irréductible sur C car X2 + 1 = (X − i)(X + i).

Proposition 9: Polynômes irréductibles de C[X]

Soit P ∈ C[X].
Alors P est irréductible sur C si et seulement si deg(P ) = 1.
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Démonstration. Soit P ∈ C[X] de degré n ∈ N∗.

• Supposons que n = 1. Supposons qu’il existe (Q,R) ∈ C[X]2 tel que P = QR.

En comparant les degrés, on a 1 = deg(P ) = deg(Q) + deg(R).

Nécessairement, il vient

{
deg(Q) = 0
deg(R) = 1

ou

{
deg(Q) = 1
deg(R) = 0

, donc l’un des deux po-

lynômes Q ou R est constant, ce qui prouve que P est irréductible sur C.
• Supposons que n > 1. D’après le théorème de d’Alembert-Gauss, P admet une racine

a ∈ C donc il existe un polynôme Q ∈ C[X] de degré n − 1 > 0 tel que P = (X − α)Q.
Puisqu’aucun des deux polynômes X − α ou Q n’est constant, on en déduit que P n’est pas
irréductible sur C.

Ainsi, P est irréductible si et seulement si n = deg(P ) = 1. ■

Théorème 3: Théorème de décomposition en facteurs irréductibles dans C[X]

Soit P ∈ C[X] un polynôme non constant.
Alors P est produit de polynômes irréductibles dans C[X], i.e. il existe des polynômes
(P1, . . . , Pn) ∈ C[X]n de degré 1 et des entiers (m1, . . . ,mn) ∈ (N∗)n tels que

P =

n∏
i=1

Pmi
i .

Démonstration. Il s’agit simplement d’utiliser le fait que P est scindé sur C. ■

Remarque 19. Ceci signifie que pour tout polynôme P ∈ C[X] non constant, il existe λ ∈ C∗,
des nombres complexes (x1, . . . , xn) ∈ Cn, des entiers non nuls (m1, . . . ,mn) ∈ (N∗)n tels que

P = λ

n∏
i=1

(X − xi)
mi .

Corollaire 8: Caractérisation de la divisibilité dans C[X]

Soient (P,Q) ∈ (C[X])2 non constants.
Notons Z(P ) (resp. Z(Q)) l’ensemble des racines de P (resp. de Q). Pour chacune des
racines α de P (resp. de Q), notons mP (α) (resp. mQ(α)) la multiplicité de α en tant
que racine de P (resp. de Q).
Alors P divise Q si et seulement si Z(P ) ⊂ Z(Q) et pour tout α ∈ P,mP (α) ⩽ mQ(α).

Démonstration. • Supposons que P divise Q. Alors il existe R ∈ C[X] tel que Q = PR.

▷ Montrons que Z(P ) ⊂ Z(Q).

Soit α ∈ Z(P ). Alors P (α) = 0 donc Q(α) = P (α)R(α) = 0 donc α ∈ Z(Q), ce qui prouve
que Z(P ) ⊂ Z(Q).

▷ Soit α ∈ Z(P ) ⊂ Z(Q). Montrons que mP (α) ⩽ mQ(α).

Par définition, (X − α)mP (α) divise P donc il existe S ∈ C[X] tel que P = (X − α)mP (α)S,
d’où Q = (X − α)mP (α)SR.

Or, par définition mQ(α) est la plus grande puissance de (X−α) qui divise Q donc mP (α) ⩽
mQ(α).

• Réciproquement, supposons que Z(P ) ⊂ Z(Q) et que pour tout α ∈ P,mP (α) ⩽ mQ(α).

Notons Z(P ) = {α1, . . . , αn}.

Alors P = λ

n∏
i=1

(X − αi)
mP (αi)., où λ ∈ C∗. Puisque Z(P ) ⊂ Z(Q), il existe un polynôme
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R ∈ C[X] tel que

Q =
n∏

i=1

(X − αi)
mQ(αi)R =

1

λ

n∏
i=1

(X − αi)
mQ(αi)−mP (αi)PR

donc P divise Q. ■

16.3.2 Polynômes irréductibles de R[X]

Lemme 2

Soit P ∈ R[X]. Soit α ∈ C une racine de P.
Alors α est également une racine de P. De plus, α et α ont le même ordre de multiplicité
en tant que racines de P.

Démonstration. • Montrons que P (α) = 0.

Notons P =
n∑

k=0

akX
k, où n ∈ N et (a0, . . . , an) ∈ Rn. Puisque pour tout k ∈ J0, nK, ak ∈ R,

alors ak = ak. On a alors

P (α) =

n∑
k=0

akα
k =

n∑
k=0

akαk =

n∑
k=0

akαk = P (α) = 0 = 0.

