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Corrigé du devoir maison n°10

Théorème de Darboux

Dans tout l’exercice, on suppose a < b.

1. (a) Par définition,

lim
x→a

φ(x) = lim
x→a

f(x)− f(a)

x− a
= f ′(a)

et

lim
x→b

ψ(x) = lim
x→b

f(x)− f(b)

x− b
= f ′(b).

On peut donc prolonger φ et ψ par continuité en posant

φ̃ :

[a, b] −→ R

x 7−→
{

f(x)−f(a)
x−a

si x ̸= a

f ′(a) six = a

et ψ̃ :

[a, b] −→ R

x 7−→
{

f(x)−f(b)
x−b

si x ̸= b

f ′(b) six = b.

(b) Les fonctions φ̃ et ψ̃ sont continues sur l’intervalle [a, b].

D’après le corollaire du théorème des valeurs intermédiaires, φ̃([a, b]) et ψ̃([a, b]) sont
également des intervalles.

De plus,
f(b)− f(a)

b− a
= φ̃(b) = ψ̃(a) donc

f(b)− f(a)

b− a
∈ φ̃([a, b]) ∩ ψ̃([a, b]).

On a donc bien prouvé que φ̃([a, b]) et ψ̃([a, b]) sont des intervalles non disjoints.

(c) Montrons de façon générale que si A et B sont des intervalles tels que A ∩ B ̸= ∅,
alors A ∪B est un intervalle.

Soient (x, y) ∈ (A ∪B)2, avec x ⩽ y. Montrons que [x, y] ⊂ A ∪B.
• Si x et y appartiennent à A, puisque A est un intervalle, alors [x, y] ⊂ A ⊂ A ∪B.
On raisonne de même si x et y appartiennent tous deux à B.

• Supposons que x ∈ A \ B et y ∈ B \ A. Par hypothèse, on a x ⩽ y avec x ∈ A et
y /∈ A donc A est un intervalle majoré et on a y ⩾ sup(A).

De même, puisque y ∈ B et x /∈ B,B est un intervalle minoré et on a x ⩽ inf(B).

Or, puisque A ∩B ̸= ∅, il existe un élément z ∈ A ∩B.
Puisque z ∈ B, alors z ⩾ inf(B) ⩾ x. Par ailleurs, z ∈ A donc A étant un intervalle,
[x, z] ⊂ A.

De même, puisque z ∈ A, z ⩽ sup(A) ⩽ y et puisque z ∈ B,B étant un intervalle,
[z, y] ⊂ B.

Ainsi, [x, y] = [x, z] ∪ [z, y] ⊂ A ∪B.
• Si x ∈ B \ A et y ∈ A \B, on fait un raisonnement analogue au précédent.

Dans tous les cas, [x, y] ⊂ A ∪B.
Ainsi, l’union de deux intervalles non disjoints est encore un intervalle.

Puisque φ̃([a, b]) et ψ̃([a, b]) sont des intervalles non disjoints d’après la question

précédente, on en déduit que φ̃([a, b]) ∪ ψ̃([a, b]) est un invervalle.



2. D’après la question précédente, φ̃([a, b]) ∪ ψ̃([a, b]) est un intervalle.

Or, f ′(a) = φ̃(a) ∈ φ̃([a, b]) ⊂ φ̃([a, b]) ∪ ψ̃([a, b]) et f ′(b) = ψ̃(b) ∈ ψ̃([a, b]) ⊂ φ̃([a, b]) ∪
ψ̃([a, b]).

Ainsi, puisque y est entre f ′(a) et f ′(b), qui appartiennent eux-mêmes à l’intervalle

φ̃([a, b]) ∪ ψ̃([a, b]), on en déduit que y ∈ φ̃([a, b]) ∪ ψ̃([a, b]).

3. (a) Puisque ˜φ(a) = f ′(a), si y = φ̃(a), alors y = f ′(a).

(b) Supposons que y ∈ φ̃(]a, b]).

Alors il existe x ∈]a, b] tel que y = φ̃(x) =
f(x)− f(a)

x− a
.

Or, puisque f est continue sur [a, x] et dérivable sur ]a, x[, on déduit du théorème

des accroissements finis qu’il existe c ∈]a, x[⊂]a, b[ tel que
f(x)− f(a)

x− a
= f ′(c).

Ainsi, il existe c ∈]a, b[ tel que y = f ′(c).

4. (a) Puisque ˜ψ(b) = f ′(b), si y = ψ̃(b), alors y = f ′(b).

(b) Supposons que y ∈ ψ̃([a, b[).

