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L’énoncé est constitué de deux problèmes et comporte 6 pages.
Le candidat attachera la plus grande importance à la clarté, la précision et la concision de
la rédaction. Le soin de la copie ainsi que l’orthographe entreront également pour une part
importante dans l’appréciation du travail rendu.
Les résultats doivent être encadrés.
Si un candidat repère ce qui peut lui sembler être une erreur d’énoncé, il le signalera sur sa
copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a été
amené à prendre.
Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au candidat
d’indiquer précisément le numéro de la question utilisée.

Les calculatrices sont interdites.
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Problème 1 : Matrices productives

Partie I : Résultats théoriques

Soit n un entier naturel supérieur ou égal à 2. Pour tout p ∈ N∗, on note Mn,p l’ensemble des
matrices à n lignes et p colonnes à cœfficients réels.
• Pour toute matrice M ∈ Mn,p(R), la notation M ⩾ 0 (respectivement M > 0) signifie que
tous les cœfficients de M sont positifs (respectivement strictement positifs).
On dit alors que M est positive (respectivement strictement positive).
• Pour toutes matrices (M,N) ∈ (Mn,p(R))2, la notation M ⩾ N (respectivement M > N)
signifie que M −N ⩾ 0 (respectivement M −N > 0).

1. Soit B ∈ Mn,n(R).
(a) Soit X ∈ Mn,1(R). Montrer que si B ⩾ 0 et X ⩾ 0, alors on a BX ⩾ 0.

(b) Etablir, réciproquement, que si, pour toute matrice colonne X ∈ Mn,1(R) positive,
on a BX ⩾ 0, alors B est positive.

Si A ∈ Mn,n(R) est une matrice carrée, on dit qu’elle est productive si A est positive et s’il
existe une matrice colonne P ∈ Mn,1(R) positive, telle que P > AP.

Dans les questions 2 à 4, on considère deux matrices A = (ai,j)1⩽i,j⩽n et P =

p1
...
pn

 vérifiant

les conditions de cette définition.

2. Montrer que P > 0.

3. Soit X =

x1
...
xn

 appartenant à Mn,1(R) telle que X ⩾ AX.

On pose c = min

{
xj

pj
, j ∈ J1, nK.

}
.

Soit k ∈ J1, nK tel que c =
xk

pk
.

(a) Etablir que :

c

(
pk −

n∑
j=1

ak,jpj

)
⩾

n∑
j=1

ak,j(xj − cpj).

(b) En déduire que c ⩾ 0 puis que X est positive.

(c) On suppose dorénavant que AX = X.

En utilisant l’inégalité −X ⩾ A(−X), montrer que X = 0 et en déduire que (In−A)
est inversible.

4. (a) Soit X ⩾ 0. Montrer que Y = (In − A)−1X est positive. En déduire que (In − A)−1

est positive.

(b) On considère dans cette question B une matrice carrée positive telle que In−B soit
inversible et d’inverse positive.

Soit V = (In − B)−1U, où U est la matrice colonne dont toutes les composantes
valent 1.

Montrer que V > BV et en déduire que B est productive.

5. Soit A ∈ Mn,n(R). Montrer que les deux assertions suivantes sont équivalentes :

(a) A ∈ Mn,n(R) est productive ;
(b) A ⩾ 0, (In − A) est inversible et (In − A)−1 ⩾ 0.
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6. Montrer que si A est une matrice productive, alors sa transposée AT est également une
matrice productive.

7. Soit A ∈ Mn,n(R) une matrice positive et nilpotente. Montrer que A est productive.

Indication : on pourra utiliser le fait que si A ⩾ 0, alors pour tout k ∈ N, Ak ⩾ 0.

Partie II : Exemples de matrices productives

1. Soit λ ∈ R. A quelle condition sur λ la matrice scalaire λIn est-elle productive ?

Plus généralement, si D =


d1 0 . . . 0

0 d2
. . .

...
...

. . . . . . 0
0 . . . 0 dn

 est une matrice diagonale, à quelle condi-

tion sur les (di)i∈J1,nK la matrice D est-elle productive ?

2. Soit a ∈ R+. Justifier que la matrice A =

(
0 a
0 0

)
est productive et trouver une matrice

colonne P ∈ Mn,1(R) positive telle que P > AP.

