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Probleme 1 : Matrices productives

Partie I : Résultats théoriques

1. (a)

Supposons que B > 0 et X > 0. Tout d’abord, notons que BX € M,,;(R) et pour
tout 7 € [1,n], on a

n
(BX)i1 = Z Bi X1
k=1
Or, pour tout k € [1,n], Bix = 0 et X1 > 0 puisque B >0 et X > 0.
Ainsi, pour tout ¢ € [1,n], (BX);1 = 0 car c’est une somme de termes positifs, ce

qui prouve que

Supposons que pour toute matrice colonne X € M, ;(R) positive, on a BX > 0.
Montrons que B = 0.

Soit j € [1,n]

0
0
Soit X = | 1| la matrice colonne constituée d’un 1 en ligne j et de 0 ailleurs, i.e.
0
0
» | sii— i
pour tout ¢ € [1,n]X;1 =0;; = { 0 S;iznonj

La matrice X € M,, 1(R) est positive, donc par hypothese, on a BX > 0, i.e. pour

tout i € [1,n], (BX)ix = Bix Xp1 = BijXj1 = Bi; > 0.
~~

k=1
=0;

Ainsi, pour tout (i, ) € [1,n]? B;; = 0 donc M

2. Par hypothese, on sait que P est positive et que P > AP.
Pour tout 7 € [1,n], on a P,y > (AP);1.
D’apres la question 1.a), puisque A est positive et P est positive, alors AP est positive
donc pour tout i € [1,n], (AP);1 > 0, ce qui implique que P;; > 0 d’ou

n

3. (a) Par hypothese, X > AX donc pour tout i € [1,n],z; = (AX);1 = Z%j%ﬂ

J=1

n
En particulier, pour 7 = k, on trouve xj > E g, ;5.
j=1



(b)

Puisque x5, = cpy, on en déduit que cpy, > E ay j;. Ainsi

n

n n n n
c|pr— E AkjPj | = CPk— E Cay,;pj 2 E ak:,jl"j—E cay,jPj = E :aku‘%‘_cakvjpﬂ'
7j=1 7=1 7=1

Jj=1 Jj=1

d’ou

n

¢ (Pk - Z ak,ij) Z ay,j(x; — cp;).
j=1

Puisque P > AP, on a p; > (AP)y1 = Za;w-pj donc py, — Zakyjpj > (0. On peut

j=1 j=1
n

donc diviser par py — Z ax,;p; et d’apres la question précédente, on obtient
j=1

n

> gz — cpy)

j=1
n

Pr — E Ak ;Pj
j=1

On vient de dire que le dénominateur est positif. Montrons que le numérateur 1’est
également.

cz

Par définition, ¢ = mln{ L,J € [1,n]} donc pour tout j € [1,n],¢ < f)—j Or,
P > 0 donc en multlphant par p;, on obtient que pour tout j € [1,n], cp; < xj, ie.
x; —cp; = 0.

D’autre part A est positive donc pour tout j € [1,n], ax; > 0.

Ainsi, E aj(z; — cpj) = 0 car c’est une somme a termes positifs.

Fmalement, on a bien montré que

Comme dit précédemment, on a alors pour tout j € [1,n],z; > cp; avec ¢ > 0 et
p; > 0 car P > 0 donc pour tout j € [1,n],z; > 0, ce qui prouve que‘Xest positive. ‘
Puisque AX = X, ona A(—X) = —AX = —X dou —X > A(—X).

En raisonnant comme dans les questions précédentes, puisque —X > A(—X), on en
déduit que —X > 0, d’'ou X < 0.

D’apres la question précédente, on a a la fois X > 0 et X < 0, i.e. pour tout
jel,n],z; >20et z; <0 donc z; =0, ce qui assure que

Ainsi, I’équation AX = X, équivalente a (I,, — A) X = 0, admet pour unique solution

X =0, ce qui assure que |([,, — A) est inversible.

Ona X = (I, —A)Y =Y — AY. Puisque X > 0, en en dedult que Y —AY >0, i.e.

Y > AY. D’apres la question 3.b), ceci implique que

Ainsi, pour toute matrice colonne X € M, ;(R) positive, ona ([, —AHX >0

donc d’apres la question 1.b),| (I, — A) ' est positive.
Tout d’abord, puisque (I, — B)™' € M, ,(R) et U € M,,1(R), alors

V =(I,— B)"'U € M,,1(R).
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De plus, puisque (I, — B)~! et U sont positives, on en déduit que V est positive
d’apres la question 1.a).

