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Exercice 1. • Si P est le polynôme nul, alors la fonction x 7→ P (x) est à la fois paire et
impaire et tous les cœfficients de P sont nuls.
• On suppose dorénavant que P n’est pas le polynôme nul.

Soit n = deg(P ) ∈ N et P =
n∑

k=0

akX
k, où ∀k ∈ J0, nK, ak ∈ R.

Supposons que x 7→ P (x) est paire, i.e. pour tout réel x, P (x) = P (−x) d’où

∀x ∈ R,
n∑

k=0

akx
k =

n∑
k=0

ak(−x)k =
n∑

k=0

(−1)kakx
k.

Par unicité de l’écriture d’un polynôme, on en déduit que pour tout k ∈ J0, nK, ak = (−1)kak,
ce qui implique que si k est impair, ak = −ak d’où ak = 0.
Ainsi, si x 7→ P (x) est paire, tous les cœfficients d’indice impair de P sont nuls.
Réciproquement, il est clair que si pour tout k impair, ak = 0, alors la fonction x 7→ P (x) est
paire.
L’autre cas se traite de manière analogue.

Exercice 2. • Il est clair que le polynôme nul vérifie la condition voulue.
• Supposons qu’il existe un polynôme P ∈ R[X] non nul tel que pour tout x ∈ R, P (2x) = P (x).

Soit n = deg(P ) ∈ N et P =
n∑

k=0

akX
k, ou ∀k ∈ J0, nK, ak ∈ R.

On a alors

∀x ∈ R, P (2x) = P (x) ⇔ ∀x ∈ R,
n∑

k=0

2kakx
k =

n∑
k=0

akx
k.

Par unicité de l’écriture d’un polynôme, ceci implique que pour tout k ∈ J0, nK, 2kak = ak, i.e.
(2k − 1)ak = 0.
Si k ̸= 0, alors 2k − 1 ̸= 0 donc pour tout k ̸= 0, ak = 0. Ainsi, P = a0 est forcément constant.
• Réciproquement, tous les polynômes constants vérifient bien pour tout réel x, P (2x) = P (x).
Finalement, les polynômes cherchés sont les polynômes constants.

Exercice 3.

1. On a pour tout x ∈ R, P ′(x) = 6x2 − 6 = 6(x− 1)(x+ 1).

La fonction x 7→ P (x) admet donc le tableau de variation suivant :

x

P ′(x)

P

−∞ −1 1 +∞

+ 0 − 0 +

-∞-∞

55

−3−3

+∞+∞

Puisque P est continue, strictement croissante sur ]−∞,−1[ et que 0 ∈ P (]−∞,−1[),
on déduit du théorème des valeurs intermédiaires que P admet une unique racine α ∈
]−∞,−1[.

On montre de même que P admet une unique racine β ∈] − 1, 1[ et une unique racine
γ ∈]1,+∞[.



2. Ainsi, pour tout x ∈ R,

P (x) = 2(x− α)(x− β)(x− γ) = 2x3 − 2(α + β + γ)x2 + 2(αβ + αγ + βγ)x− αβγ.

Par unicité des cœfficients d’un polynôme, on en déduit que α + β + γ = 0 et que
αβγ = −1.

Exercice 4. Soit P un polynôme de R[X] tel que pour tout n ∈ N, P (n) = n2, i.e. pour tout
n ∈ N, P (n)− n2 = 0.
Ainsi, le polynôme P (X)−X2 admet une infinité de racines, ce qui assure que P (X)−X2 = 0,
d’où P (X) = X2.

Exercice 5. Raisonnons par analyse-synthèse.
• Analyse : Soit P ∈ R[X] tel que pour tout x ∈ R, P (x2) = (x2 + 1)P (x).
Si P est constant égal à a ∈ R, alors l’égalité pour x = 1 donne a = 2a d’où a = 0. Ainsi, le
seul polynôme constant à vérifier cette condition est le polynôme nul.

