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Problème 1 : Matrices productives

Partie I : Résultats théoriques

1. (a) Supposons que B ⩾ 0 et X ⩾ 0. Tout d’abord, notons que BX ∈ Mn,1(R) et pour
tout i ∈ J1, nK, on a

(BX)i,1 =
n∑

k=1

Bi,kXk,1.

Or, pour tout k ∈ J1, nK, Bi,k ⩾ 0 et Xk,1 ⩾ 0 puisque B ⩾ 0 et X ⩾ 0.

Ainsi, pour tout i ∈ J1, nK, (BX)i,1 ⩾ 0 car c’est une somme de termes positifs, ce

qui prouve que BX ⩾ 0.

(b) Supposons que pour toute matrice colonne X ∈ Mn,1(R) positive, on a BX ⩾ 0.
Montrons que B ⩾ 0.

Soit j ∈ J1, nK

Soit X =



0
...
0
1
0
...
0


la matrice colonne constituée d’un 1 en ligne j et de 0 ailleurs, i.e.

pour tout i ∈ J1, nKXi,1 = δi,j =

{
1 si i = j
0 sinon

.

La matrice X ∈ Mn,1(R) est positive, donc par hypothèse, on a BX ⩾ 0, i.e. pour

tout i ∈ J1, nK, (BX)i,1 =
n∑

k=1

Bi,k Xk,1︸︷︷︸
=δj,k

= Bi,jXj,1 = Bi,j ⩾ 0.

Ainsi, pour tout (i, j) ∈ J1, nK2, Bi,j ⩾ 0 donc B ⩾ 0.

2. Par hypothèse, on sait que P est positive et que P > AP.

Pour tout i ∈ J1, nK, on a Pi,1 > (AP )i,1.

D’après la question 1.a), puisque A est positive et P est positive, alors AP est positive

donc pour tout i ∈ J1, nK, (AP )i,1 ⩾ 0, ce qui implique que Pi,1 > 0 d’où P > 0.

3. (a) Par hypothèse, X ⩾ AX donc pour tout i ∈ J1, nK, xi ⩾ (AX)i,1 =
n∑

j=1

ai,jxj.

En particulier, pour i = k, on trouve xk ⩾
n∑

j=1

ak,jxj.
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Puisque xk = cpk, on en déduit que cpk ⩾
n∑

j=1

ak,jxj. Ainsi

c

(
pk −

n∑
j=1

ak,jpj

)
= cpk−

n∑
j=1

cak,jpj ⩾
n∑

j=1

ak,jxj−
n∑

j=1

cak,jpj =
n∑

j=1

ak,jxj−cak,jpj

d’où

c

(
pk −

n∑
j=1

ak,jpj

)
⩾

n∑
j=1

ak,j(xj − cpj).

(b) Puisque P > AP, on a pk > (AP )k,1 =
n∑

j=1

ak,jpj donc pk −
n∑

j=1

ak,jpj > 0. On peut

donc diviser par pk −
n∑

j=1

ak,jpj et d’après la question précédente, on obtient

c ⩾

n∑
j=1

ak,j(xj − cpj)

pk −
n∑

j=1

ak,jpj

.

On vient de dire que le dénominateur est positif. Montrons que le numérateur l’est
également.

Par définition, c = min{xj

pj
, j ∈ J1, nK} donc pour tout j ∈ J1, nK, c ⩽ xj

pj
. Or,

P > 0 donc en multipliant par pj, on obtient que pour tout j ∈ J1, nK, cpj ⩽ xj, i.e.
xj − cpj ⩾ 0.

D’autre part, A est positive donc pour tout j ∈ J1, nK, ak,j ⩾ 0.

Ainsi,
n∑

j=1

ak,j(xj − cpj) ⩾ 0 car c’est une somme à termes positifs.

Finalement, on a bien montré que c ⩾ 0.

Comme dit précédemment, on a alors pour tout j ∈ J1, nK, xj ⩾ cpj avec c ⩾ 0 et

pj > 0 car P > 0 donc pour tout j ∈ J1, nK, xj ⩾ 0, ce qui prouve que X est positive.

(c) Puisque AX = X, on a A(−X) = −AX = −X d’où −X ⩾ A(−X).

En raisonnant comme dans les questions précédentes, puisque −X ⩾ A(−X), on en
déduit que −X ⩾ 0, d’où X ⩽ 0.