D’apres I'énoncé, on a U > 0. Ainsi, V — BV = (I,, — B)V = U > 0 donc
Autrement dit, B est une matrice carrée positive telle qu’il existe une matrice colonne
V' positive vérifiant V' > BV, i.e. ‘B est productive.‘

5. @ Si A est productive, on a par définition A > 0 et on montré en question 3.c, que (I, — A)
était inversible puis en question 4.a que (I,, — A)~! était positive.
e Réciproquement, si on suppose A > 0,1, — A inversible et (I, — A)~! positive, on a
montré en question 4.b que A était productive.
On a donc bien I’équivalence voulue.

6. Soit A une matrice productive. On a A > 0 donc AT > 0 également (en effet, pour tout
(27]) S [[17”]]27 (AT)Z'J = Gy > 0)
Par ailleurs, puisque A est productive, on sait d’apres la question précédente que I,, — A
est inversible donc (I,, — A)T = IT — AT = I,, — AT T’est également et son inverse est

(In - AT>_1 - (([n - A>T)_1 - (([n - A)_l)T-

Puisque A est productive, (I, — A)~' > 0 donc ((I, — A)™HT >0, ie. (I, — AT)"L > 0.
Finalement AT > 0, I,, — AT est inversible et (I, — AT)™1 > 0.

D’apres la question précédente, ceci assure que | AT est productive.

7. Soit A € M,,,(R) une matrice positive et nilpotente, i.e. il existe p € N*, tel que AP = 0.

Montrons que I,, — A est inversible. En effet, on a

p—1 p—1
(In—A)Y A=A - AR = A AP = [, — AP = ],
k=0 k=0

p—1
donc I,, — A est inversible d’inverse (I, — A)™! = Z A”,
k=0

Or, puisque A est positive, il est clair que toutes les puissances de A sont également a

p—1
ceefficients positifs, donc (I,, — A)~ = Z A* >0, ce qui prouve que | A est productive.
k=0

Partie 1I : Exemples de matrices productives

1. e Soit A € R. On sait d’apres la partie précédente que A, est productive si et seulement
si A, > 0,1, — M, est inversible et (I,, — AI,)~! est positive.
Tout d’abord, AI,, > 0 si et seulement si A > 0.
Ensuite, I,, — A, = (1 — \)1, est inversible si et seulement si 1 — X # 0, i.e. A # 1 et dans
ce cas, (I, — A\[,) ' = (1= NI, ' = %I” est positive si et seulement si 1 — A > 0,
ie. A< 1.
Finalement ‘)\In est productivesi et seulement si0) < A < 1.‘

e On a D > 0 si et seulement si pour tout i € [1,n],d; > 0.
1—d; 0 0
0 1—ds :

Ensuite, I, — D = est inversible si et seulement si pour



1
touti € [1,n],1—d; # 0, i.e. d; # 1 et dans ce cas, ([,— D)~ = 0 a
L
0 0 =

est positive si et seulement si pour tout i € [1,n],1 —d; >0, i.e. d; < 1.

Finalement | D est productivesi et seulement si pour touti € [1,n],0 < d; < 1.

2. Tout d’abord, puisque a > 0, on a bien A > 0. Ensuite, A2 = 0 donc A est une matrice
positive et nilpotente. D’apres la question 7 de la partie I, ‘A est productive. ‘

D’apres la question 4.b de la partie I, si on note U = (}) , alors P = (I, — A)~'U vérifie
P> AP.

Ona[n—A:<1

0 —1a) . On a det(,, — A) = 1 # 0 donc I,, — A est inversible d’inverse
1

-1 a et (Loa) (1 _[fa+1) _
(I, — A) —(0 1) etona ([, — A) U—(O 1) (1)— ( 1 )—P.
- ; . (0 a\ (a+1\ [a a+1\
OnverlﬁequonablenAP—(o 0)( 1 )—(0)<< 1 )—P.

