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ANNEE 2025-2026 A. PANETTA

Corrigé de la liste d’exercices n°16 Polynomes

Exercice 1. e Si P est le polynome nul, alors la fonction z — P(z) est a la fois paire et
impaire et tous les ceefficients de P sont nuls.
e On suppose dorénavant que P n’est pas le polynome nul.

Soit n = deg(P) e Net P = Zaka, ou Vk € [0,n], ax € R.
k=0
Supposons que x — P(z) est paire, i.e. pour tout réel z, P(z) = P(—z) d’ou

Vr € R, iakmk = Zak(—x)k = Z(—l)kakxk.
k=0

k=0 k=0

Par unicité de 1’écriture d’un polynome, on en déduit que pour tout k € [0,n], ar = (—1)%ay,
ce qui implique que si k est impair, ap = —ay d’ou a; = 0.

Ainsi, si x — P(z) est paire, tous les coefficients d’indice impair de P sont nuls.
Réciproquement, il est clair que si pour tout k impair, a; = 0, alors la fonction x — P(z) est
paire.

L’autre cas se traite de maniere analogue.

Exercice 2. e Il est clair que le polynoéme nul vérifie la condition voulue.
e Supposons qu’il existe un polynéme P € R[X] non nul tel que pour tout x € R, P(2z) = P(x).

Soit n = deg(P) e Net P = Zaka, ou Yk € [0,n],ax € R.
k=0
On a alors . .
Vr € R, P(2x) = P(x) & Vx € R, ZQkakxk = Z apx”.
k=0 k=0
Par unicité de I’écriture d'un polynome, ceci implique que pour tout k € [0,n], 2%a, = ax, i.e.
(28 = 1)ay = 0.
Si k # 0, alors 2¥ — 1 # 0 donc pour tout k& # 0, a;, = 0. Ainsi, P = ag est forcément constant.
e Réciproquement, tous les polynémes constants vérifient bien pour tout réel x, P(2z) = P(z).
Finalement, les polyndémes cherchés sont les polynoémes constants.

Exercice 3.
1. On a pour tout z € R, P'(x) = 62> — 6 = 6(z — 1)(z + 1).
La fonction z — P(x) admet donc le tableau de variation suivant :

T —00 —1 1 +0o0
P'(x) + 0 — 0 +
5 400

Puisque P est continue, strictement croissante sur | — oo, —1[ et que 0 € P(] — oo, —1]),
on déduit du théoreme des valeurs intermédiaires que P admet une unique racine a €
| — o0, —1].
On montre de méme que P admet une unique racine § €] — 1,1 et une unique racine
v €]1, o0l



2. Ainsi, pour tout z € R,
P(z) = 2(z — a)(z — B)(z — ) = 22° = 2(a + B +7)2° + 2(af + ay + )z — apy.

Par unicité des ccefficients d'un polynome, on en déduit que o« + 8 + v = 0 et que
afy = —1.

Exercice 4. Soit P un polynéme de R[X] tel que pour tout n € N, P(n) = n?, i.e. pour tout

n €N, P(n) —n?=0.
Ainsi, le polynome P(X)— X? admet une infinité de racines, ce qui assure que P(X) — X? = 0,
don P(X) = X2,

Exercice 5. Raisonnons par analyse-synthese.

e Analyse : Soit P € R[X] tel que pour tout z € R, P(z?) = (z* + 1) P(x).

Si P est constant égal a a € R, alors 1’égalité pour z = 1 donne a = 2a d’ou a = 0. Ainsi, le
seul polynome constant a vérifier cette condition est le polynome nul.

Si P n’est pas un polynome constant, soit n = deg(P) € N* et P = Z apxk.
k=0

Pour tout z € R, P(z?) = Z axz®* donc le polynome P(X?) est de degré 2n.
k=0
Par ailleurs, le polynome (X2 +1)P(X) est de degré n+ 2 donc on a nécessairement 2n = n + 2
d’ou n = 2.
Ainsi, il existe (a, b, c) € R3 tel que pour tout = € R, P(z) = az® + bz + c.
La condition devient donc

Vo € R, az*+br?+c = (22 +1)(ax’+br+c) & Vo € R, ax*+bx’+c = ar* +bx*+(a+c) v +br+c.