D’après la question précédente, on a à la fois X ⩾ 0 et X ⩽ 0, i.e. pour tout
j ∈ J1, nK, xj ⩾ 0 et xj ⩽ 0 donc xj = 0, ce qui assure que X = 0.

Ainsi, l’équation AX = X, équivalente à (In−A)X = 0, admet pour unique solution

X = 0, ce qui assure que (In − A) est inversible.

4. (a) On a X = (In −A)Y = Y −AY. Puisque X ⩾ 0, en en déduit que Y −AY ⩾ 0, i.e.

Y ⩾ AY. D’après la question 3.b), ceci implique que Y ⩾ 0.

Ainsi, pour toute matrice colonne X ∈ Mn,1(R) positive, on a (In − A−1)X ⩾ 0

donc d’après la question 1.b), (In − A)−1 est positive.

(b) Tout d’abord, puisque (In −B)−1 ∈ Mn,n(R) et U ∈ Mn,1(R), alors

V = (In −B)−1U ∈ Mn,1(R).
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De plus, puisque (In − B)−1 et U sont positives, on en déduit que V est positive
d’après la question 1.a).

D’après l’énoncé, on a U > 0. Ainsi, V −BV = (In −B)V = U > 0 donc V > BV.

Autrement dit, B est une matrice carrée positive telle qu’il existe une matrice colonne
V positive vérifiant V > BV, i.e. B est productive.

5. • Si A est productive, on a par définition A ⩾ 0 et on montré en question 3.c, que (In−A)
était inversible puis en question 4.a que (In − A)−1 était positive.

• Réciproquement, si on suppose A ⩾ 0, In − A inversible et (In − A)−1 positive, on a
montré en question 4.b que A était productive.

On a donc bien l’équivalence voulue.

6. Soit A une matrice productive. On a A ⩾ 0 donc AT ⩾ 0 également (en effet, pour tout
(i, j) ∈ J1, nK2, (AT )i,j = aj,i ⩾ 0).

Par ailleurs, puisque A est productive, on sait d’après la question précédente que In −A
est inversible donc (In − A)T = ITn − AT = In − AT l’est également et son inverse est

(In − AT )−1 = ((In − A)T )−1 = ((In − A)−1)T .

Puisque A est productive, (In − A)−1 ⩾ 0 donc ((In − A)−1)T ⩾ 0, i.e. (In − AT )−1 ⩾ 0.

Finalement AT ⩾ 0, In − AT est inversible et (In − AT )−1 ⩾ 0.

D’après la question précédente, ceci assure que AT est productive.

7. Soit A ∈ Mn,n(R) une matrice positive et nilpotente, i.e. il existe p ∈ N∗, tel que Ap = 0.

Montrons que In − A est inversible. En effet, on a

(In − A)

p−1∑
k=0

Ak =

p−1∑
k=0

Ak − Ak+1 = A0 − Ap = In − Ap = In

donc In − A est inversible d’inverse (In − A)−1 =

p−1∑
k=0

Ak.

Or, puisque A est positive, il est clair que toutes les puissances de A sont également à

cœfficients positifs, donc (In − A)−1 =

p−1∑
k=0

Ak ⩾ 0, ce qui prouve que A est productive.

Partie II : Exemples de matrices productives

1. • Soit λ ∈ R. On sait d’après la partie précédente que λIn est productive si et seulement
si λIn ⩾ 0, In − λIn est inversible et (In − λIn)

−1 est positive.

Tout d’abord, λIn ⩾ 0 si et seulement si λ ⩾ 0.

Ensuite, In−λIn = (1−λ)In est inversible si et seulement si 1−λ ̸= 0, i.e. λ ̸= 1 et dans

ce cas, (In − λIn)
−1 = ((1− λ)In)

−1 =
1

1− λ
In est positive si et seulement si 1− λ > 0,

i.e. λ < 1.

Finalement λIn est productive si et seulement si 0 ⩽ λ < 1.

• On a D ⩾ 0 si et seulement si pour tout i ∈ J1, nK, di ⩾ 0.

Ensuite, In − D =


1− d1 0 . . . 0

0 1− d2
. . .

...
...

. . . . . . 0
0 . . . 0 1− dn

 est inversible si et seulement si pour
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tout i ∈ J1, nK, 1−di ̸= 0, i.e. di ̸= 1 et dans ce cas, (In−D)−1 =


1

1−d1 0 . . . 0

0 1
1−d2

. . .
...

