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CORRICGE DU DEVOIR MAISON N°10

Théoreme de Darboux

Dans tout I'exercice, on suppose a < b.
1. (a) Par définition,

!
r—a T—a Tr— a o f ((l)

et

lim t(z) = lim J@) = J0) f(b).

r—b z—b x—b

On peut donc prolonger ¢ et ¢ par continuité en posant

la,b] — R la,b] — R

. f@)—fla) 7y . f@-f0)
e pra s¥x7éa et N = s.1x7éb
flla) siz=a

(b) Les fonctions ¢ et ¢ sont continues sur lintervalle [a, b].
D’apreés le corollaire du théoréme des valeurs intermédiaires, 3([a, b]) et ¥ ([a, b]) sont
également des intervalles.

f)=fla) .. - f(b) = f(a)
P @(b) = ¢(a) donc P

On a donc bien prouvé que | ¢([a, b]) et 1([a, b]) sont des intervalles non disjoints.

De plus, € ¢([a, b)) N2 ([a,b]).

(¢) Montrons de fagon générale que si A et B sont des intervalles tels que AN B # 0,
alors AU B est un intervalle.

Soient (z,y) € (AU B)?, avec x < y. Montrons que [x,y] C AU B.
e Si z et y appartiennent a A, puisque A est un intervalle, alors [z,y] C A C AU B.
On raisonne de méme si z et y appartiennent tous deux a B.

e Supposons que x € A\ B et y € B\ A. Par hypothese, on a x < y avec © € A et
y ¢ A donc A est un intervalle majoré et on a y > sup(A).

De méme, puisque y € B et x ¢ B, B est un intervalle minoré et on a x < inf(B).
Or, puisque AN B # (), il existe un élément z € AN B.

Puisque z € B, alors z > inf(B) > x. Par ailleurs, z € A donc A étant un intervalle,
[z,2] C A.

De méme, puisque z € A,z < sup(A) < y et puisque z € B, B étant un intervalle,
[z,y] C B.

Ainsi, [z,y] = [z, 2] U [z,y] C AU B.

eSize B\ Aetye A\ B, on fait un raisonnement analogue au précédent.

Dans tous les cas, [z,y] C AU B.

Ainsi, I'union de deux intervalles non disjoints est encore un intervalle.

Puisque @([a,b]) et ¥([a,b]) sont des intervalles non disjoints d’aprés la question

précédente, |on en déduit que ¢([a, b]) U th([a, b]) est un invervalle.




2. D’aprés la question précédente, G([a, b)) U ([, b]) est un intervalle.

ia fé)ﬁ)) = ¢(a) € @([a,0]) € @([a, b)) U([a,b]) et f'(b) = $(b) € P([a,b]) C $([a,b]) U

Ainsi, puisque y est entre f'(a) et f'(b), qui appartiennent eux-mémes a l'intervalle
#([a, b]) U([a, b]), on en déduit que |y € ([a, b]) Ub([a, b]).

3. (a) Puisque p(a) = f'(a), |siy = @(a), alorsy = f'(a).
(b) Supposons que y € ¢(]a,b]).

Alors il existe x €]a, b] tel que y = ¢(x) = M'
r—a
Or, puisque f est continue sur [a,z| et dérivable sur |a, z[, on déduit du théoreme
des accroissements finis qu'il existe ¢ €]a, z[C]a, b[ tel que _f(:v) — f(a) = (o).
r—a

Ainsi, il existe ¢ €]a, b tel quey = f'(c).

4. (a) Puisque w(b) = f'(b), |siy = ?ﬁ(b), alorsy = f'(b).
(b) Supposons que y € ¥([a, b]).

Alors il existe x € [a, b] tel que y = (x) =

f(x) = f(b)
r—b
Or, puisque f est continue sur [x,b] et dérivable sur |z, b[, on déduit du théoreme des

f(lz. : £<b) _ f/(c).

accroissements finis qu'il existe ¢ €]z, b[Cla, b| tel que

Ainsi, il existe ¢ €]a, b[tel quey = f'(c).

5. On a montré qu’il y avait trois possibilités : soit y = f(a), soit y = f’(b), soit il existe
¢ €la, b tel que y = f'(c).

Dans tous les cas, il existe ¢ € [a, b] tel quey = f'(c).

Probleme 2 : Méthode de Newton

Partie I : Formules de Taylor

1. Puisque n + 1 > 1, la fonction f est de classe C' sur [a,b] donc la fonction f’ est

continue sur [a,b] et on a pour tout x € [a,b], f(xo) / f'@)dt = f(zo) + [f(D)]5, =

zo

Flao) + 1(a) = flan) done Ve & o.8], () = fz0) + | )
2. Notons pour tout n € N la proprlete P(n) :<si f est de classe C"! sur [a, b], alors pour
f(k T f n+1 .
tout = € [a, b], Z ]{;lo - (x —t)"dt >.
elnitialisation :

Pour n = 0, on suppose que f est de classe C! sur [a, b] et d’apres la question précédente,
on a pour tout x € [a, b],

z O £k Zo z £(0+1) .
@) = s+ [ ra=3 I e —ss [0

k=0

donc la propriété est vraie au rang n = 0.



eHérédité : Soit n € N. On suppose que la propriété P(n) est vraie. Montrons que la
propriété P(n + 1) est vraie.