Si P n’est pas un polynôme constant, soit n = deg(P ) ∈ N∗ et P =
n∑

k=0

akx
k.

Pour tout x ∈ R, P (x2) =
n∑

k=0

akx
2k donc le polynôme P (X2) est de degré 2n.

Par ailleurs, le polynôme (X2+1)P (X) est de degré n+2 donc on a nécessairement 2n = n+2
d’où n = 2.
Ainsi, il existe (a, b, c) ∈ R3 tel que pour tout x ∈ R, P (x) = ax2 + bx+ c.
La condition devient donc

∀x ∈ R, ax4+bx2+c = (x2+1)(ax2+bx+c) ⇔ ∀x ∈ R, ax4+bx2+c = ax4+bx3+(a+c)x2+bx+c.

Par unicité des cœfficients d’un polynôme, on obtient :{
b = 0

a+ c = b
⇔

{
b = 0
c = −a

donc pour tout x ∈ R, P (x) = ax2 − a = a(x2 − 1) où a ∈ R.
• Synthèse : Soit a ∈ R, soit P ∈ R[X] tel que P (X) = a(X2 − 1).
Alors (X2 + 1)P (X) = a(X2 + 1)(X2 − 1) = a(X4 − 1) = P (X2).
Finalement, les polynômes cherchés sont les polynômes de la forme P (X) = a(X2 − 1), où
a ∈ R.

Exercice 6. Si P ∈ R[X] est un polynôme constant de période T, alors P (R) = P ([0, T ]).
Puisque P est continu et que [0, T ] est un segment, d’après le théorème des bornes atteintes, on
en déduit que P ([0, T ]) est un segment donc P (R) = P ([0, T ]) est un segment, ce qui implique
que P est borné.
Supposons par l’absurde que P n’est pas constant. Soit n = deg(P ) ∈ N∗.

Alors P (X) =
n∑

k=0

akX
k avec an ̸= 0 et P (x) ∼

+∞
anx

n donc, puisque n ̸= 0,

lim
x→+∞

P (x) =

{
+∞ si an > 0
−∞ si an < 0

,

ce qui contredit le fait que P est borné.
Nécessairement, si P est périodique, alors P est constant.



Exercice 7. • Si Q = 0, on a bien pour tout x ∈ [a, b], P (x)Q(x) = R(x)Q(x).
• On suppose dorénavant que Q ̸= 0. Alors Q s’annule au maximum un nombre fini de fois sur
l’intervalle [a, b]. Notons x1, . . . , xn les racines éventuelles de Q sur l’intervalle [a, b].
On a pour tout x ∈ [a, b], Q(x)(P (x)−R(x)) = 0.
Ainsi, pour tout x ∈ [a, b] \ {x1, . . . , xn}, P (x)−R(x) = 0.
Puisque a < b, l’intervalle [a, b] est infini donc l’ensemble [a, b] \ {x1, . . . , xn} est infini. Ainsi, le
polynôme P − R s’annule une infinité de fois, ce qui implique que P − R est le polynôme nul,
i.e. P = R.

Exercice 8.

1. Soit i ∈ J0, nK.
Construisons un polynôme Li de degré inférieur ou égal à n tel que pour tout j ∈

J0, nK \ {i}, Li(xj) = 0. Alors Li est factorisable par
i∏

j=1
j ̸=i

(X − xj). Puisque ce produit est

de degré n et que deg(Li) ⩽ n, nécessairement Li est de degré n et il existe un réel λ tel

que Li = λ
i∏

j=1
j ̸=i

(X − xj).

Par ailleurs, pour avoir Li(xi) = 1, il vient 1 = λ
i∏

j=1
j ̸=i

(xi−xj). Puisque les réels x0, . . . , xn

sont deux à deux distincts, on a pour tout j ̸= i, xi − xj ̸= 0 donc λ =
i∏

j=1
j ̸=i

1

xi − xj

, ce

qui implique que Li =
i∏

j=1
j ̸=i

X − xj

xi − xj

.