3. Montrer que la matrice B =

0 1 0
0 1

2
1
2

1
4

1
2

0

 est productive et trouver une matrice colonne

Q ∈ Mn,1(R) positive telle que Q > BQ.

4. Justifier que la matrice C =

1 2 3
1 0 1
0 0 1

 n’est pas productive.
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Problème 2 : Algorithme de la descente de gradient

Notations

On note C(R) l’ensemble des fonctions continues de R dans R, et C1(R) l’ensemble de celles qui
sont dérivables sur R à dérivée continue.
On dit qu’une fonction g : R → R est L-Lipschitzienne, où L > 0 est un nombre réel, si elle
satisfait

∀x, y ∈ R, |g(x)− g(y)| ⩽ L|x− y|.
On dit qu’une fonction f : R → R est convexe si elle satisfait

∀x, y ∈ R, ∀t ∈ [0, 1], f((1− t)x+ ty) ⩽ (1− t)f(x) + tf(y). (1)

On rappelle qu’une fonction f ∈ C1(R) est convexe si et seulement si sa dérivée f ′ est croissante
sur R.
Dans les parties I, II et III du sujet, la suite (xn)n∈N est toujours définie par la relation de
récurrence

∀n ∈ N, xn+1 := xn − τf ′(xn), (2)

déterminée par un terme initial x0 ∈ R, un pas de temps τ > 0, et une fonction f ∈ C1(R).

Objectif de l’énoncé

L’objet de cette composition est d’établir certaines propriétés de l’algorithme de la descente
de gradient et de ses variantes. Lorsque la fonction f possède de fortes propriétés (convexité,
régularité,...), la suite (xn)n∈N des itérées converge rapidement vers un minimiseur de f. Sous
des hypothèses plus faibles, on peut parfois obtenir une convergence plus lente, ou bien avoir
recours à une variante telle que la descente de gradient implicite. Comprendre le comportement
fin de l’algorithme lorsque f a des propriétés plus faibles (par exemple f non-convexe) fait
l’objet de recherches actuelles, et du champ d’investigation mathématique dit de l’optimisation
numérique, dont les applications sont nombreuses (ingénierie, intelligence artificielle, etc).

A l’exception des préliminaires, toutes les parties sont indépendantes. Ne pas hésiter à admettre
le résultat d’une question pour répondre aux suivantes.

Partie I : Préliminaires

Dans cette partie préliminaire, on établit d’abord l’existence d’un minimiseur, sous des hy-
pothèses adéquates, puis une première propriété des itérées (xn)n∈N de la descente de gradient.

1. Soit f ∈ C(R) telle que

lim
x→−∞

f(x) = +∞ et lim
x→+∞

f(x) = +∞. (3)

Montrer qu’il existe x∗ ∈ R tel que f(x∗) = min{f(x)|x ∈ R}. On dit que x∗ est un
minimiseur de f.

2. On suppose dans cette question que f ∈ C1(R) est convexe, et que f ′ est L-Lipschitzienne,
pour un certain L > 0.

(a) Montrer que pour tous x, y ∈ R

|f ′(x)− f ′(y)|2 ⩽ L(x− y)(f ′(x)− f ′(y))

(b) Soient x, y ∈ R et soient x̃ := x− τf ′(x) et ỹ := y − τf ′(y). Montrer que

|x̃− ỹ|2 ⩽ |x− y|2 − τ(2− τL)(x− y)(f ′(x)− f ′(y)).
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(c) On suppose de plus que f admet un minimiseur x∗, et que 0 < τ ⩽ 2/L. Montrer
que la suite (|xn − x∗|)n∈N est décroissante. (On rappelle que (xn)n∈N satisfait (2).)

Partie II : Convergence rapide, sous des hypothèses fortes

Dans cette partie, on montre que la suite (xn)n∈N définie par l’algorithme de descente de gradient
converge rapidement vers un minimiseur de f, on parle de convergence géométrique, en faisant
des hypothèses fortes sur cette fonction. Commençons par l’étude d’un exemple.

3. Dans cette question seulement, on pose f(x) := 1
2
Lx2 pour tout x ∈ R, où L > 0 est fixé.

(a) Montrer que xn+1 = (1− τL)xn, puis exprimer directement xn en fonction de x0 et
n.