3. Tout d’abord, on a bien B > 0. Inversons I, — B.

1 -1 0|1 0 0 e dlenl 1 1 00 ﬁle%ﬁg%rz
Onal,—B=| 0 L -1lo 10 3“—%“(0 % 0 1 0 | =gt
-1 —3 1]00 1 0 3 4104
1 0 —-1|1 2 Li+Li+Ls 1 0 0(2 8 4
0 % —% 0 1 ba2latls g 1 01 8 4 donc I,,— B est inversible d’in-
00 11|16 00 1|1 6 4

0
0
4
2 8 4
verse (I, — B)™' = (1 8 4] >0, ce qui prouve que | B est productive.‘
1 6 4

1 2 8 4 1 14
Posons V= |[1]|et ([,-B)'V=|[1 8 4 1 = |13|=0Q|
1 1 6 4 11
010
On a alors bien BQ = | 0 % % 12 < = Q.
101
i3 Y
0 -2 -3
4. Onal,—C=|—-1 1 —1] quin’est pas inversible car elle comporte une ligne de 0
0O 0 0

donc ‘ C'n’est pas productive. ‘

Probleme 2 : Algorithme de la descente de gradient

Partie I : Préliminaires

1. Par définition, puisque lir}rq f(z) = 400, il existe un réel M > 0 tel que pour tout
T—r+00

x> M, f(x) > f(0).

De méme, puisque lim f(x) = 400, il existe un réel M’ < 0 tel que pour tout =z <
T—>—00

M, f(z) > f(0).



2.

La fonction f étant continue sur le segment [M’ M|, d’aprés le théoreme des bornes
atteintes, la fonction f admet un minimum sur [M’, M|, atteint en un réel qu’on note x.,.

Ainsi, pour tout « € [M', M|, f(z) > f(x.).

De plus, puisque 0 € [M', M|, f(z.) < f(0).

Il en découle que pour tout = > M, f(x) > f(0) > f(z.) et pour tout = < M’, f(z) >
f(0) = f(z.).

Finalement, pour tout réel x, f(z) > f(z.) donc

Jz, € R, f(z,) = min{f(x),z € R}.

(a) Soit (z,y) € R
Puisque f" est L-Lipschitzienne, on sait par définition que

|f'(x) = f'(y)] < Llz —yl.

En multipliant cette égalité par | f'(z) — f/(y)| qui est positif, on en déduit que
|f'(2) = fW)* < Llz =yl f'(2) = f' ()] = LIz = »)(f'(2) = f(v)].

Or, f € C}(R) est convexe donc on sait que f est croissante sur R.
Ainsi,
osi <y, alors f/(z) < f/(y) donc z —y < 0 et f'(z) — f'(y) <0 don

(x = y)(f'(x) = f'(y) = 0;
osiz >y, alors f/(x) > f'(y) doncz —y > 0et f'(z) — f'(y) 2 0 dou

(x = y)(f'(x) = f'(y) = 0.
Dans les deux cas, (z —y)(f'(z) — f'(y)) = 0 donc

(@ = y)(f'(x) = f'(y)l = (= = y)(f'(x) = f'(y).

On a donc bien

V(x,y) €RL|f' (@) = f'W)I < Lz —y)(f'(2) — f'(y).
(b) Soient (z,y) € R?. On a

=91 = (x—y—7(f'(x) = ()
= (z—y)? =21 —y)(f'(x) = f'(W) + 7*(f'(x) = f'(y))?
< (@ —y)? =2r(z —y)(f'(x) = f'(y) + Lz —y)(f'(x) = f'(y) dapres2.(a)
< (z—y)?—@2r—rL)(@—y)(f'(z) — f(y))

dott

@ =g <z —yl* =72 = 7L)(@ —y)(f' (=) = ['(y))-

(¢) Puisque la fonction f admet un minimum z, sur R =] — o0, +00], qui est un ensemble
ouvert dans R, on peut en déduire que f'(x,) = 0.

Ainsi, 7, = x, — 7f'(v4) = ..



Soit n € N. On a

T — 2 = |7 — 2

< oy — 2 =72 = 7L) (20 — 2.) (f (z0) — f'(2.)) d’apres 2.(b)

On a supposé que 0 < 7 < donc 7L <2 (car L > 0) puis (2—7L) > 0.
Par ailleurs, on a montré en questlon 2.(a) que (z, — z.)(f'(zn) — f'(24)) = 0 donc

T2 =7L)(zn — ) (f'(2n) = f'(2.)) 2 0,

ce qui implique que |z,11 — .|? < |x, — 2|2
Par croissance de la fonction racine carrée sur Ry, on en déduit que |z, — x| <

|z, — .|, ce qui prouve que

la suite (|z,, — Z4|)nen est décroissante.