...
. . . . . . 0

0 . . . 0 1
1−dn


est positive si et seulement si pour tout i ∈ J1, nK, 1− di > 0, i.e. di < 1.

Finalement D est productive si et seulement si pour tout i ∈ J1, nK, 0 ⩽ di < 1.

2. Tout d’abord, puisque a ⩾ 0, on a bien A ⩾ 0. Ensuite, A2 = 0 donc A est une matrice
positive et nilpotente. D’après la question 7 de la partie I, A est productive.

D’après la question 4.b de la partie I, si on note U =

(
1
1

)
, alors P = (In−A)−1U vérifie

P > AP.

On a In −A =

(
1 −a
0 1

)
. On a det(In −A) = 1 ̸= 0 donc In −A est inversible d’inverse

(In − A)−1 =

(
1 a
0 1

)
et on a (In − A)−1U =

(
1 a
0 1

)(
1
1

)
=

(
a+ 1
1

)
= P.

On vérifie qu’on a bien AP =

(
0 a
0 0

)(
a+ 1
1

)
=

(
a
0

)
<

(
a+ 1
1

)
= P.

3. Tout d’abord, on a bien B ⩾ 0. Inversons In −B.

On a In−B =

 1 −1 0 1 0 0
0 1

2
−1

2
0 1 0

−1
4

−1
2

1 0 0 1

 L3←4L3+L1−→

 1 −1 0 1 0 0
0 1

2
−1

2
0 1 0

0 −3 4 1 0 4

 L1←L1+2L2
L3←L3+6L2−→ 1 0 −1 1 2 0

0 1
2

−1
2

0 1 0
0 0 1 1 6 4

 L1←L1+L3
L2←2L2+L3−→

 1 0 0 2 8 4
0 1 0 1 8 4
0 0 1 1 6 4

 donc In−B est inversible d’in-

verse (In −B)−1 =

2 8 4
1 8 4
1 6 4

 ⩾ 0, ce qui prouve que B est productive.

Posons V =

1
1
1

 et (In −B)−1V =

2 8 4
1 8 4
1 6 4

1
1
1

 =

14
13
11

 = Q .

On a alors bien BQ =

0 1 0
0 1

2
1
2

1
4

1
2

0

14
13
11

 =

13
12
10

 <

14
13
11

 = Q.

4. On a In −C =

 0 −2 −3
−1 1 −1
0 0 0

 qui n’est pas inversible car elle comporte une ligne de 0

donc C n’est pas productive.

Problème 2 : Algorithme de la descente de gradient

Partie I : Préliminaires

1. Par définition, puisque lim
x→+∞

f(x) = +∞, il existe un réel M > 0 tel que pour tout

x > M, f(x) > f(0).

De même, puisque lim
x→−∞

f(x) = +∞, il existe un réel M ′ < 0 tel que pour tout x <

M ′, f(x) > f(0).
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La fonction f étant continue sur le segment [M ′,M ], d’après le théorème des bornes
atteintes, la fonction f admet un minimum sur [M ′,M ], atteint en un réel qu’on note x∗.
Ainsi, pour tout x ∈ [M ′,M ], f(x) ⩾ f(x∗).

De plus, puisque 0 ∈ [M ′,M ], f(x∗) ⩽ f(0).

Il en découle que pour tout x > M, f(x) > f(0) ⩾ f(x∗) et pour tout x < M ′, f(x) >
f(0) ⩾ f(x∗).

Finalement, pour tout réel x, f(x) ⩾ f(x∗) donc

∃x∗ ∈ R, f(x∗) = min{f(x), x ∈ R}.

2. (a) Soit (x, y) ∈ R2.

Puisque f ′ est L-Lipschitzienne, on sait par définition que

|f ′(x)− f ′(y)| ⩽ L|x− y|.

En multipliant cette égalité par |f ′(x)− f ′(y)| qui est positif, on en déduit que

|f ′(x)− f ′(y)|2 ⩽ L|x− y||f ′(x)− f ′(y)| = L|(x− y)(f ′(x)− f ′(y)|.

Or, f ∈ C1(R) est convexe donc on sait que f ′ est croissante sur R.
Ainsi,

• si x ⩽ y, alors f ′(x) ⩽ f ′(y) donc x− y ⩽ 0 et f ′(x)− f ′(y) ⩽ 0 d’où

(x− y)(f ′(x)− f ′(y)) ⩾ 0;

• si x ⩾ y, alors f ′(x) ⩾ f ′(y) donc x− y ⩾ 0 et f ′(x)− f ′(y) ⩾ 0 d’où

(x− y)(f ′(x)− f ′(y)) ⩾ 0.