On suppose que f est de classe C"™2 sur [a, b]. A fortiori f est de classe C"*! sur [a, b]
donc d’apres 'hypothese de récurrence, on a pour tout x € [a, b,

") (2 g e )
f(w):zf k(' (@ — o) +/ %@—t) d.

Puisque f est de classe C"*2 sur [a, b], alors f™"*!) est de classe C! sur [a, b).

On peut donc réaliser une intégration par parties en posant u(t) = f "H)( ), u'(t) =
— )" —t n+1

fOH2 (1), ' (t) = (@ ' ) Jo(t) = _a=m donc on obtient
n!

(n+1)!

"L B (zg (D) (1) (2 — )"t " (n+2) )
o) = S |- e o

o

" f(k) (n+1) T £(n+2)
- Z / k('%) (z — x0)" + —f(n n (S?> (z — )" + —‘l(cn n 1(;) (z — )" dt
- ! ! 20 !

_ n+1 f(k)(xo)( . )k: N f (n+2) ( ')( B t)n+1dt,

x 0
c~ k! z (M4 1)!

ce qui prouve la propriété au rang n + 1 et acheve la récurrence.
On a donc bien montré que, si f est de classe C"*! sur [a, b], alors

z p(n+1) t
Vo € a b Z f IO — iL‘o)k +/ fn—|()(.1' — t)ndt.

. Puisque la fonction f est de classe C"*! sur [a,b], alors la fonction f("*!) est continue
sur le segment [a, b] donc d’apres le théoreme des bornes atteintes, elle y est bornée.

On en déduit qu’il existe un réel M positif tel que |Vt € [a, b], |f@FV (1) < M.

. Soit x € [a,b]. D’apres la question 2, on a

n B (g
1) =S T 0

e Six>uxp ona

AU n V"l()\ n yra = M G

Zo
/z f(n+1)(t) (o — tyae] < M (z — xo)"H! B M|z — x0|n+1
zo

/:B: W(@" - t)"dt' :

d’ou

n! n+1! (n+1)
e Six < xp ona

z r£(n+1) t zo | £(n—1) t M [%o M t — p)ntinTo
/ f—w(x—t)"dt' < / SOl gnar < M / (t—aydr = M {&}
o n! - n! nl J,

n! n+1

xT

A0

M(l‘o _ l,)nJrl - M|ZL‘ _ l.0|n+1

d’ot —t)"dt| < =
R Y (x=1) (n+1) (n+1)
Dans tous les cas, on a bien
— f®) () k| Ml — o[
v b — — <
T c [a’v ]a f(l’) e k! (:E ZL’()) (7’L+ 1)|




Partie II : Principe de la méthode

1. Supposons par 'absurde qu’il existe deux réels ¢; et ¢ dans |a, b[, avec ¢; < co tels que
fle1) = f(e2) = 0.
Puisque f est continue sur [c1, co] et dérivable sur |ep, ¢p], d’apres le théoreme de Rolle,
on en déduit qu'il existe un réel ¢ €lcy, cof tel que f'(¢) = 0, ce qui est contraire a
I’hypothese de 1’énoncé.

Donc | f s’annule au plus une fois sur [a, b].

2. La tangente a la courbe de f au point (¢, f(¢)) a pour équation y = f'(t)(z —t) + f(t).
Elle coupe 'axe des abscisses lorsque y = 0 < f'(t)(x — t) = —f(¢).

Or, par hypothese, f'(t) # 0 donc ceci équivaut a = — t =

3. (a)

S f(0)
) IH0)

1
Puisque ¢ €]a,b[,onac—a>0et b—c>0. Soitr:§min(c—a,b—c) > 0.

puis |z =1t —

1 1
Par définition, r < E(c—a) <c—a(carc—a >0)donc —r >a—cetr < §(b—c) <
b—c(carb—c>0)doncec—r>c+a—c=aetc+r <c+b—c=b, cequiprouve
que | J, = [c—r,c+r] Cla, b|.

Puisque f est de classe C? sur ]a, b[, donc sur J,, alors f’ et f” sont continues sur J,.
Par composition avec la fonction valeur absolue qui est continue sur R, on en déduit
que |f'| et |f”| sont continues sur le segment J,.

D’apres le théoreme des bornes atteintes, elles y sont bornées et atteignent leurs
bornes donc |f”| admet un maximum sur J, et |f’| y admet un minimum, ce qui
légitime la définition de s, et ,.