Partie II : Convergence rapide, sous des hypotheses fortes

3.

4.

(a) On a pour tout x € R, f'(z) = Lz donc pour tout n € N,z,.1 = z, — 7f'(z,) =
x, — TLx, ie.

Tpr1 = (1 —=70)x,

La suite (2,)nen est géométrique de raison (1 — 7L) et de premier terme xy donc

pour toutn € N, z,, = (1 — 7L)"zg

(b) Puisque zy # 0, la suite (z,)nen tend vers 0 si et seulement si 11r+n (1—-7L)" =0.
n—-—+0o0o

On a alors les équivalences suivantes :
2
lir+n (1—7’L)n:0<:>|1—7'L|<1<:>—1<1—TL<1<=>0<7'<Z
n—-+0oo

car L > 0.

On a donc bien montré que

la suite (z,)nen tend vers 0si et seulement si0 < 7 < 2/L.

1
D’apres I’énoncé, la fonction g : z — f(z) — 504:1:2 est convexe sur R. Puisque f € C!(R),
la fonction g est également de classe C! sur R et est convexe, ce qui équivaut a dire que
g’ est croissante sur R.
Or, pour tout =z € R, ¢'(z) = f'(z) — ax donc

x +— f'(x) — axest une fonction croissante sur R.

Soit (z,y) € R? avec z < y. Puisque ¢’ est croissante sur R, on a ¢'(z) < ¢/(y) d’ott

f(@) —ax < fly) —ay ie f(y)—f(x)>aly—2)=0 cara>0,

ce qui assure en particulier que f’ est croissante.
Or, f" est L-Lipschitzienne donc |f'(z) — f'(y)| < L|z — y|. Puisque x < y et que f’ est
croissante, il en découle que

f'(y) = f'(z) < Ly — x).

6



Finalement, on a
aly —x) < f'(y) = f'(x) < Ly — ).
En divisant par y — z > 0, on en déduit

f'y) = f'(2) _

CY< \La
y—x

ce qul assure que m
2

. Posons la fonction h : x — f(x) — f(0) — f'(0)x — a%.

Puisque f € C'(R), la fonction h est dérivable sur R et on a pour tout = € R,
W(z) = f'(z) — f'(0) — az = ¢'(z) — ¢'(0).

Puisque la fonction ¢’ est croissante sur R d’apres la question précédente, on en déduit
que pour tout x < 0,4/'(z) < 0 et pour tout z > 0,h'(x) > 0.
Ainsi, la fonction h est décroissante sur R_ et croissante sur R_.

x —00 0 —+00
B (x) - 0 +
0

On en déduit que la fonction A admet un minimum en 0 donc pour tout z € R, h(z) >
h(0) = 0.
Il en découle que

2

pour toutz € R, f(x) > f(0) + f'(0)z + 0/%.

2
Ona lim f(O)—i—f’(O)x—l—a% = +oo donc par comparaison, on en déduit que lim f(z) =

T—r+400 T—r+400

+00.
@’ : 2 (LO) f'(0)

De méme, lim f(0)+ f'(0)z+a— = lim x + 24 %) = oo par produit
T——00 2 T——00 2 T 2

de limites car a > 0.

On en déduit une nouvelle fois par comparaison que lim f(z) = +o0.
T—r—00

T—r

Puisque f € C'(R), f est continue sur R et vérifie lim f(z) = lirf f(z) = +o0.
—0o0 T—>+00

D’apres la question 1, on en déduit que

‘ f admet un minimiseur sur R.‘

. Soient (z,y) € R%
e Si x = y, l'inégalité demandée est triviale puisque les deux membres sont nuls.

e Si z < y, on a établi en question 4 que
aly —z) < f'(y) — f(x)

7



d’oll en multipliant chaque membre de I'inégalité par y — z > 0,
aly —2)* < (f'(y) = f'(@)y —2) = (f'(2) = f'(y)(x—y),
Le. alz —yl? < (f'(z) = f()(z—y)
e Si x> y, on applique le point précédent en échangeant x et y et on obtient
aly —a* < (f'(y) — f'(@)(y — ),

ce qui s'écrit également alr — y|* < (f'(z) — f'(y))(z — y).
Finalement, on a bien

pour tousz,y € R, alr —y|* < (f'(z) — f'(v))(z — y).