On voit dès lors que le polynôme Li est uniquement déterminé. Montrons-le néanmoins.

Supposons qu’il existe un autre polynôme Ti de degré inférieur ou égal à n tel que
Ti(xi) = 1 et pour tout j ̸= i, Ti(xj) = 0.

Alors pour tout k ∈ J0, nK, (Li − Ti)(xk) = 0.

Or, deg(Li − Ti) ⩽ max(deg(Li), deg(Ti)) ⩽ n donc Li − Ti est un polynôme de degré
inférieur ou égal à n admettant n + 1 racines distinctes. Nécessairement, Li − Ti = 0,
i.e. Li = Ti, ce qui assure l’unicité du polynôme Li.

2. • Existence :

Posons L =
n∑

k=0

akLk. Pusique pour tout k ∈ J0, nK, deg(Lk) ⩽ n, alors deg(L) ⩽ n.

De plus, pour tout i ∈ J0, nK, L(xi) =
n∑

k=0

akLk(xi) =
n∑

k=0

akδi,k = ai.

Le polynôme L convient donc.

• Unicité :

Supposons qu’il existe un autre polynôme T ∈ R[X] avec deg(T ) ⩽ n tel que pour tout
i ∈ J0, nK, T (xi) = ai. Alors pour tout i ∈ J0, nK, (L − T )(xi) = 0 donc L − T est un
polynôme de degré inférieur ou égal à n admettant n + 1 racines, ce qui prouve que
L− T = 0, i.e. L = T.



Le polynôme L =
n∑

k=0

akLk est donc bien l’unique polynôme de degré inférieur ou égal à

n tel que pour tout i ∈ J0, nK, L(xi) = ai.

Exercice 9.
On vérifie aisément que P (1) = 0 donc P est factorisable par X − 1 et on a

P = (X − 1)(X4 − 2X3 −X + 2).

De même, 1 est racine du polynôme X4 − 2X3 −X +2 donc on peut de nouveau factoriser par
X − 1 :

P = (X − 1)(X − 1)(X3 −X2 −X − 2).

On remarque que 2 est racine du polynôme X3 −X2 −X − 2 donc

P = (X − 1)2(X − 2)(X2 +X + 1).

Enfin, les racines de X2 +X + 1 sont j = e
2iπ
3 = −1

2
+ i

√
3
2

et j = e−
2iπ
3 = −1

2
− i

√
3
2

donc

P = (X − 1)2(X − 2)(X − j)(X − j).

Exercice 10. Soit P : x 7→ axn+1 + bxn + 1. Le polynôme P admet 1 comme racine double si
et seulement si P (1) = P ′(1) = 0 et P ′′(1) ̸= 0.
On a pour tout x ∈ R, P ′(x) = (n+ 1)axn + nbxn−1 et P ′′(x) = n(n+ 1)axn−1 + n(n− 1)bxn−2

si n ̸= 1 et P ′′(x) = 2a si n ̸= 1.

• Si n = 1, 1 est racine double de P si et seulement si


a+ b+ 1 = 0
2a+ b = 0
2a ̸= 0

⇔
{

a = 1
b = −2

Pour n = 1, a = 1 et b = −2 on a bien P (X) = X2 − 2X + 1 = (X − 1)2.

• Si n > 1, 1 est racine double de P si et seulement si


a+ b+ 1 = 0

(n+ 1)a+ nb = 0
n(n+ 1)a+ n(n− 1)b ̸= 0

⇔
a = n
b = −n− 1

n2(n+ 1)− n(n− 1)(n+ 1) ̸= 0
⇔


a = n
b = −n− 1

n(n+ 1) ̸= 0
Finalement, pour tout n ∈ N∗, l’unique polynôme qui satisfait la condition voulue est

P (X) = nXn+1 − (n+ 1)Xn + 1.

Exercice 11.