Puisque 4, est le minimum atteint de |f’| sur J,, il existe un réel x € J, Cla, b| tel
que i, = |f'(z)|. Or, par hypothese, f’ ne s’annule pas sur ]a, b[ donc f'(x) # 0, d’on
|f'(x)] >0, ie. i, > 0]

Soit 7o un réel strictement positif tel que J,, Cla, b|.

Soit r €]0,r¢]. Alors J,. C J,, Cla,b[ donc pour tout z € J,, puisque x € J,,, on a
|f'(x)| < sy, donc en passant au maximum, 0 < s, < Sy,.

Par ailleurs, pour tout z € J,., puisque = € J.,|f"(x)| > 4., donc en passant

au minimum 4, > %,,, d’'oll par stricte positivité de i, et i,,,0 < - < a, puis
1 . 1
2r, - 2irg

En multipliant les deux inégalités qu’on vient d’obtenir, on trouve 0 < 2877; < ;Z,—T:),

autrement dit si r < 79,0 < K, < K.

Ainsi, en multipliant par r > 0, on obtient 0 < rK, < rK,,.

Or, lir% rK,, = 0 donc d’apres le théoreme des gendarmes, on en déduit que
r—

limrK, = 0.
r—0

Il existe donc nécessairement un réel r strictement positif tel que ‘0 <rKkK, < 1.

Par définition de s,, on a pour tout = € J.,|f"(x)| < s,. On applique I'inégalité de
Taylor-Lagrange & la fonction f qui est de classe C? sur le segment .J, et on obtient
(en remplacant x par c et zy par ¢, qui appartiennent tous deux a J,.) :

sple — cn?

[f(€) = flen) = ['(en)(e = en)] < =5




(b) On a

[Chi1—c| =

%_f@)

:’f(ﬂu@mn—d—ﬂ%ﬂ

= O = fle) = flee=el (ear f(0) =0

1 sjc—cpl?

[f'en)l 2

fo) |

N

(d’apres la question précédente).

Or, puisque ¢, € J,, |f'(¢,)| = i, donc, puisque f’ ne s’annule pas,

s
|Cni1 — ] < 2—T’C —col* = Krle, — cf”.
(2%

On a supposé que ¢, € J, = [c —r,c+ 7] donc |¢, —¢| <7
Il en découle que |c,y1 — | < 7K, = r(rK,) < r car r > 0 et rK, < 1 donc
5. Montrons la propriété par récurrence sur n € N.
elnitialisation : Pour n = 0, ¢y € J, donc la propriété est vraie au rang n = 0.
eHérédité : Soit n € N tel que ¢, € J,.. La question précédente montre que si ¢, € J,,
alors ¢, 11 € J,., ce qui prouve la propriété au rang n + 1 et acheve la récurrence.

Par principe de récurrence, on a donc bien montré que ‘pour toutn € N ¢, € J,.

Puisque J, Cla, b[ qui est le domaine de définition de f et de f’, on peut donc bien calcu-
ler pour tout n € N, f(c,) et f'(c,). Par ailleurs, puisque f’ ne s’annule pas sur |a, b[, donc

Cn . o
sur J,., la quantité 7o) a bien un sens pour tout n € N donc|la suite (¢, ) ey est bien définie.
K,|co — )"
6. Montrons par récurrence que pour tout n € N, |c, — ¢| < %
'

(K, |co — c|)20 B K,|co — ¢

eInitialisation : Pour n =0, on a = |co—¢| = |cy — ¢| donc

K, K,
la propriété est vérifiée au rang n = 0.
o s qes s . (KT|CO_C|)2n
eHérédité : Soit n € N. On suppose que |¢, — ¢| < — et montrons que
T
K,|co — )"
|Cn+1—6|<( 7“‘ OKT |) ‘

En utilisant la question 4.(b) et 'hypothese de récurrence, on obtient

n i1
|Cng1 — ¢ < Ko fen — o] < K, % <(KT|C(}(: c|)? )2 _ (Kr|60};0|>2 ,
ce qui prouve la propriété au rang n + 1 et acheve la récurrence.
Par principe de récurrence, on a donc bien montré que|Vn € N; |¢, — ¢| < (K,.|c(}(——c|)2"'
r
Puisque ¢cg € J, =[c—r,c+r],ona |cg—c| <7 donc 0 < K, |cg — | < rK, < 1.
e Si K,|cp —c| = 0, il est clair que ngrfmw = 0 donc par comparaison,

lim |¢, —¢|=0.
n——+o0o



¢ Si0< K,|co—c| <1, alors (K,|cy — c|)?" = e2" In(Erleo=<) ayec In(K,|cy — ¢|) < 0 donc

lim 2"In(K,|cy —¢|) = —o0. Or, lim e” = 0 donc par composition de limites, on en
n—+00 T——00
déduit que
lim (K, |cp—c[)? = lim e2"0Sleo—) —
n—r+00 n——+00

donc par comparaison, on en conclut que lim |c, —¢| = 0.
n—-+o0o

Dans tous les cas, on a lim |c, — ¢[ = 0, ce qui implique que | lim ¢, = c.
n—-+00 n—+00