(b) On suppose x0 ̸= 0. Justifier que xn → 0 si et seulement si 0 < τ < 2/L.

Hypothèses : Dans la suite, on se donne f ∈ C1(R) telle que f ′ est L-Lipschitzienne, avec L > 0,
et on fixe τ tel que 0 < τ ⩽ 2/L. On suppose de plus que f est α-convexe, avec α > 0, c’est à
dire que

g(x) := f(x)− 1

2
αx2, est une fonction convexe surR. (4)

4. Justifier que f ′(x)− αx est une fonction croissante de x ∈ R. En déduire que α ⩽ L.

5. Montrer que f(x) ⩾ f(0) + f ′(0)x+ αx2/2 pour tout x ∈ R. En déduire que f admet un
minimiseur sur R.

On note x∗ ∈ R un minimiseur de f, dont l’existence vient d’être établie. Les hypothèses faites
permettent d’établir que les itérées (xn)n∈N de la descente de gradient s’en rapprochent.

6. Montrer que pour tous x, y ∈ R

α|x− y|2 ⩽ (f ′(x)− f ′(y))(x− y).

7. En déduire que pour tous x, y ∈ R, en notant x̃ := x− τf ′(x) et ỹ := y − τf ′(y), on a

|x̃− ỹ|2 ⩽ |x− y|2(1− ατ(2− Lτ)).

8. On suppose 0 < τ < 2/L. Montrer que |xn−x∗| ⩽ ρn|x0−x∗|, où ρ est une constante que
l’on précisera, et telle que 0 ⩽ ρ < 1. En déduire que la suite (xn)n∈N converge vers x∗.

Partie III : Convergence lente, sous des hypothèses faibles

Dans cette partie, on se passe de l’hypothèse très forte (4) utilisée précédemment. On montre
que l’algorithme du gradient converge en valeur, c’est à dire que la suite (f(xn))n∈N tend vers
le minimum f(x∗) de la fonction f. Commençons de nouveau par l’étude d’un exemple :

f(x) :=
1

3
x3 si x ⩾ 0, f(x) := 0 si x < 0.

9. Justifier que f ∈ C1(R) et que f est convexe. Donner l’ensemble de ses minimiseurs.

10. On suppose dans cette question que 0 < x0 < 1/τ.

(a) Justifier que la suite (xn)n∈N, définie par la relation de récurrence (2), est décroissante,
à valeurs strictement positives, et satisfait xn+1 = xn(1− τxn) pour tout n ∈ N.

(b) Justifier que xn → 0 lorsque n → ∞.

(c) Montrer que 1/xn+1 = 1/xn + τ/(1− τxn) pour tout n ∈ N.
En déduire que xn ⩽ x0/(1 + nτx0).
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11. On suppose seulement τ > 0. Montrer que pour tout x0 ∈ R, la suite (xn)n∈N converge
vers un minimiseur de f.

Hypothèses : On se donne dans la suite f ∈ C1(R). On suppose que f est convexe, admet un
minimiseur x∗ ∈ R, et que f ′ est L-Lipschitzienne. On suppose également que 0 < τ < 2/L.

12. (a) Justifier sans démonstration que pour tous x, y ∈ R

f(y) ⩾ f(x) + f ′(x)(y − x).

(b) Montrer que pour tous x, y ∈ R

f(y) ⩽ f(x) + f ′(x)(y − x) +
L

2
(y − x)2.

(c) Etablir que pour tout n ∈ N

f(xn+1) ⩽ f(xn)−
τ

2
(2− τL)|f ′(xn)|2.

En déduire que la suite (f(xn))n∈N est décroissante.

13. Montrer que 0 ⩽ f(x)− f(x∗) ⩽ |x− x∗||f ′(x)| pour tout x ∈ R.
14. Montrer que pour tout n ∈ N, en supposant x0 ̸= x∗,

f(xn+1) ⩽ f(xn)−
τ

2
(2− τL)

|f(xn)− f(x∗)|2

|x0 − x∗|2
.

Indication : utiliser 2.(c)

15. En conclure que quel que soit le choix de x0 ∈ R, la suite (f(xn))n∈N converge vers f(x∗).
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