1. Soit α une racine multiple de P. Alors P (α) = P ′(α) = 0.

Or, P ′(X) = 12X2 − 32X − 19 = 12(X + 1
2
)(X − 19

6
).

On constate que α = −1
2
est racine de P ′ et de P donc −1

2
est racine double de P. Ainsi,

P est factorisable par 4(X + 1
2
)2 = (2X + 1)2.

On obtient :

P (X) = (2X + 1)(2X2 − 9X − 5) = (2X + 1)2(X − 5).

Les racines de P sont donc −1
2
(racine double) et 5 (racine simple).

2. On constate que −1 est racine de R donc

R(X) = (X + 1)(X2 − 8X + 15) = (X + 1)(X − 3)(X − 5).

Les racines de R sont donc −1, 3 et 5.

On constate que 3 est racine de Q donc

Q(X) = (X − 3)(X2 − 6X + 8) = (X − 3)(X − 4)(X − 2).

Les racines de Q sont donc 2, 3 et 4.



Exercice 12.

1. Soit n ∈ N∗ (si n = 0, P0 = 1). Supposons par l’absurde que Pn admette une racine
multiple α.

Alors Pn(α) = P ′
n(α) = 0. Or, P ′

n = Pn−1 donc Pn(α) = Pn−1(α) = 0.

On en déduit que Pn(α) − Pn−1(α) = 0. Or, Pn − Pn−1 =
Xn

n!
donc

αn

n!
= 0, ce qui

implique que α = 0. Mais, pour tout n ∈ N, Pn(0) = 1 ̸= 0.

Ainsi, Pn n’admet pas de racine multiple.

2. Notons que pour tout x ∈ R+, Pn(x) ⩾ 1 > 0 donc les racines éventuelles de Pn sont
strictement négatives.

Montrons par récurrence sur n ∈ N le résultat suivant : P2n n’admet pas de racine réelle
et P2n+1 admet une unique racine réelle.

•Initialisation : Pour n = 0, P0 = 1 n’admet pas de racine réelle et P1 = 1 +X admet
une seule racine réelle : −1.

•Hérédité : Soit n ∈ N. Supposons la propriété vraie au rang n et montrons-la au rang
n+ 1.

Montrons que P2n+2 n’admet pas de racine réelle.

On a pour tout x ∈ R, P ′
2n+2(x) = P2n+1(x). Par hypothèse de récurrence, P2n+1 admet

une unique racine réelle α < 0.

Par ailleurs, on a lim
x→−∞

P2n+1(x) = −∞, lim
x→+∞

P2n+1(x) = +∞, et lim
x→±∞

P2n+2(x) =

+∞, ce qui nous fournit le tableau de variation suivant :

x

P2n+1(x)

P2n+2

−∞ α +∞

− 0 +

+∞+∞

P2n+2(α)P2n+2(α)

+∞+∞

Or, P2n+2(α) = P2n+1(α)+
α2n+2

(2n+ 2)!
=

α2n+2

(2n+ 2)!
> 0 car α < 0. On en déduit que P2n+2

n’admet pas de racine réelle et que pour tout x ∈ R, P2n+2 > 0.

Il s’ensuit que pour tout x ∈ R, P ′
2n+3(x) = P2n+2(x) > 0 donc la fonction x 7→

P2n+3(x) est strictement croissante et continue sur R avec lim
x→−∞

P2n+3(x) = −∞ et

lim
x→+∞

P2n+3(x) = +∞.

D’après le théorème de la bijection, P2n+3 réalise une bijection de R sur R et a fortiori,
P2n+3 s’annule une seule fois.

On a donc bien montré par récurrence que pour tout n ∈ N, P2n n’admet pas de racine
réelle et P2n+1 admet une unique racine réelle.

Exercice 13.

1. Supposons que P est scindé à racines simples, i.e. P = a

p∏
k=1

(X − xk), où p = deg(P ).

Quitte à renuméroter les xk, on peut supposer que x1 < · · · < xp.