Par unicité des coefficients d'un polynoéme, on obtient :

b =0 b = 0
{a+c = b <:>{c = —a
donc pour tout x € R, P(x) = az®* —a =a(z* — 1) o a € R.
e Synthese : Soit a € R, soit P € R[X] tel que P(X) = a(X? —1).
Alors (X2 + 1)P(X) =a(X2+1)(X2—1) =a(X* - 1) = P(X?).
Finalement, les polynomes cherchés sont les polynomes de la forme P(X) = a(X? — 1), ou
a € R.

Exercice 6. Si P € R[X] est un polynome constant de période 7', alors P(R) = P([0,7]).
Puisque P est continu et que [0, 7] est un segment, d’apres le théoréme des bornes atteintes, on
en déduit que P([0,77]) est un segment donc P(R) = P([0,77]) est un segment, ce qui implique
que P est borné.

Supposons par l'absurde que P n’est pas constant. Soit n = deg(P) € N*.

Alors P(X) = Z ar X" avec a, # 0 et P(z) o~ a,x"™ done, puisque n # 0,
k=0

lim P(x)=

T—r+00

400 sia, >0
—00 sia, <0’

ce qui contredit le fait que P est borné.
Nécessairement, si P est périodique, alors P est constant.



Exercice 7. e Si (Q =0, on a bien pour tout x € [a,b], P(2)Q(z) = R(z)Q(x).

e On suppose dorénavant que Q # 0. Alors ) s’annule au maximum un nombre fini de fois sur
I'intervalle [a, b]. Notons z1, ..., x, les racines éventuelles de @) sur 'intervalle [a, b].

On a pour tout z € [a,b], Q(z)(P(x) — R(x)) = 0.

Ainsi, pour tout = € [a,b] \ {z1,...,2,}, P(x) — R(x) = 0.

Puisque a < b, 'intervalle [a, b] est infini donc I'ensemble [a, b] \ {21, ..., 2, } est infini. Ainsi, le
polynome P — R s’annule une infinité de fois, ce qui implique que P — R est le polynéme nul,

i.e. P =R.

Exercice 8.
1. Soit i € [0, n].

Construisons un polynome L; de degré inférieur ou égal a n tel que pour tout j €
i

[0,n] \ {i}, Li(z;) = 0. Alors L; est factorisable par H(X — ;). Puisque ce produit est
=1
7

de degré n et que deg(L;) < n, nécessairement L; est de degré n et il existe un réel A tel

que L; = /\H(X — ;).

j=1
J#i
i
Par ailleurs, pour avoir L;(z;) = 1, il vient 1 = A I_I(xZ — ;). Puisque les réels o, . .., z,
j=1
J#i
Lo
sont deux a deux distincts, on a pour tout j # ¢,2; — x; # 0 donc A = H , ce
; r; — .CC]'
7=1
‘ J#1
(2
X —x;
qui implique que L; = H =
=1 €Tr; — Ij
J#i

On voit des lors que le polynome L; est uniquement déterminé. Montrons-le néanmoins.
Supposons qu’il existe un autre polynome T; de degré inférieur ou égal a n tel que
T;(z;) =1 et pour tout j # i, T;(z;) = 0.

Alors pour tout k € [0,n], (L; — T;)(zx) = 0.

Or, deg(L; — T;) < max(deg(L;),deg(T;)) < n donc L; — T; est un polynome de degré
inférieur ou égal a n admettant n + 1 racines distinctes. Nécessairement, L; — T; = 0,
i.e. L; =T;, ce qui assure I'unicité du polynome L;.