Alors il existe x ∈ [a, b[ tel que y = ψ̃(x) =
f(x)− f(b)

x− b
.

Or, puisque f est continue sur [x, b] et dérivable sur ]x, b[, on déduit du théorème des

accroissements finis qu’il existe c ∈]x, b[⊂]a, b[ tel que
f(x)− f(b)

x− b
= f ′(c).

Ainsi, il existe c ∈]a, b[ tel que y = f ′(c).

5. On a montré qu’il y avait trois possibilités : soit y = f ′(a), soit y = f ′(b), soit il existe
c ∈]a, b[ tel que y = f ′(c).

Dans tous les cas, il existe c ∈ [a, b] tel que y = f ′(c).

Problème 2 : Méthode de Newton

Partie I : Formules de Taylor

1. Puisque n + 1 ⩾ 1, la fonction f est de classe C1 sur [a, b] donc la fonction f ′ est

continue sur [a, b] et on a pour tout x ∈ [a, b], f(x0) +

∫ x

x0

f ′(t)dt = f(x0) + [f(t)]xx0
=

f(x0) + f(x)− f(x0) donc ∀x ∈ [a, b], f(x) = f(x0) +

∫ x

x0

f ′(t)dt.

2. Notons pour tout n ∈ N la propriété P(n) :≪ si f est de classe Cn+1 sur [a, b], alors pour

tout x ∈ [a, b], f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +

∫ x

x0

f (n+1)(t)

n!
(x− t)ndt ≫.

•Initialisation :

Pour n = 0, on suppose que f est de classe C1 sur [a, b] et d’après la question précédente,
on a pour tout x ∈ [a, b],

f(x) = f(x0) +

∫ x

x0

f ′(t)dt =
0∑

k=0

f (k)(x0)

k!
(x− x0)

k +

∫ x

x0

f (0+1)(t)

0!
(x− t)0dt

donc la propriété est vraie au rang n = 0.



•Hérédité : Soit n ∈ N. On suppose que la propriété P(n) est vraie. Montrons que la
propriété P(n+ 1) est vraie.

On suppose que f est de classe Cn+2 sur [a, b]. A fortiori f est de classe Cn+1 sur [a, b]
donc d’après l’hypothèse de récurrence, on a pour tout x ∈ [a, b],

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +

∫ x

x0

f (n+1)(t)

n!
(x− t)ndt.

Puisque f est de classe Cn+2 sur [a, b], alors f (n+1) est de classe C1 sur [a, b].

On peut donc réaliser une intégration par parties en posant u(t) = f (n+1)(t), u′(t) =

f (n+2)(t), v′(t) =
(x− t)n

n!
, v(t) = −(x− t)n+1

(n+ 1)!
donc on obtient

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +

[
−f

(n+1)(t)(x− t)n+1

(n+ 1)!

]x
x0

+

∫ x

x0

f (n+2)(t)

(n+ 1)!
(x− t)n+1dt

=
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +
f (n+1)(x0)

(n+ 1)!
(x− x0)

n+1 +

∫ x

x0

f (n+2)(t)

(n+ 1)!
(x− t)n+1dt

=
n+1∑
k=0

f (k)(x0)

k!
(x− x0)

k +

∫ x

x0

f (n+2)(t)

(n+ 1)!
(x− t)n+1dt,

ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

On a donc bien montré que, si f est de classe Cn+1 sur [a, b], alors

∀x ∈ [a, b], f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +

∫ x

x0

f (n+1)(t)

n!
(x− t)ndt.

3. Puisque la fonction f est de classe Cn+1 sur [a, b], alors la fonction f (n+1) est continue
sur le segment [a, b] donc d’après le théorème des bornes atteintes, elle y est bornée.

On en déduit qu’il existe un réel M positif tel que ∀t ∈ [a, b], |f (n+1)(t)| ⩽M.

4. Soit x ∈ [a, b]. D’après la question 2, on a∣∣∣∣∣f(x)−
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

∣∣∣∣∣ =

∣∣∣∣∫ x

x0

f (n+1)(t)

n!
(x− t)ndt

∣∣∣∣ .
• Si x ⩾ x0, on a∣∣∣∣∫ x

x0

f (n+1)(t)

n!
(x− t)ndt

∣∣∣∣ ⩽ ∫ x

x0

|f (n−1)(t)|
n!

|x−t|ndt ⩽ M

n!

∫ x

x0

(x−t)ndt = M

n!

[
−(x− t)n+1

n+ 1

]x
x0

d’où

∣∣∣∣∫ x

x0

f (n+1)(t)

n!
(x− t)ndt

∣∣∣∣ ⩽ M(x− x0)
n+1

(n+ 1)!
=
M |x− x0|n+1

(n+ 1)!
.