Dans les deux cas, (x− y)(f ′(x)− f ′(y)) ⩾ 0 donc

|(x− y)(f ′(x)− f ′(y)| = (x− y)(f ′(x)− f ′(y).

On a donc bien

∀(x, y) ∈ R2, |f ′(x)− f ′(y)|2 ⩽ L(x− y)(f ′(x)− f ′(y)).

(b) Soient (x, y) ∈ R2. On a

|x̃− ỹ|2 = (x− y − τ(f ′(x)− f ′(y)))2

= (x− y)2 − 2τ(x− y)(f ′(x)− f ′(y)) + τ 2(f ′(x)− f ′(y))2

⩽ (x− y)2 − 2τ(x− y)(f ′(x)− f ′(y)) + τ 2L(x− y)(f ′(x)− f ′(y)) d’après 2.(a)

⩽ (x− y)2 − (2τ − τ 2L)(x− y)(f ′(x)− f ′(y))

d’où
|x̃− ỹ|2 ⩽ |x− y|2 − τ(2− τL)(x− y)(f ′(x)− f ′(y)).

(c) Puisque la fonction f admet un minimum x∗ sur R =]−∞,+∞[, qui est un ensemble
ouvert dans R, on peut en déduire que f ′(x∗) = 0.

Ainsi, x̃∗ = x∗ − τf ′(x∗) = x∗.
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Soit n ∈ N. On a

|xn+1 − x∗|2 = |x̃n − x̃∗|2

⩽ |xn − x∗|2 − τ(2− τL)(xn − x∗)(f
′(xn)− f ′(x∗)) d’après 2.(b)

On a supposé que 0 < τ ⩽ 2
L
donc τL ⩽ 2 (car L > 0) puis (2− τL) ⩾ 0.

Par ailleurs, on a montré en question 2.(a) que (xn − x∗)(f
′(xn)− f ′(x∗)) ⩾ 0 donc

τ(2− τL)(xn − x∗)(f
′(xn)− f ′(x∗)) ⩾ 0,

ce qui implique que |xn+1 − x∗|2 ⩽ |xn − x∗|2.
Par croissance de la fonction racine carrée sur R+, on en déduit que |xn+1 − x∗| ⩽
|xn − x∗|, ce qui prouve que

la suite (|xn − x∗|)n∈N est décroissante.

Partie II : Convergence rapide, sous des hypothèses fortes

3. (a) On a pour tout x ∈ R, f ′(x) = Lx donc pour tout n ∈ N, xn+1 = xn − τf ′(xn) =
xn − τLxn i.e.

xn+1 = (1− τL)xn.

La suite (xn)n∈N est géométrique de raison (1− τL) et de premier terme x0 donc

pour toutn ∈ N, xn = (1− τL)nx0.

(b) Puisque x0 ̸= 0, la suite (xn)n∈N tend vers 0 si et seulement si lim
n→+∞

(1 − τL)n = 0.

On a alors les équivalences suivantes :

lim
n→+∞

(1− τL)n = 0 ⇔ |1− τL| < 1 ⇔ −1 < 1− τL < 1 ⇔ 0 < τ <
2

L

car L > 0.

On a donc bien montré que

la suite (xn)n∈N tend vers 0 si et seulement si 0 < τ < 2/L.

4. D’après l’énoncé, la fonction g : x 7→ f(x)− 1

2
αx2 est convexe sur R. Puisque f ∈ C1(R),

la fonction g est également de classe C1 sur R et est convexe, ce qui équivaut à dire que
g′ est croissante sur R.
Or, pour tout x ∈ R, g′(x) = f ′(x)− αx donc

x 7→ f ′(x)− αx est une fonction croissante surR.

Soit (x, y) ∈ R2 avec x < y. Puisque g′ est croissante sur R, on a g′(x) ⩽ g′(y) d’où

f ′(x)− αx ⩽ f ′(y)− αy i.e. f ′(y)− f ′(x) ⩾ α(y − x) ⩾ 0 carα > 0,

ce qui assure en particulier que f ′ est croissante.

Or, f ′ est L-Lipschitzienne donc |f ′(x) − f ′(y)| ⩽ L|x − y|. Puisque x < y et que f ′ est
croissante, il en découle que

f ′(y)− f ′(x) ⩽ L(y − x).
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Finalement, on a
α(y − x) ⩽ f ′(y)− f ′(x) ⩽ L(y − x).