2. o Existence :

Posons L = Z ay L. Pusique pour tout k € [0, n], deg(Ly) < n, alors deg(L) < n.

k=0
n n

De plus, pour tout ¢ € [0,n], L(z;) = Z ap Ly (z;) = Z a0 ) = a.

k=0 k=0
Le polynome L convient donc.
e Unicité :
Supposons qu’il existe un autre polynéme 7' € R[X] avec deg(7T) < n tel que pour tout
i € [0,n],T(x;) = a;. Alors pour tout ¢ € [0,n],(L —T)(x;) = 0 donc L — T est un
polynome de degré inférieur ou égal a n admettant n + 1 racines, ce qui prouve que
L-T=0ic L=T.



Le polynome L = Z ay Ly est donc bien 'unique polynoéme de degré inférieur ou égal a
k=0
n tel que pour tout i € [0,n], L(x;) = a;.
Exercice 9.
On vérifie aisément que P(1) = 0 donc P est factorisable par X — 1 et on a
P=(X-1)(X*"-2X®-X +2).

De méme, 1 est racine du polynéome X* —2X? — X + 2 donc on peut de nouveau factoriser par
X—1:

P=(X-1D(X-1(X*-X*-X-2).
On remarque que 2 est racine du polynéme X3 — X? — X — 2 donc
P=(X-1*X-2)(X?+X+1).

Enfin, les racines de X? + X + 1 sont j = e = —% + z*/Tg et j = e~ 5 = —% — z‘/Tg donc

P=(X 12X —2)(X - ))(X - 7).

Exercice 10. Soit P : x + ax™"! + bz"™ + 1. Le polyndome P admet 1 comme racine double si
et seulement si P(1) = P'(1) =0 et P"(1) # 0.

On a pour tout z € R, P'(z) = (n+ 1)az™ +nbz" ! et P"(z) = n(n+ 1)az" ' +n(n —1)bz" 2
sin#1let P'(x)=2asin#1.

a+b+1 = 0 _
e Sin = 1,1 est racine double de P si et seulement si 2a+b = 0 @{ ¢~
b = -2
2a # 0
Pour n=1,a=1et b= —2on a bien P(X) = X2 -2X +1= (X —1)%
a+b+1 =0
e Sin > 1,1 est racine double de P si et seulement si (n+1)a + nb = 0 &
n(n+la+nn—1b # 0
a = n a = n
b = —n—-1 & b = —n-—1
n*(n+1)—nn—-1mn+1) # 0 nn+1) # 0

Finalement, pour tout n € N*, 'unique polynome qui satisfait la condition voulue est
P(X)=nX""" — (n+1)X" + 1.
Exercice 11.
1. Soit a une racine multiple de P. Alors P(a) = P'(«) = 0.

Or, P/(X)=12X%—32X — 19 = 12(X + §)(X — 2).

On constate que a = —% est racine de P’ et de P donc —% est racine double de P. Ainsi,
P est factorisable par 4(X + $)? = (2X + 1)%
On obtient :

P(X)=(2X +1)(2X? - 9X —5) = (2X + 1)*(X —5).
Les racines de P sont donc —3 (racine double) et 5 (racine simple).
2. On constate que —1 est racine de R donc

R(X)=(X+1)(X*-8X+15) = (X +1)(X — 3)(X —5).

Les racines de R sont donc —1, 3 et 5.
On constate que 3 est racine de () donc

Q(X) = (X —3)(X?=6X +8) = (X —3)(X —4)(X —2).

Les racines de () sont donc 2,3 et 4.



Exercice 12.

1. Soit n € N* (si n = 0, Py = 1). Supposons par 'absurde que P, admette une racine

multiple .

Alors P,(a) = P/(a) =0. Or, P! = P, donc P,(a) = P,_1(a) = 0.
X'fl n

On en déduit que P,(o) — P,—1(a) = 0. Or, P, — P,y = — donc a_' = 0, ce qui
n! n!

implique que o = 0. Mais, pour tout n € N, P,(0) =1 # 0.
Ainsi, P, n’admet pas de racine multiple.