Pour tout k ∈ J1, p− 1K, P est continu sur [xk, xk+1], dérivable sur ]xk, xk+1[ et P (xk) =
P (xk+1) = 0.

D’après le théorème de Rolle, il existe un réel αk ∈]xk, xk+1[ tel que P ′(αk) = 0.

Ainsi, P ′ admet p − 1 racines distinctes α1 < · · · < αp−1 et est de degré p − 1. On en
déduit que P ′ est bien scindé à racines simples.



Remarque : le résultat n’est plus vrai sur C[X].

Le polynôme P (X) = X3− 1 = (X− 1)(X− j)(X− j) est scindé à racines simples mais
son polynôme dérivé P ′(X) = 3X2 ne l’est pas (0 est racine double).

2. Supposons que P est scindé, i.e. P = a

p∏
k=1

(X − xk)
mk , avec x1 < · · · < xp et pour tout

k ∈ J1, pK,mk ∈ N∗. On a alors deg(P ) =

p∑
k=1

mk donc deg(P ′) =

p∑
k=1

mk − 1.

La même preuve que celle en question précédente montre que P ′ admet p − 1 racines
distinctes α1 < · · · < αp−1 telles que pour tout k ∈ J1, p− 1K, αk ∈]xk, xk+1[.

Par ailleurs, pour tout k ∈ J1, pK, puisque xk est racine de P d’ordre mk, alors xk est
racine de P ′ d’ordre mk − 1 (avec éventuellement mk − 1 = 0).

Ainsi, P ′ est divisible par

p−1∏
k=1

(X − αk)

p∏
k=1

(X − xk)
mk−1. Or, ce dernier polynôme est de

degré p− 1 +

p∑
k=1

(mk − 1) =

p∑
k=1

mk − p+ p− 1 =

p∑
k=1

mk − 1 = deg(P ′).

Par égalité des degrés, on en déduit qu’il existe une constance c ∈ R∗ telle que

P ′ = c

p−1∏
k=1

(X − αk)

p∏
k=1

(X − xk)
mk−1,

ce qui prouve que P ′ est scindé.

Remarque : Cette question n’a pas d’intérêt sur C[X] car tout polynôme de degré ⩾ 1
y est scindé (théorème de d’Alembert-Gauss).

Exercice 14. • Si P = 0, alors P ′ = 0 divise P.
• Si P est un polynôme constant non nul, alors P ′ = 0 ne divise pas P.
• Supposons désormais que P est un polynôme de degré n ∈ N∗ tel que P ′ divise P. Puisque
P ′ est de degré n− 1 ∈ N, il existe deux réels λ et a tels que P (X) = λ(X − a)P ′(X).
▷ 1ère méthode : D’après la formule de Taylor, on a

P (X) =
n∑

k=0

P (k)(a)

k!
(X − a)k

et

P ′(X) =
n−1∑
k=0

P ′(k)(a)

k!
(X − a)k =

n−1∑
k=0

P (k+1)(a)

k!
(X − a)k.

On a alors

P (X) = λ(X − a)P ′(X) ⇔
n∑

k=0

P (k)(a)

k!
(X − a)k = λ

n−1∑
k=0

P (k+1)(a)

k!
(X − a)k+1

⇔
n∑

k=0

P (k)(a)

k!
(X − a)k = λ

n∑
k=1

P (k)(a)

(k − 1)!
(X − a)k

⇔ P (a) +
n∑

k=1

P (k)(a)

(k − 1)!

(
1

k
− λ

)
(X − a)k = 0.

Par unicité des cœfficients du polynôme nul, tous les cœfficients sont nuls, en particulier le

cœfficient dominant, qui est
P (n)(a)

(n− 1)!

(
1
n
− λ

)
. Or, le polynôme P (n) est une constante non

nulle puisque P est de degré n, donc P (n)(a) ̸= 0. Nécessairement, cela implique que λ =
1

n
.



Il reste alors P (a) +
n−1∑
k=1

P (k)(a)

(k − 1)!