En divisant par y − x > 0, on en déduit

α ⩽
f ′(y)− f ′(x)

y − x
⩽ L,

ce qui assure que α ⩽ L.

5. Posons la fonction h : x 7→ f(x)− f(0)− f ′(0)x− α
x2

2
.

Puisque f ∈ C1(R), la fonction h est dérivable sur R et on a pour tout x ∈ R,

h′(x) = f ′(x)− f ′(0)− αx = g′(x)− g′(0).

Puisque la fonction g′ est croissante sur R d’après la question précédente, on en déduit
que pour tout x ⩽ 0, h′(x) ⩽ 0 et pour tout x ⩾ 0, h′(x) ⩾ 0.

Ainsi, la fonction h est décroissante sur R− et croissante sur R−.

x

h′(x)

h

−∞ 0 +∞

− 0 +

00

On en déduit que la fonction h admet un minimum en 0 donc pour tout x ∈ R, h(x) ⩾
h(0) = 0.

Il en découle que

pour tout x ∈ R, f(x) ⩾ f(0) + f ′(0)x+ α
x2

2
.

On a lim
x→+∞

f(0)+f ′(0)x+α
x2

2
= +∞ donc par comparaison, on en déduit que lim

x→+∞
f(x) =

+∞.

De même, lim
x→−∞

f(0) + f ′(0)x+α
x2

2
= lim

x→−∞
x2

(
f(0)

x2
+

f ′(0)

x
+

α

2

)
= +∞ par produit

de limites car α > 0.

On en déduit une nouvelle fois par comparaison que lim
x→−∞

f(x) = +∞.

Puisque f ∈ C1(R), f est continue sur R et vérifie lim
x→−∞

f(x) = lim
x→+∞

f(x) = +∞.

D’après la question 1, on en déduit que

f admet un minimiseur surR.

6. Soient (x, y) ∈ R2.

• Si x = y, l’inégalité demandée est triviale puisque les deux membres sont nuls.

• Si x < y, on a établi en question 4 que

α(y − x) ⩽ f ′(y)− f ′(x)
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d’où en multipliant chaque membre de l’inégalité par y − x > 0,

α(y − x)2 ⩽ (f ′(y)− f ′(x))(y − x) = (f ′(x)− f ′(y))(x− y),

i.e. α|x− y|2 ⩽ (f ′(x)− f ′(y))(x− y).

• Si x > y, on applique le point précédent en échangeant x et y et on obtient

α|y − x|2 ⩽ (f ′(y)− f ′(x))(y − x),

ce qui s’écrit également α|x− y|2 ⩽ (f ′(x)− f ′(y))(x− y).

Finalement, on a bien

pour tous x, y ∈ R, α|x− y|2 ⩽ (f ′(x)− f ′(y))(x− y).

7. On sait que f ∈ C1(R) et on a établi dans la question 4 que f ′ est croissante donc f est
convexe. De plus, f ′ est L-Lipschitzienne.

D’après la question 2.(b), on en déduit que pour tous (x, y) ∈ R2,

|x̃− ỹ|2 ⩽ |x− y|2 − τ(2− τL)(x− y)(f ′(x)− f ′(y)).

D’après la question précédente, on sait que pour tout (x, y) ∈ R2, α|x − y|2 ⩽ (x −
y)(f ′(x)− f ′(y)).

Puisque 0 < τ ⩽
2

L
(hypothèse de l’énoncé), τ(2− τL) ⩾ 0 donc en multipliant l’inégalité

ci-dessus par τ(2− τL), on obtient pour tout (x, y) ∈ R2,

ατ(2− τL)|x− y|2 ⩽ τ(2− τL)(x− y)(f ′(x)− f ′(y)).

En injectant cette dernière inégalité dans celle de la question 2.(b), on trouve

|x̃− ỹ|2 ⩽ |x− y|2 − ατ(2− τL)|x− y|2

d’où
pour tous (x, y) ∈ R2, |x̃− ỹ|2 ⩽ |x− y|2(1− ατ(2− Lτ)).

8. Comme montré en question 2.(c), on a x̃∗ = x∗. Ainsi, en appliquant le résultat de la
question précédente, on a pour tout n ∈ N :

|xn+1 − x∗|2 = |x̃n − x̃∗|2 ⩽ |xn − x∗|2(1− ατ(2− Lτ)).