. On sait que f € C!(R) et on a établi dans la question 4 que f’ est croissante donc f est
convexe. De plus, [’ est L-Lipschitzienne.
D’apres la question 2.(b), on en déduit que pour tous (z,y) € R?

7 —g)* <lo—y|* =72 = 7L) (@ —y)(f'(x) = ().
D’apres la question précédente, on sait que pour tout (z,y) € R%* alz — y|> < (v —
y)(f'(x) = f'(y).
Puisque 0 < 7 < % (hypothese de I'énoncé), 7(2—7L) > 0 donc en multipliant 'inégalité
ci-dessus par 7(2 — 7L), on obtient pour tout (z,y) € R?,

ar(2—rL)|lz =yl <72 —7L)(x —y)(f'(x) - ['(y)).

En injectant cette derniere inégalité dans celle de la question 2.(b), on trouve

@ =g <lo -y —ar(2—rL)|z — y|?

d’out

pour tous (z,y) € R |Z — §|* < |z — y|*(1 — ar(2 — L7)).

. Comme montré en question 2.(c), on a £, = x,. Ainsi, en appliquant le résultat de la
question précédente, on a pour tout n € N :

|Tny1 — 2.2 = |7, — 2.2 < |2 — 2.2 (1 — a7(2 — L7)).

Or, d’apres la question précédente, pour tout (z,y) € R? avec x # y, on a

<l—ar(2—-L7)

donc 1 —ar(2 — L71) > 0.

Par croissance de la racine carrée sur R, , on obtient alors pour tout n € N,
|Zpg1 — 2| < |20 — 24 |\/1 — 7 (2 — L7).

Posons p = /1 —ar(2 — L7).
Par récurrence immédiate, on trouve que pour tout n € N,

|0 — 2| < p"lwo — 2],

2
Puisque dans cette question 0 < 7 < T il vient ar(2 — L7) > 0, donc on a bien

Puisque 0 < p < 1, on a liril p"|lxro — x| = 0, et on en déduit par comparaison que
n——+0oo

lim |z, —x. =0, dou| lim z, = z..
n—-+00 n—-+0oo




Partie III : Convergence lente, sous des hypotheses faibles

9.

10.

e La fonction f est dérivable sur R* et on a pour tout z € R%, f/(z) = 22.
(x) = 0.
e Puisque lim f'(z) = lim f'(z) = 0, on en déduit que lim f'(z) = 0. Le théoréme de
z—0— z—01 z—0

e La fonction f est dérivable sur R* et on a pour tout x € R* | f

la limite de la dérivée permet alors d’affirmer que f est dérivable en 0, que f’(0) = 0 et
que f’ est continue en 0.

Ainsi, pour tout x € R, on a

0 siz<0
/ JR—
f(x)—{ 2?2 siz =0
La fonction f” est clairement continue sur R’ , sur R* et est continue en 0 d’apres le
théoreme de la limite de la dérivée.

Finalement, f” est continue sur R, ce qui assure que | f € C*(R).

Par ailleurs, puisque pour tout x € Ry, 2% > 0 et que la fonction z +— 22 est croissante
sur R, , on en déduit que [’ est croissante sur R donc ‘ f est convexe. ‘

Enfin, pour tout € R, f(z) > 0 et f(z) =0 < z < 0 donc

I'ensemble des minimiseurs de fest R_ =] — 00, 0].

(a) Montrons par récurrence que pour tout n € N0 < x,, < —.
T
elnitialisation : La propriété est vraie au rang n = 0 par hypothese de I’énoncé.
1
eHérédité : Soit n € N fixé. On suppose que 0 < z,, < —. Montrons que 0 < x,.1 <
T
1

-
Par définition, on a x,1 =z, — 7f'(z,).

Par hypothese de récurrence, z,, > 0 donc f’(z,,) = 2 d’apres la question précédente.

Ainsi, T, = ¥, — 722 do0t Ty = 2, (1 — T2,).

1

Par hypothese de récurrence, x,, < — donc 1 — 7x,, > 0 puis z,(1 — 72,,) > 0 donc
T

Tn+1 > 0.