2. Notons que pour tout z € Ry, P,(z) > 1 > 0 donc les racines éventuelles de P, sont
strictement négatives.

Montrons par récurrence sur n € N le résultat suivant : P, n’admet pas de racine réelle
et P,11 admet une unique racine réelle.

elnitialisation : Pour n = 0, By = 1 n’admet pas de racine réelle et P, =1+ X admet
une seule racine réelle : —1.

eHérédité : Soit n € N. Supposons la propriété vraie au rang n et montrons-la au rang
n+ 1.

Montrons que P, n’admet pas de racine réelle.

On a pour tout € R, Py, »(x) = Pony1(2). Par hypothese de récurrence, Py,11 admet
une unique racine réelle o < 0.

Par ailleurs, on a lim Py, 1(z) = —o0, hIJ{l Py iq(z) = +oo, et lirf Pyia(x) =
Tr——00 T—>+00 T—>T00
400, ce qui nous fournit le tableau de variation suivant :
x —00 o +00
P2n+1<x> - 0 +
+00 400
Popio I —
Popia(a)
2 +2 o2 +2
Or, Py, io(a0) = Popyq () + = > 0 car a < 0. On en déduit que Py, 42

(2n+2)!  (2n+2)!
n’admet pas de racine réelle et que pour tout x € R, Py, 10 > 0.

Il s’ensuit que pour tout z € R, P  s(x) = Poqo(x) > 0 donc la fonction z +—
Py,.3(x) est strictement croissante et continue sur R avec lim Py, 3(x) = —oc0 et
T——00

L, Fonssl) = oo

D’apres le théoreme de la bijection, P;, 3 réalise une bijection de R sur R et a fortiori,
Py, 5 s’annule une seule fois.

On a donc bien montré par récurrence que pour tout n € N, P, n’admet pas de racine
réelle et Py, 1 admet une unique racine réelle.

Exercice 13.
p
1. Supposons que P est scindé a racines simples, i.e. P = a H(X — xy,), ou p = deg(P).
k=1

Quitte a renuméroter les x, on peut supposer que x; < --- < ).

Pour tout k € [1,p — 1], P est continu sur [xy, x|, dérivable sur |z, 1] et P(xg) =
P(l’k_H) =0.

D’apres le théoreme de Rolle, il existe un réel oy €]y, xg11] tel que P'(ay) = 0.

Ainsi, P’ admet p — 1 racines distinctes oy < -+ < o_1 et est de degré p — 1. On en
déduit que P’ est bien scindé a racines simples.



Remarque : le résultat n’est plus vrai sur C[X].

Le polynome P(X) = X3 —1= (X —1)(X — j)(X — ) est scindé & racines simples mais
son polynome dérivé P'(X) = 3X2 ne l'est pas (0 est racine double).

p
2. Supposons que P est scindé, i.e. P = aH(X — x)™, avec 11 < -+ < x, et pour tout

k=1
P P
k € [1,p], mx € N*. On a alors deg(P) = ka donc deg(P') = ka —1.
k=1 k=1

La méme preuve que celle en question précédente montre que P’ admet p — 1 racines
distinctes oy < -+ < a,—1 telles que pour tout k € [1,p — 1], ap €]zg, T

Par ailleurs, pour tout k& € [1, p], puisque z; est racine de P d’ordre my, alors zj est
racine de P’ d’ordre my, — 1 (avec éventuellement my — 1 = 0).

p—1 P
Ainsi, P’ est divisible par H(X — ag) H(X — 23,)™ . Or, ce dernier polynome est de
k=1 k=1
p p p
degrép—l—i—Z(mk —-1)= ka—p+p— 1= ka— 1 = deg(P").
k=1 k=1 k=1
Par égalité des degrés, on en déduit qu’il existe une constance ¢ € R* telle que
p—1
P = CH(X — ) H(X — xp)™
k=1 k=1

ce qui prouve que P’ est scindé.
Remarque : Cette question n’a pas d’intérét sur C[X] car tout polynéme de degré > 1
y est scindé (théoreme de d’Alembert-Gauss).