(
1

k
− 1

n

)
(X − a)k = 0.

En raisonnant de même, le cœfficient dominant de ce polynôme est nul, i.e.
P (n−1)(a)

(n− 1)!

(
1

n−1
− 1

n

)
=

0, donc P (n−1)(a) = 0 et par récurrence descendante, on obtient que pour tout k ∈ J0, n −
1K, P (k)(a) = 0.

Finalement P (X) =
P (n)(a)

n!
(X − a)n, c’est à dire P est de la forme P = c(X − a)n, où c ∈ R∗.

▷ 2ème méthode : D’après la formule de Leibniz, pour tout k ∈ J0, nK, on a

P (k) =
k∑

i=0

(
k

i

)
(λ(X − a))(i)︸ ︷︷ ︸

=0 si i>1

P ′(k−i) = λ(X − a)P (k+1) + kλP (k).

En évaluant en a, on obtient pour tout k ∈ J0, nK, P (k)(a) = kλP (k)(a) d’où P (k)(a)(kλ−1) = 0,
i.e. P (k)(a) = 0 ou kλ = 1.

Puisque P (n) est un polynôme constant non nul, on a P (n)(a) ̸= 0 donc nλ = 1, i.e. λ =
1

n
. Il

s’ensuit que pour tout k ∈ J0, n− 1K, kλ =
k

n
̸= 1 donc P (k)(a) = 0.

Ainsi, pour tout k ∈ J0, n−1K, P (k)(a) = 0 et P (n)(a) ̸= 0. Par caractérisation de la multiplicité
d’une racine, on en déduit que a est une racine de P d’ordre n, donc P est de la forme P =
c(X − a)n, où c ∈ R.
• Réciproquement, si P est de la forme P = c(X − a)n, où a et c sont deux réels avec c ∈ R∗

et n ⩾ 1, alors P ′ = nc(X − a)n−1 et P =
1

n
(X − a)P ′ donc P ′ divise bien P.

Finalement, les polynômes de R[X] divisibles par leur polynôme dérivé sont les polynômes de
la forme P = c(X − a)n où (a, c, n) ∈ R× R× N∗ (si c = 0, on retrouve le polynôme nul).

Exercice 15. Par hypothèse, il existe deux polynômes Q et R tels que

P = (X − a)Q+ 1 = (X − b)R− 1.

Ceci implique que P (a) = 1 et P (b) = −1.
La division euclidienne de P par (X−a)(X− b) s’écrit P (X) = (X−a)(X− b)S(X)+αX+β,
où S ∈ R[X] et (α, β) ∈ R2.
En évaluant cette dernière égalité en a et en b, on trouve P (a) = αa+ β et P (b) = αb+ β d’où{

αa+ β = 1
αb+ β = −1

⇔
{

α = 2
a−b

β = 1− 2a
a−b

= −a+b
a−b

,

ce qui est possible car a ̸= b.

Finalement, le reste dans la division euclidienne de P par (X−a)(X−b) est
1

a− b
(2X−a−b).

Exercice 16. Notons Q =
∑
k∈N

P (k) =

deg(P )∑
k=0

P (k), qui est également un polynôme de même

degré que P.
• Si deg(P ) = 0, le résultat est évident car alors Q = P.
• On suppose dorénavant que deg(P ) ⩾ 1. Notons n = deg(P ) ⩾ 1 et an le cœfficient dominant
de P. On a alors P (x) ∼

±∞
anx

n. L’hypothèse implique donc que an > 0 (et que n est pair pour

que lim
x→−∞

anx
n = +∞).



Par ailleurs, on a également Q(x) ∼
±∞

anx
n donc lim

x→±∞
Q(x) = +∞.