: 1 .
Enfin, puisque 72, >0, ona 0 < 1 — 72, <1 donc 0 < z,(1 — 72,) < x, < — d’ou
T
0 < x,411 < —, ce qui prouve la propriété au rang n + 1 et acheéve la récurrence.
T

On a donc bien montré par récurrence que pour tout n € N,0 < x, < —.
T

On a également vu que pour tout n € N, z, 1 = z,(1 — 72,,) donc pour tout n € N,

xn—f—l

=1—-72, <1,
xn

ce qui prouve que

la suite (z,)en est décroissante et a valeurs strictement positives.

(b) La suite (z,)nen est décroissante et minorée par 0 d’apres la question précédente.

D’apres le théoreme de la limite monotone, la suite (z,),eny converge. Notons [ sa
limite.



En passant a la limite dans 1’égalité

Tpt1 = Tp(l — T23),

on trouve [ = [(1 — 71) d’ott 71*> = 0, i.e. [ = 0 (puisque 7 > 0).

On a donc bien monté que | lim =z, = 0.
n—-+o0o

(c) Soit n € N. On a

1 T 1l—72,+72, 1
_ + — e
r, 1—71x, (1 —72y) (1 — 723)
. 1 T
ce qui prouve que |pour toutn e N, — = — 4+ ——,
Tpy1  Tn 1—TxH
Zo

Montrons par récurrence que pour tout n € N, z, < ——.
1+nrxg
elnitialisation : Pour n = 0, — =0 = ro = xo donc la propriété est vraie au
1+ nTtxy
rang n = 0.

3 ’ . 7/ x
eHérédité : Soit n € N fixé. Supposons que x,, < 0

< — et montrons que
1+nrxg

Zo
14+ (n+ 17z

wn-{—l <

D’apres le calcul précédent,
1 1 T

T

R , 1 1+ nrx
Par hypothese de récurrence, on a — > -0
Tn To

i T
Par ailleurs, 1 — 72, <1lcar7>0et x, >0 donc —— > 7.
— T,

. 1 1+ 1+(n+1 .
On en déduit que > 7o +7 = (n )70 d’oux, 1 < ,
Tni1 Zo Zo 1+ (n+1)Tz0

ce qui prouve la propriété au rang n + 1.

Zo

D’apres le principe de récurrence, on a bien

To
pour toutn € Nz, < ———.
1+ n7rxg

11. e Supposons que zy < 0.
On a alors x; = zg — 7f"(x¢). Or, f'(x¢) = 0 puisque 27 < 0 donc z; = xy.

Par une récurrence immédiate, on en déduit que pour tout n € N, z,, = x¢ donc lim =z, =
n—-+o0o

o € R_, qui est un minimiseur de f d’apres la question 9.

e Si0<xy< 7—1_, d’apres la question précédente, nl—lgloo x, =0 € R_ donc la suite (x,,),en
converge vers un minimiseur de f.

e Supposons que gy > % > 0.

Puisque zg > 0, on a ¥y = zg — 7f'(20) = w0 — 725 = 20(1 — T20).

Puisque zy > 1, 1— 729 <0doncz; <0.

On est alors r;mené au premier cas, et on en déduit que pour tout n > 1,x,, = x; donc

lim x, =2x; € R_ qui est un minimiseur de f.
n—-+o0o

Dans tous les cas, |la suite (x,, ) ey converge vers un minimiseur de f.
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12.

(a)

Soit = € R.

La fonction dont la courbe représentative est la tangente a la courbe de f au point
z est y — f'(z)(y — x) + f(x). Puisque f € C'(R) est convexe, la courbe de f est
située au-dessus de ses tangentes donc

V(z,y) € R f(y) = f(z) + f(x)(y — ).

Soit x € R fixé. Posons pour tout y € R, h(y) = f(x)+f’(x)(y—x)+§(y—x)z—f(y).

La fonction h est dérivable sur R car la fonction f ’est et on a pour tout y € R :
W(y) = f'(z) + Ly — =) = ['(y).

Puisque f’ est L-Lipschitzienne, |f'(x) — f'(y)| < L|z — y|. De plus, f est convexe
donc f’ est croissante sur R.

Ainsi :

e si z <y, alors f'(z) < f/'(y) et on obtient f'(y)— f'(x) < L(y —x) donc K (y) >
e siz >y, alors f'(z) = f'(y) et on obtient f'(z) — f'(y) < L(z —y) donc I (y) <
On en déduit que la fonction h est décroissante sur | — oo, z| et croissante sur [z, +00]
donc la fonction h admet un minimum en x.