Exercice 14. e Si P =0, alors P’ = 0 divise P.
e Si P est un polyndéme constant non nul, alors P’ = 0 ne divise pas P.
e Supposons désormais que P est un polynome de degré n € N* tel que P’ divise P. Puisque
P’ est de degré n — 1 € N, il existe deux réels A et a tels que P(X) = AM(X — a)P'(X).
> lere méthode : D’apres la formule de Taylor, on a
" P®)(q
P =Y

k=0

et )
) — P'®)(a)
P(X):Z o

k=0 k=0

On a alors

"1 (i:(k—)(?))! (% - A) (X —a)f =0.

$
i
=
[

Par unicité des coefficients du polynome nul, tous les ccefficients sont nuls, en particulier le
p(n)(a)

(n—1)!

1
nulle puisque P est de degré n, donc P(™(a) # 0. Nécessairement, cela implique que A = —.
n

(l — )\). Or, le polynome P™ est une constante non

coefficient dominant, qui est -



-1
~— P® 1 1
Il reste alors P(a) + 2 G _(?))! (E B ﬁ) (X — a)k —0.

P(n—l)(a>

En raisonnant de méme, le coefficient dominant de ce polynome est nul, i.e. ————= ( . - l) =
(n—1)! ‘n7t

0, donc P Y(a) = 0 et par récurrence descendante, on obtient que pour tout k € [0,n —
1], P®(a) = 0.
. P (a) et 3 di :
Finalement P(X) = ' (X —a)", c’est a dire P est de la forme P = ¢(X —a)", ou ¢ € R*.
n

> 2eme méthode : D’aprés la formule de Leibniz, pour tout k € [0,n], on a

k
p® =% (k) (MX —a))D P'E=D = X\(X — a) P*FD) L APH),

0 ]
= =0sii>1

En évaluant en a, on obtient pour tout k € [0,n], P*)(a) = kAP® (a) d’ott P®)(a)(kA—1) = 0,
i.e. P (a) =0 ou k) = 1.

Puisque P™ est un polynéme constant non nul, on a P (a) #0 donc nA =1,ie. A= —.11
n

k
s’ensuit que pour tout k € [0,n — 1], kA = — # 1 donc P%¥)(a) = 0.
n
Ainsi, pour tout k € [0,n— 1], P®(a) = 0 et P™ (a) # 0. Par caractérisation de la multiplicité
d’une racine, on en déduit que a est une racine de P d’ordre n, donc P est de la forme P =
(X —a)", onceR.
e Réciproquement, si P est de la forme P = ¢(X — a)", ou a et ¢ sont deux réels avec ¢ € R*
1
et n > 1, alors P’ =nc(X —a)" ! et P=—(X —a)P" donc P’ divise bien P.
n

Finalement, les polynomes de R[X] divisibles par leur polynéme dérivé sont les polyndomes de

la forme P = ¢(X —a)" ou (a,c,n) € R x R x N* (si ¢ = 0, on retrouve le polynéme nul).

Exercice 15. Par hypothese, il existe deux polynomes @) et R tels que
P=(X-a)Q+1=(X—-bR-1.

Ceci implique que P(a) =1 et P(b) = —1.