Or, d’après la question précédente, pour tout (x, y) ∈ R2 avec x ̸= y, on a

|x̃− ỹ|2

|x− y|2
⩽ 1− ατ(2− Lτ)

donc 1− ατ(2− Lτ) ⩾ 0.

Par croissance de la racine carrée sur R+, on obtient alors pour tout n ∈ N,

|xn+1 − x∗| ⩽ |xn − x∗|
√

1− ατ(2− Lτ).

Posons ρ =
√

1− ατ(2− Lτ).

Par récurrence immédiate, on trouve que pour tout n ∈ N,

|xn − x∗| ⩽ ρn|x0 − x∗|.

Puisque dans cette question 0 < τ <
2

L
, il vient ατ(2 − Lτ) > 0, donc on a bien

0 ⩽ ρ < 1.

Puisque 0 ⩽ ρ < 1, on a lim
n→+∞

ρn|x0 − x∗| = 0, et on en déduit par comparaison que

lim
n→+∞

|xn − x∗| = 0, d’où lim
n→+∞

xn = x∗.
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Partie III : Convergence lente, sous des hypothèses faibles

9. • La fonction f est dérivable sur R∗+ et on a pour tout x ∈ R∗+, f ′(x) = x2.

• La fonction f est dérivable sur R∗− et on a pour tout x ∈ R∗−, f ′(x) = 0.

• Puisque lim
x→0−

f ′(x) = lim
x→0+

f ′(x) = 0, on en déduit que lim
x→0

f ′(x) = 0. Le théorème de

la limite de la dérivée permet alors d’affirmer que f est dérivable en 0, que f ′(0) = 0 et
que f ′ est continue en 0.

Ainsi, pour tout x ∈ R, on a

f ′(x) =

{
0 six < 0
x2 si x ⩾ 0

.

La fonction f ′ est clairement continue sur R∗+, sur R∗− et est continue en 0 d’après le
théorème de la limite de la dérivée.

Finalement, f ′ est continue sur R, ce qui assure que f ∈ C1(R).
Par ailleurs, puisque pour tout x ∈ R+, x

2 ⩾ 0 et que la fonction x 7→ x2 est croissante
sur R+, on en déduit que f ′ est croissante sur R donc f est convexe.

Enfin, pour tout x ∈ R, f(x) ⩾ 0 et f(x) = 0 ⇔ x ⩽ 0 donc

l’ensemble des minimiseurs de f estR− =]−∞, 0].

10. (a) Montrons par récurrence que pour tout n ∈ N, 0 < xn <
1

τ
.

•Initialisation : La propriété est vraie au rang n = 0 par hypothèse de l’énoncé.

•Hérédité : Soit n ∈ N fixé. On suppose que 0 < xn <
1

τ
. Montrons que 0 < xn+1 <

1

τ
.

Par définition, on a xn+1 = xn − τf ′(xn).

Par hypothèse de récurrence, xn > 0 donc f ′(xn) = x2
n d’après la question précédente.

Ainsi, xn+1 = xn − τx2
n d’où xn+1 = xn(1− τxn).

Par hypothèse de récurrence, xn <
1

τ
donc 1 − τxn > 0 puis xn(1 − τxn) > 0 donc

xn+1 > 0.

Enfin, puisque τxn > 0, on a 0 < 1− τxn < 1 donc 0 < xn(1− τxn) < xn <
1

τ
d’où

0 < xn+1 <
1

τ
, ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

On a donc bien montré par récurrence que pour tout n ∈ N, 0 < xn <
1

τ
.

On a également vu que pour tout n ∈ N, xn+1 = xn(1− τxn) donc pour tout n ∈ N,

xn+1

xn

= 1− τxn < 1,

ce qui prouve que

la suite (xn)n∈N est décroissante et à valeurs strictement positives.

(b) La suite (xn)n∈N est décroissante et minorée par 0 d’après la question précédente.

D’après le théorème de la limite monotone, la suite (xn)n∈N converge. Notons l sa
limite.
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En passant à la limite dans l’égalité

xn+1 = xn(1− τxn),

on trouve l = l(1− τ l) d’où τ l2 = 0, i.e. l = 0 (puisque τ > 0).

On a donc bien monté que lim
n→+∞

xn = 0.

(c) Soit n ∈ N. On a

1

xn

+
τ

1− τxn

=
1− τxn + τxn

xn(1− τxn)
=

1

xn(1− τxn)

ce qui prouve que pour toutn ∈ N,
1

xn+1

=
1

xn

+
τ

1− τxn

.