<
<

) —00 T 400
h(y) - 0 +
h \ 0 /

Ainsi, pour tout y € R, h(y) = h(0) = 0, ce qui prouve que

L 2

pour tousz,y € R, f(y) < f(x) + f'(x)(y — x) + 2(y—x) .

Soit n € N. Appliquons 'inégalité obtenue en question précédente pour r = x,, et
Y = Tn+1-
Dans ce cas, on a y — & = Ty1 — ¢, = —7f (x,) donc

! / L l 2 L 2 / 2
f(@ng1) < flon) + f(20) (=7 f (20)) + 5(_Tf (xn))” = f(@n) + (=7 + 57— N ()]

donc

pour toutn € N, f(zn1) < f(a) = £(2 = 7D f ()

Ainsi, pour tout n € N, f(x,11) — f(z,) < —%(2 — TL)|f'(x,)]?.
2
Or, par hypothese, 0 < 7 < 17 donc %(2 —7L)>0.
On en déduit que —%(2 —7L)|f (2,)]*> <0 (puisque | f'(x,)[* = 0) donc

pour toutn € N, f(z,11) — f(2a) <0,

ce qui prouve que

la suite (f(zy,))nen est décroissante.

11



13.

14.

15.

Soit z € R.
Puisque z, est un minimiseur de f, on a f(x) > f(z.) donc f(z) — f(x.) > 0.
Par ailleurs, d’apres la question 12.(a), f(x) — f(x.) < f'(z)(x — x,).
Puisque f(z) — f(x.) = 0, on en déduit que f'(z)(z — z.) = 0 donc
f@) (@ =) =1f(2) (@ —2.)| = [['(@)|lz — 2|

Finalement, on obtient bien que

pour toutz € R,0 < f(z) — f(z.) < |z — z.]|f'(2)].

On suppose zg # .. Soit n € N. D’apres la question précédente,

0< fzn) — fl2e) <m0 — 2| f(20)|-
Puisque f € C1(R), que f est convexe, admet un minimiseur ., que f’ est L-Lipschitzienne

et que 0 <7< 7 on peut appliquer le résultat de la question 2.(c), a savoir que la suite

(|zn, — 24| )nen est décroissante donc |x,, — x| < |zg — x4
On en déduit que 0 < f(w,) — f(z.) < |ro — 2./|f ()] (puisaue |f'(z,)] > 0).
Puisque x¢ # x., on peut diviser par |zq — x,| > 0 et on obtient

Tn) — f2)

oy s 4
)l > T 2 0

Par croissance de z — 22 sur R, on en déduit que |f'(z,)]* >
T
Enfin, puisque —5(2 —1L) <0, on en déduit que

T

2

) = f(@)

|0 — 2.2

Le-rp)

@ = TDIf (@) < 3

En injectant cette derniere inégalité dans I'inégalité obtenue en question 12.(c), on trouve

1) = S )P

|[Zo — @.|?

pour toutn € N, f(@,11) < f(2a) = 5(2 = 7L)

e Supposons que Ty # T,.

Puisque la suite (f(z,))nen est décroissante et minorée par f(x,), elle converge d’apres
le théoreme de la limite monotone vers une limite [.

En passant a la limite dans I'inégalité ci-dessus, on trouve

L= f(z)?

-
I<l—=-(2—-7L
2( T)\xo—x*P

d’ott |l — f(z.)]* < 0 (puisque %(2 —71L)>0).

Or, puisque |l — f(x,)|> = 0, on en déduit que |l — f(z,)|* =0, dot | = f(z.).

e Dans le cas ol zp = x,, la suite (x,)nen est constante égale a z.. En effet, puisque x.
est un minimiseur de f sur R =] — 0o, +o0[ qui est un intervalle ouvert, on a f'(z,) =0
donc x1 = xg — 7f'(x0) = . — 7f'(x.) et on a par récurrence immédiate x,, = x, pour
tout n € N.

Puisque f est continue sur R, on en déduit que lirf flxn) = f(zs).
n—-+0oo

On a donc bien montré que, dans tous les cas,

la suite (f (2,,)nen converge vers f(x,).
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