Ainsi, d’après un exercice vu dans le TD sur les limites et la continuité, puisque Q est une
fonction continue sur R, il en découle que Q admet un minimum sur R, atteint en un réel α.
Puisque c’est un minimum global sur R, on en déduit que Q′(α) = 0.
Or, Q′ = Q − P donc 0 = Q′(α) = Q(α) − P (α), ce qui implique que Q(α) = P (α) ⩾ 0 par
hypothèse.
On en conclut que pour tout x ∈ R, Q(x) ⩾ Q(α) ⩾ 0.

Exercice 17. Soit α ∈ C. Montrons qu’il existe z ∈ C tel que P (z) = α.
Posons Q = P − α. Puisque P n’est pas constant, le polynôme Q ∈ C[X] n’est pas constant.
D’après le théorème de d’Alembert-Gauss, il existe z ∈ C tel que Q(z) = 0, i.e. P (z) = α.
On a donc bien montré que P : C → C est surjective.

Exercice 18. • Supposons que P est scindé sur R, i.e. il existe des réels (x1, . . . , xn) ∈ Rn et
un réel non nul λ tel que

P = λ
n∏

k=1

(X − xk)

où les (xk)1⩽k⩽n sont les racines de P (éventuellement confondues).
Pour tout z ∈ C, on a alors

|P (z)| = |λ|
n∏

k=1

|z − xk| ⩾ |λ|
n∏

k=1

|Im(z − xk︸︷︷︸
∈R

)| = |λ|
n∏

k=1

|Im(z)| = c|Im(z)|n

où c = |λ| ∈ R∗
+.

• Réciproquement, supposons qu’il existe c ∈ R∗
+ tel que pour tout z ∈ C, |P (z)| ⩾ c|Im(z)|n.

Montrons que P est scindé sur R.
Puisque P est scindé dans C[X], il suffit de montrer que toutes les racines de P sont réelles.
Soit α ∈ C tel que P (α) = 0. D’après l’hypothèse, on a

0 = |P (α)| ⩾ c|Im(α)|n

donc Im(α) = 0, ce qui prouve que α ∈ R.
Ainsi, toutes les racines de P sont réelles donc P est scindé sur R.

Exercice 19. On cherche des réels (a0, . . . , an) ∈ Rn tels que P =
n∑

k=0

ak
X + k

.

Soit i ∈ J0, nK.

On a (X + i)P =
n!

n∏
k=0
k ̸=i

(X + k)

= ai +
n∑

k=0
k ̸=i

ak(X + i)

X + k
.

En évaluant cette dernière égalité en X = −i, on trouve

ai =
n!

n∏
k=0
k ̸=i

(k − i)

=
n!

(−1)i
i−1∏
k=0

(i− k)
n∏

k=i+1

(k − i)

= (−1)i
n!

i!(n− i)!
= (−1)i

(
n

i

)

donc P =
n∑

k=0

(−1)k
(
n
k

)
X + k

.



Exercice 20. On effectue des divisions euclidiennes successives de A = X11 parB = X2+X+1.
On trouve

A = BQ1 +R1 avec Q1 = X9 −X8 +X6 −X5 +X3 −X2 + 1 et R1 = −X − 1,

Q1 = BQ2+R2 avec Q2 = X7−2X6+X5+2X4−4X3+2X2+3X−6 et R2 = 3X+7,

Q2 = BQ3 +R3 avec Q3 = X5 − 3X4 + 3X3 + 2X2 − 9X + 9 et R3 = 3X − 15,

Q3 = BQ4 +R4 avec Q4 = X3 − 4X2 + 6X et R4 = −15X + 9.

Il en découle A = R1 +BR2 +B2R3 +B3R4 +B4Q4.
Ainsi,

X11

(X2 +X + 1)4)
=

A

B4
= Q4 +

R1

B4
+

R2

B3
+

R3

B2
+

R4

B

d’où

X11

(X2 +X + 1)4)
= X3−4X2+6X− X + 1

(X2 +X + 1)4
+

3X + 7

(X2 +X + 1)3
+

3X − 15

(X2 +X + 1)2
− 15X − 9

X2 +X + 1
.