Montrons par récurrence que pour tout n ∈ N, xn ⩽
x0

1 + nτx0

.

•Initialisation : Pour n = 0,
x0

1 + nτx0

= x0 ⩾ x0 donc la propriété est vraie au

rang n = 0.

•Hérédité : Soit n ∈ N fixé. Supposons que xn ⩽
x0

1 + nτx0

et montrons que

xn+1 ⩽
x0

1 + (n+ 1)τx0

.

D’après le calcul précédent,

1

xn+1

=
1

xn

+
τ

1− τxn

.

Par hypothèse de récurrence, on a
1

xn

⩾
1 + nτx0

x0

.

Par ailleurs, 1− τxn < 1 car τ > 0 et xn > 0 donc
τ

1− τxn

⩾ τ.

On en déduit que
1

xn+1

⩾
1 + nτx0

x0

+τ =
1 + (n+ 1)τx0

x0

d’où xn+1 ⩽
x0

1 + (n+ 1)τx0

,

ce qui prouve la propriété au rang n+ 1.

D’après le principe de récurrence, on a bien

pour toutn ∈ N, xn ⩽
x0

1 + nτx0

.

11. • Supposons que x0 ⩽ 0.

On a alors x1 = x0 − τf ′(x0). Or, f ′(x0) = 0 puisque x0 ⩽ 0 donc x1 = x0.

Par une récurrence immédiate, on en déduit que pour tout n ∈ N, xn = x0 donc lim
n→+∞

xn =

x0 ∈ R−, qui est un minimiseur de f d’après la question 9.

• Si 0 < x0 <
1

τ
, d’après la question précédente, lim

n→+∞
xn = 0 ∈ R− donc la suite (xn)n∈N

converge vers un minimiseur de f.

• Supposons que x0 ⩾
1

τ
> 0.

Puisque x0 > 0, on a x1 = x0 − τf ′(x0) = x0 − τx2
0 = x0(1− τx0).

Puisque x0 ⩾
1

τ
, 1− τx0 ⩽ 0 donc x1 ⩽ 0.

On est alors ramené au premier cas, et on en déduit que pour tout n ⩾ 1, xn = x1 donc
lim

n→+∞
xn = x1 ∈ R− qui est un minimiseur de f .

Dans tous les cas, la suite (xn)n∈N converge vers un minimiseur de f.
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12. (a) Soit x ∈ R.
La fonction dont la courbe représentative est la tangente à la courbe de f au point
x est y 7→ f ′(x)(y − x) + f(x). Puisque f ∈ C1(R) est convexe, la courbe de f est
située au-dessus de ses tangentes donc

∀(x, y) ∈ R2, f(y) ⩾ f(x) + f ′(x)(y − x).

(b) Soit x ∈ R fixé. Posons pour tout y ∈ R, h(y) = f(x)+f ′(x)(y−x)+
L

2
(y−x)2−f(y).

La fonction h est dérivable sur R car la fonction f l’est et on a pour tout y ∈ R :

h′(y) = f ′(x) + L(y − x)− f ′(y).

Puisque f ′ est L-Lipschitzienne, |f ′(x) − f ′(y)| ⩽ L|x − y|. De plus, f est convexe
donc f ′ est croissante sur R.
Ainsi :

• si x ⩽ y, alors f ′(x) ⩽ f ′(y) et on obtient f ′(y)− f ′(x) ⩽ L(y−x) donc h′(y) ⩾ 0;

• si x ⩾ y, alors f ′(x) ⩾ f ′(y) et on obtient f ′(x)− f ′(y) ⩽ L(x− y) donc h′(y) ⩽ 0.

On en déduit que la fonction h est décroissante sur ]−∞, x] et croissante sur [x,+∞]
donc la fonction h admet un minimum en x.

y

h′(y)

h

−∞ x +∞

− 0 +

00

Ainsi, pour tout y ∈ R, h(y) ⩾ h(0) = 0, ce qui prouve que

pour tous x, y ∈ R, f(y) ⩽ f(x) + f ′(x)(y − x) +
L

2
(y − x)2.

(c) Soit n ∈ N. Appliquons l’inégalité obtenue en question précédente pour x = xn et
y = xn+1.