• Notons n la multiplicité de α et m la multiplicité de α. Montrons que n = m.

Supposons par l’absurde que n ̸= m. Sans perte de généralité, supposons que n > m (l’autre
cas étant analogue).

Par caractérisation de la multiplicité d’une racine, on a alors P (m)(α) = 0 et P (m)(α) ̸= 0,
puisque n > m, et que la première dérivée de P qui n’annule pas α est P (n).

Or, P (m) ∈ R[X] donc d’après le point précédent, puisque P (m)(α) = 0, on a également
P (m)(α) = 0, d’où la contradiction.

Nécessairement, n = m. ■

Remarque 20. • On a déjà remarqué ce phénomène dans le chapitre ≪Nombres complexes≫pour
des polynômes à cœfficients réels de degré 2, dans le cas où ∆ < 0.

• Ce résultat est évidemment faux pour un polynôme à cœfficients dans C. En effet, le
polynôme P = X − i admet i comme racine, mais pas i = −i.

Théorème 4: Polynômes irréductibles de R[X]

Soit P ∈ R[X].
Alors P est irréductible sur R si et seulement si deg(P ) = 1 ou deg(P ) = 2 avec ∆ < 0.

Démonstration. Soit P ∈ R[X] de degré n ∈ N∗.

• Si n = 1, la même preuve que sur C montre que P est irréductible sur R.
• Supposons que n = 2 (P est donc un trinôme de second degré) et que ∆ < 0. Ainsi P

n’admet pas de racine réelle, mais admet deux racines complexes conjuguées. Si P n’était pas
irréductible sur R, il existerait deux polynômes Q et R de degré 1 tels que P = QR. Or, tout
polynôme de degré 1 sur R admet une racine réelle, donc P aurait une racine réelle, ce qui est
absurde. Ainsi, P est bien irréductible sur R.

• Supposons que n = 2 et que ∆ ⩾ 0. Alors P admet une racine réelle α donc il existe
Q ∈ R[X] de degré 1 tel que P = (X − α)Q donc P n’est pas irréductible sur R.

• Supposons que n ⩾ 3. Il y a deux cas :
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▷ Supposons que P admette une racine réelle α. Alors il existe un polynôme Q ∈ R[X] de
dgré n− 1 ⩾ 2 tel que P = (X − α)Q, donc P n’est pas irréductible sur R.

▷ Supposons que P n’admette pas de racine réelle. D’après le théorème de d’Alembert-
Gauss, P admet au moins une racine complexe α. D’après le lemme précédent, α est également
une racine de P donc P est divisible par (X − α)(X − α) = (X2 − 2Re(α)X + |α|2), qui est
un polynôme de R[X] de degré 2. On en déduit qu’il existe un polynôme Q ∈ R[X] de degré
n− 2 ⩾ 1 tel que P = (X2 − 2Re(α)X + |α|2)Q, donc P n’est pas irrédutible sur R.

Finalement, les seuls polynômes de R[X] irréductibles sont ceux de degré 1, et ceux de degré
2 de discriminant strictement négatif. ■

Exemple 22. On a vu que X2 + 1 n’est pas irréductible sur C, mais il l’est sur R.

Théorème 5: Théorème de décomposition en facteurs irréductibles dans R[X]

Soit P ∈ R[X] un polynôme non constant.
Alors P est produit de polynômes irréductibles dans R[X], i.e. il existe des polynômes
(P1, . . . , Pn) ∈ R[X]n irréductibles et des entiers (m1, . . . ,mn) ∈ (N∗)n tels que

P =

n∏
i=1

Pmi
i .

Démonstration. Utilisons la décomposition en facteurs irréductibles de P dans C[X].

On obtient une décomposition de la forme

P = λ

n∏
i=1

(X − xi)
mi

p∏
j=1

(X − αj)
m′

j (X − αj)
m′

j ,

où λ est le cœfficient dominant de P, (x1, . . . , xn) sont les racines réelles de P (de multiplicité
(m1, . . . ,mn) éventuellement nulles si P n’admet pas de racine réelle), et (α1, α1, . . . , αp, αp)
sont les racines complexes conjuguées deux à deux de P, avec les mêmes multiplicités pour les
racines qui sont conjuguées.

On obtient alors P = λ
n∏

i=1

(X − xi)
mi

p∏
j=1

(X − 2Re(αj)X + |αj |2)m
′
j . Tous les polynômes de

degré 1 apparaissant dans ce produit sont bien évidemment irréductibles, et ceux de degré 2
également puisqu’ils sont de discriminant strictement négatif, d’où le résultat.