La division euclidienne de P par (X —a)(X —b) s’écrit P(X) = (X —a)(X —b)S(X)+aX + 3,
ot S € R[X] et (o, 8) € R2

En évaluant cette derniere égalité en a et en b, on trouve P(a) = aa+ 5 et P(b) = ab+ 5 d’ou

ac+ B = 1 { a = 2
_ s _ 2aa _ atb
{Odb‘i‘ﬂ = —1 B = 1_ﬁ__a_irb
ce qui est possible car a # b.
1
Finalement, le reste dans la division euclidienne de P par (X —a)(X —b) est b(2X —a—"b).
a JR—
deg(P)
Exercice 16. Notons () = ZP(k) = Z P® qui est également un polynome de méme
keN k=0

degré que P.

e Si deg(P) = 0, le résultat est évident car alors @) = P.

e On suppose dorénavant que deg(P) > 1. Notons n = deg(P) > 1 et a, le coefficient dominant
de P. On a alors P(x) Ind a,x". L’hypothese implique donc que a,, > 0 (et que n est pair pour

que lim a,z" = +00).
T—r—00



Par ailleurs, on a également Q(z) o~ a,x" donc lirf Q(zr) = +oc.
[e.@] T—>L 00

Ainsi, d’apres un exercice vu dans le TD sur les limites et la continuité, puisque () est une
fonction continue sur R, il en découle que () admet un minimum sur R, atteint en un réel a.
Puisque ¢’est un minimum global sur R, on en déduit que Q’'(a) = 0.

Or, @ =@ — P donc 0 = Q'(a) = Q(a) — P(«), ce qui implique que Q(a) = P(a) > 0 par
hypothese.

On en conclut que pour tout z € R, Q(z) > Q(a) = 0.

Exercice 17. Soit a € C. Montrons qu’il existe z € C tel que P(z2) = a.

Posons Q = P — a. Puisque P n’est pas constant, le polynoéme @) € C[X]| n’est pas constant.
D’apres le théoreme de d’Alembert-Gauss, il existe z € C tel que Q(z) =0, i.e. P(z) =

On a donc bien montré que P : C — C est surjective.

Exercice 18. e Supposons que P est scindé sur R, i.e. il existe des réels (z1,...,z,) € R" et
un réel non nul A tel que
P=2X H - ZL‘k

ou les (zx)1<k<n sont les racines de P (eventuellement confondues).
Pour tout z € C, on a alors

Dl =TIz =@l = N[ Mz = o)1= A ] ] Im(z)] = e[Im(z)]"
k=1 k=1 k=1

eRr

ol ¢ = [A] € R%.

e Réciproquement, supposons qu’il existe ¢ € R* tel que pour tout z € C,|P(2)| > ¢|Im(z)[".
Montrons que P est scindé sur R.

Puisque P est scindé dans C[X], il suffit de montrer que toutes les racines de P sont réelles.
Soit o € C tel que P(«a) = 0. D’apres ’hypothese, on a

0= |P(a)] > c[lm(e)["

donc Im(a) = 0, ce qui prouve que o € R.
Ainsi, toutes les racines de P sont réelles donc P est scindé sur R.

Exercice 19. On cherche des réels (ay,...,a,) € R" _:i =
Soit i € [0, n].
, n' ap(X +1)
O X P = = qy .
na(X+1i) =a; + Z Xk
k=0
leti
En évaluant cette derniere égalité en X = —z, on trouve




Exercice 20. On effectue des divisions euclidiennes successives de A = X! par B = X2+ X +1.
On trouve

A=BQ,+ R, avec Qi =X"—X®4+ X0 X4+ X3 _X?4+1 et R =-X-1,
Q1 =BQy+Ry avec Qy=X"—2X4X°4+2X*—4X34+2X?*+3X -6 et Ry=3X+7,
)y = BQs+ Ry avec Q3 =X’ —3X*+3X3+2X?2-9X+9 et Ry=3X-—15,
Q3 =BQ,+ R, avec Qu=X>—4X?+6X et R,=—-15X+409.

Il en découle A = Ry + BRy + B2Rs5 + B3Ry + B*Q..

Ainsi,
Xt A R, Ry R3 Ry
ixsy B Gl mtEteETE
d’ou
X! X+1 3X +7 3X —15 15X —9

= X3 4X? 16X — — .
XZ1 X+ 1)) O X (X1 X+ X1 X+ X1