Dans ce cas, on a y − x = xn+1 − xn = −τf ′(xn) donc

f(xn+1) ⩽ f(xn)+ f ′(xn)(−τf ′(xn))+
L

2
(−τf ′(xn))

2 = f(xn)+ (−τ +
L

2
τ 2)|f ′(xn)|2

donc

pour toutn ∈ N, f(xn+1) ⩽ f(xn)−
τ

2
(2− τL)|f ′(xn)|2.

Ainsi, pour tout n ∈ N, f(xn+1)− f(xn) ⩽ −τ

2
(2− τL)|f ′(xn)|2.

Or, par hypothèse, 0 < τ <
2

L
donc

τ

2
(2− τL) > 0.

On en déduit que −τ

2
(2− τL)|f ′(xn)|2 ⩽ 0 (puisque |f ′(xn)|2 ⩾ 0) donc

pour toutn ∈ N, f(xn+1)− f(xn) ⩽ 0,

ce qui prouve que

la suite (f(xn))n∈N est décroissante.
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13. Soit x ∈ R.
Puisque x∗ est un minimiseur de f, on a f(x) ⩾ f(x∗) donc f(x)− f(x∗) ⩾ 0.

Par ailleurs, d’après la question 12.(a), f(x)− f(x∗) ⩽ f ′(x)(x− x∗).

Puisque f(x)− f(x∗) ⩾ 0, on en déduit que f ′(x)(x− x∗) ⩾ 0 donc

f ′(x)(x− x∗) = |f ′(x)(x− x∗)| = |f ′(x)||x− x∗|.

Finalement, on obtient bien que

pour tout x ∈ R, 0 ⩽ f(x)− f(x∗) ⩽ |x− x∗||f ′(x)|.

14. On suppose x0 ̸= x∗. Soit n ∈ N. D’après la question précédente,

0 ⩽ f(xn)− f(x∗) ⩽ |xn − x∗||f ′(xn)|.
Puisque f ∈ C1(R), que f est convexe, admet un minimiseur x∗, que f

′ est L-Lipschitzienne

et que 0 < τ <
2

L
, on peut appliquer le résultat de la question 2.(c), à savoir que la suite

(|xn − x∗|)n∈N est décroissante donc |xn − x∗| ⩽ |x0 − x∗|.
On en déduit que 0 ⩽ f(xn)− f(x∗) ⩽ |x0 − x∗||f ′(xn)| (puisque |f ′(xn)| ⩾ 0).

Puisque x0 ̸= x∗, on peut diviser par |x0 − x∗| > 0 et on obtient

|f ′(xn)| ⩾
f(xn)− f(x∗)

|x0 − x∗|
⩾ 0.

Par croissance de x 7→ x2 sur R+, on en déduit que |f ′(xn)|2 ⩾
|f(xn)− f(x∗)|2

|x0 − x∗|2
.

Enfin, puisque −τ

2
(2− τL) < 0, on en déduit que

−τ

2
(2− τL)|f ′(xn)|2 ⩽ −τ

2
(2− τL)

|f(xn)− f(x∗)|2

|x0 − x∗|2
.

En injectant cette dernière inégalité dans l’inégalité obtenue en question 12.(c), on trouve

pour toutn ∈ N, f(xn+1) ⩽ f(xn)−
τ

2
(2− τL)

|f(xn)− f(x∗)|2

|x0 − x∗|2
.

15. • Supposons que x0 ̸= x∗.

Puisque la suite (f(xn))n∈N est décroissante et minorée par f(x∗), elle converge d’après
le théorème de la limite monotone vers une limite l.

En passant à la limite dans l’inégalité ci-dessus, on trouve

l ⩽ l − τ

2
(2− τL)

|l − f(x∗)|2

|x0 − x∗|2

d’où |l − f(x∗)|2 ⩽ 0 (puisque
τ

2
(2− τL) > 0).

Or, puisque |l − f(x∗)|2 ⩾ 0, on en déduit que |l − f(x∗)|2 = 0, d’où l = f(x∗).

• Dans le cas où x0 = x∗, la suite (xn)n∈N est constante égale à x∗. En effet, puisque x∗
est un minimiseur de f sur R =]−∞,+∞[ qui est un intervalle ouvert, on a f ′(x∗) = 0
donc x1 = x0 − τf ′(x0) = x∗ − τf ′(x∗) et on a par récurrence immédiate xn = x∗ pour
tout n ∈ N.
Puisque f est continue sur R, on en déduit que lim

n→+∞
f(xn) = f(x∗).

On a donc bien montré que, dans tous les cas,

la suite (f(xn)n∈N converge vers f(x∗).
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