■

Remarque 21. En pratique, la décomposition en facteurs irréductibles de P ∈ R[X] s’écrit
sous la forme

P =
n∏

i=1

(X − xi)
mi

p∏
j=1

(ajX
2 + bjX + cj)

m′
j ,

où les polynômes (ajX
2 + bjX + cj)

m′
j sont de discriminant strictement négatif.

Exemple 23. Donnons la décomposition en facteurs irréductibles de X4+1 dans C[X] et R[X].

Sur C, on a x4 + 1 = 0 ⇔ (x2)2 = −1 = i2 ⇔ x2 = i = ei
π
2 ou x2 = −i = e3i

π
2 d’où

X4 + 1 = (X − ei
π
4 )(X − e

5iπ
4 )(X − e

3iπ
4 )(X − e

7iπ
4 ).

Pour obtenir la décomposition dans R, on multiplie entre eux les termes conjugués deux à deux.
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En effet, on a ei
π
4 = e−iπ

4 = e
7iπ
4 et e3i

π
4 = e

−3iπ
4 = e

5iπ
4 d’où

X4 + 1 = (X − ei
π
4 )(X − ei

π
4 )(X − e

3iπ
4 )(X − e

3iπ
4 )

= (X2 − (ei
π
4 + e−iπ

4 )X + 1)((X2 − (e
3iπ
4 + e

−3iπ
4 )X + 1)

= (X2 − 2 cos
(π
4

)
X + 1)(X2 − cos

(
3π

4

)
X + 1)

= (X2 −
√
2X + 1)(X2 +

√
2X + 1).

16.4 Décomposition en éléments simples de certaines fonctions
rationnelles

Définition 11: Fonctions rationnelles

On appelle fraction rationnelle toute fonction de la forme x 7→ P (x)

Q(x)
, où P et Q sont des

polynômes de K[X], avec Q ̸= 0.

Remarque 22. Une telle fonction est définie pour les x tels que Q(x) ̸= 0.

Théorème 6: Décomposition en éléments simples des fonctions rationnelles à
pôles simples

Soit F : x 7→ P (x)

Q(x)
, où P ∈ K[X] et Q =

n∏
i=1

(X − xi) ∈ K[X] est un polynôme scindé à

racines simples (les (x1, . . . , xn) sont appelés les pôles simples de F ).
Alors il existe T ∈ K[X] et des scalaires (a1, . . . , an) ∈ Kn tels que

∀x ∈ K \ {x1, . . . , xn}, F (x) = T (x) +
n∑

i=1

ai
X − xi

.

Démonstration. Hors-programme. ■

Remarque 23. • En pratique, on commence par faire la division euclidienne P = QT +R, où

deg(R) < deg(Q) et on a
P

Q
= T +

R

Q
. Ainsi, T est le quotient de la division euclidienne de P

par Q. Les scalaires (a1, . . . , an) se trouvent ensuite par identification.

• Ceci est très utile en pratique pour calculer des intégrales, ou pour calculer des dérivées.

Exemple 24. Posons pour tout t ∈ R \ {1,−3}, F (t) =
t3 + 3t2 + 4

t2 + 2t− 3
=

t3 + 3t2 + 4

(t− 1)(t+ 3)
.

La division euclidienne de X3 + 3X2 + 4 par X2 + 2X − 3 est

X3 + 3X2 + 4 = (X2 + 2X − 3)(X + 1) +X + 7

donc pour tout t ∈ R \ {1,−3}, F (t) = t+ 1 +
t− 7

(t− 1)(t+ 3)
.

Pour tout t ∈ R \ {1,−3}, on a

t+ 7

t2 + 2t− 3
=

a

t− 1
+

b

t+ 3
⇔ t+ 7

t2 + 2t− 3
=

(a+ b)t+ 3a− b

t2 + 2t− 3
⇔ t+ 7 = (a+ b)t+ 3a− b.
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Par identification, on en déduit{
a+ b = 1
3a− b = 7

⇔
{

a = 2
b = −1

.

Ainsi, pour tout t ∈ R \ {1,−3}, F (t) = t+ 1 +
2

t− 1
− 1

t+ 3
.

On a alors ∫ 0

−2
F (t) =

∫ 0

−2

(
t+ 1 +

2

t− 1
− 1

t+ 3

)
dt.

Par linéarité de l’intégrale, on en déduit∫ 0

−2
F (t) =

∫ 0

−2
(t+ 1)dt+ 2

∫ 0

−2

dt

t− 1
−
∫ 0

−2

dt

t+ 3

=

[
t2

2
+ t

]0
−2

+ 2[ln(|t− 1|)]0−2 − [ln(|t+ 3|)]0−2

= −3 ln(3).
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