• Si x ⩽ x0, on a∣∣∣∣∫ x

x0

f (n+1)(t)

n!
(x− t)ndt

∣∣∣∣ ⩽ ∫ x0

x

|f (n−1)(t)|
n!

|x−t|ndt ⩽ M

n!

∫ x0

x

(t−x)ndt = M

n!

[
(t− x)n+1

n+ 1

]x0

x

d’où

∣∣∣∣∫ x

x0

f (n+1)(t)

n!
(x− t)ndt

∣∣∣∣ ⩽ M(x0 − x)n+1

(n+ 1)!
=
M |x− x0|n+1

(n+ 1)!
.

Dans tous les cas, on a bien

∀x ∈ [a, b],

∣∣∣∣∣f(x)−
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

∣∣∣∣∣ ⩽ M |x− x0|n+1

(n+ 1)!
.



Partie II : Principe de la méthode

1. Supposons par l’absurde qu’il existe deux réels c1 et c2 dans ]a, b[, avec c1 < c2 tels que
f(c1) = f(c2) = 0.

Puisque f est continue sur [c1, c2] et dérivable sur ]c1, c2[, d’après le théorème de Rolle,
on en déduit qu’il existe un réel c ∈]c1, c2[ tel que f ′(c) = 0, ce qui est contraire à
l’hypothèse de l’énoncé.

Donc f s’annule au plus une fois sur [a, b].

2. La tangente à la courbe de f au point (t, f(t)) a pour équation y = f ′(t)(x− t) + f(t).

Elle coupe l’axe des abscisses lorsque y = 0 ⇔ f ′(t)(x− t) = −f(t).

Or, par hypothèse, f ′(t) ̸= 0 donc ceci équivaut à x− t = − f(t)

f ′(t)
puis x = t− f(t)

f ′(t)
.

3. (a) Puisque c ∈]a, b[, on a c− a > 0 et b− c > 0. Soit r =
1

2
min(c− a, b− c) > 0.

Par définition, r ⩽
1

2
(c−a) < c−a (car c−a > 0) donc −r > a− c et r ⩽ 1

2
(b− c) <

b− c (car b− c > 0) donc c− r > c+ a− c = a et c+ r < c+ b− c = b, ce qui prouve

que Jr = [c− r, c+ r] ⊂]a, b[.

(b) Puisque f est de classe C2 sur ]a, b[, donc sur Jr, alors f
′ et f ′′ sont continues sur Jr.

Par composition avec la fonction valeur absolue qui est continue sur R, on en déduit
que |f ′| et |f ′′| sont continues sur le segment Jr.

D’après le théorème des bornes atteintes, elles y sont bornées et atteignent leurs
bornes donc |f ′′| admet un maximum sur Jr et |f ′| y admet un minimum, ce qui
légitime la définition de sr et ir.

Puisque ir est le minimum atteint de |f ′| sur Jr, il existe un réel x ∈ Jr ⊂]a, b[ tel
que ir = |f ′(x)|. Or, par hypothèse, f ′ ne s’annule pas sur ]a, b[ donc f ′(x) ̸= 0, d’où
|f ′(x)| > 0, i.e. ir > 0 .

(c) Soit r0 un réel strictement positif tel que Jr0 ⊂]a, b[.

Soit r ∈]0, r0]. Alors Jr ⊂ Jr0 ⊂]a, b[ donc pour tout x ∈ Jr, puisque x ∈ Jr0 , on a
|f ′(x)| ⩽ sr0 donc en passant au maximum, 0 ⩽ sr ⩽ sr0 .

Par ailleurs, pour tout x ∈ Jr, puisque x ∈ Jr0 , |f ′′(x)| ⩾ ir0 , donc en passant

au minimum ir ⩾ ir0 , d’où par stricte positivité de ir et ir0 , 0 <
1

ir
⩽

1

ir0
, puis

0 <
1

2irr
⩽

1

2ir0
.

En multipliant les deux inégalités qu’on vient d’obtenir, on trouve 0 ⩽
sr
2ir

⩽
sr0
2ir0

,

autrement dit si r ⩽ r0, 0 ⩽ Kr ⩽ Kr0 .

Ainsi, en multipliant par r > 0, on obtient 0 ⩽ rKr ⩽ rKr0 .

Or, lim
r→0

rKr0 = 0 donc d’après le théorème des gendarmes, on en déduit que

lim
r→0

rKr = 0.

Il existe donc nécessairement un réel r strictement positif tel que 0 ⩽ rKr < 1.

4. (a) Par définition de sr, on a pour tout x ∈ Jr, |f ′′(x)| ⩽ sr. On applique l’inégalité de
Taylor-Lagrange à la fonction f qui est de classe C2 sur le segment Jr et on obtient
(en remplaçant x par c et x0 par cn qui appartiennent tous deux à Jr) :

|f(c)− f(cn)− f ′(cn)(c− cn)| ⩽
sr|c− cn|2

2
.



(b) On a

|cn+1 − c| =

∣∣∣∣cn − f(cn)

f ′(cn)
− c

∣∣∣∣
=

1

|f ′(cn)|
|f ′(cn)(cn − c)− f(cn)|

=
1

|f ′(cn)|
|f(c)− f(cn)− f ′(cn)(c− cn)| (car f(c) = 0)

⩽
1

|f ′(cn)|
sr|c− cn|2

2
(d’après la question précédente).

Or, puisque cn ∈ Jr, |f ′(cn)| ⩾ ir donc, puisque f
′ ne s’annule pas,

1

|f ′(cn)|
⩽

1

ir
d’où

|cn+1 − c| ⩽ sr
2ir

|c− cn|2 = Kr|cn − c|2.

On a supposé que cn ∈ Jr = [c− r, c+ r] donc |cn − c| ⩽ r.

Il en découle que |cn+1 − c| ⩽ r2Kr = r(rKr) < r car r > 0 et rKr < 1 donc

cn+1 ∈ Jr.

5. Montrons la propriété par récurrence sur n ∈ N.
•Initialisation : Pour n = 0, c0 ∈ Jr donc la propriété est vraie au rang n = 0.

•Hérédité : Soit n ∈ N tel que cn ∈ Jr. La question précédente montre que si cn ∈ Jr,
alors cn+1 ∈ Jr, ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

Par principe de récurrence, on a donc bien montré que pour toutn ∈ N, cn ∈ Jr.

Puisque Jr ⊂]a, b[ qui est le domaine de définition de f et de f ′, on peut donc bien calcu-
ler pour tout n ∈ N, f(cn) et f ′(cn). Par ailleurs, puisque f

′ ne s’annule pas sur ]a, b[, donc

sur Jr, la quantité
f(cn)

f ′(cn)
a bien un sens pour tout n ∈ N donc la suite (cn)n∈N est bien définie.

6. Montrons par récurrence que pour tout n ∈ N, |cn − c| ⩽ (Kr|c0 − c|)2n

Kr

.

•Initialisation : Pour n = 0, on a
(Kr|c0 − c|)20

Kr

=
Kr|c0 − c|

Kr

= |c0− c| ⩾ |c0− c| donc
la propriété est vérifiée au rang n = 0.

•Hérédité : Soit n ∈ N. On suppose que |cn − c| ⩽ (Kr|c0 − c|)2n

Kr

et montrons que

|cn+1 − c| ⩽ (Kr|c0 − c|)2n+1

Kr

.

En utilisant la question 4.(b) et l’hypothèse de récurrence, on obtient

|cn+1 − c| ⩽ Kr|cn − c|2 ⩽ Kr ×
(
(Kr|c0 − c|)2n

Kr

)2

=
(Kr|c0 − c|)2n+1

Kr

,

ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

Par principe de récurrence, on a donc bien montré que ∀n ∈ N, |cn − c| ⩽ (Kr|c0 − c|)2n

Kr

.

Puisque c0 ∈ Jr = [c− r, c+ r], on a |c0 − c| ⩽ r donc 0 ⩽ Kr|c0 − c| ⩽ rKr < 1.

• Si Kr|c0 − c| = 0, il est clair que lim
n→+∞

(Kr|c0 − c|)2n

Kr

= 0 donc par comparaison,

lim
n→+∞

|cn − c| = 0.



• Si 0 < Kr|c0 − c| < 1, alors (Kr|c0 − c|)2n = e2
n ln(Kr|c0−c|) avec ln(Kr|c0 − c|) < 0 donc

lim
n→+∞

2n ln(Kr|c0 − c|) = −∞. Or, lim
x→−∞

ex = 0 donc par composition de limites, on en

déduit que
lim

n→+∞
(Kr|c0 − c|)2n = lim

n→+∞
e2

n ln(Kr|c0−c|) = 0

donc par comparaison, on en conclut que lim
n→+∞

|cn − c| = 0.

Dans tous les cas, on a lim
n→+∞

|cn − c| = 0, ce qui implique que lim
n→+∞

cn = c.


