
17
Espaces vectoriels

Dans tout le chapitre, K = R ou C.

17.1 Structure d’espace vectoriel

17.1.1 Définition

Définition 1: Espace vectoriel

Soit E un ensemble non vide muni d’une loi de composition interne associative et com-
mutative notée

+ :
E × E −→ E
(x, y) 7−→ x+ y

vérifiant les axiomes suivants :

1. Il existe un élément neutre 0E ∈ E tel que pour tout x ∈ E, x+ 0E = 0E + x = x;

2. ∀x ∈ E, ∃y ∈ E, x+ y = y + x = 0E . On note y = −x.

On dit que le couple (E,+) est un groupe commutatif.
On dit que E est un K-espace vectoriel s’il existe une loi externe notée

· : K× E −→ E
(λ, x) 7−→ λ · x

vérifiant :

1. ∀x ∈ E, 1 · x = x;

2. ∀(x, y) ∈ E2, ∀λ ∈ K, λ · (x+ y) = λ · x+ λ · y;
3. ∀x ∈ E, ∀(λ, µ) ∈ K2, (λ+ µ) · x = λ · x+ µ · x ;
4. ∀x ∈ E, ∀(λ, µ) ∈ K2, λ · (µ · x) = (λµ) · x.

Les éléments d’un espace vectoriel sont appelés des vecteurs et 0E est appelé le vecteur
nul de E. Les éléments du corps K sont appelés des scalaires.

Remarque 1. • En pratique, on note λx plutôt que λ · x.
• Pour tout (x, y) ∈ E2, on note x− y plutôt que x+ (−y).

• Il y a unicité de l’élément neutre 0E ∈ E. En effet, supposons qu’il existe un autre élément
neutre 0′E , on aurait 0′E = 0′E + 0E = 0E en utilisant successivement la neutralité de 0E et de
0′E .
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• L’inverse de x est en fait unique. En effet, supposons qu’il existe (y, z) ∈ E2 tels que
x+ y = y + x = x+ z = z + x = 0E .

Alors
y = y + 0E = y + (x+ z) = (y + x) + z = 0E + z = z.

• Pour tout x ∈ E, 0 · x = 0E puisque

0 · x = (0 + 0) · x = 0 · x+ 0 · x

donc en ajoutant −(0 · x) de part et d’autre, on obtient 0 · x = 0E .
• Pour tout x ∈ E, on a (−1) · x = −x puisque

0E = 0 · x = (1 + (−1)) · x = x+ (−1) · x.

• Pour tout λ ∈ K, on a λ · 0E = 0E puisque

λ · 0E = λ · (0E + 0E) = λ · 0E + λ · 0E

donc en ajoutant −(λ · 0E) de part et d’autre, on obtient λ · 0E = 0E .
• Tout élément est simplifiable : si on a x + y = x + z, en ajoutant −x de chaque côté, on

obtient y = z.

Définition 2: Combinaison linéaire d’une famille finie de vecteurs

Soit E un K-espace vectoriel. Soit (x1, . . . , xn) une famille finie de vecteurs de E.
On appelle combinaison linéaire des vecteurs x1, . . . , xn tout vecteur de E de la forme

n∑
k=1

λkxk = λ1x1 + · · ·+ λnxn,

où (λ1, . . . , λn) ∈ Kn.

Remarque 2. En pratique, un espace vectoriel est un ensemble dans lequel on peut effectuer
des combinaisons linéaires sur ses éléments.

Exemple 1. 1. Pour tout n ∈ N, Kn est un K- espace vectoriel.

En effet, pour tout scalaire λ ∈ K et pour tout couple de n-uplets (x1, . . . , xn) ∈ Kn et
(y1, . . . , yn) ∈ Kn, on a

λ · (x1, . . . , xn) + (y1, . . . , yn) = (λx1 + y1, . . . , λxn + yn) ∈ Kn.

Le vecteur nul de Kn est 0Kn = (0, . . . , 0).

2. C est un R−espace vectoriel. Le vecteur nul de C est le nombre complexe nul.

3. Pour tout intervalle I ⊂ R, pour tout n ∈ N, Cn(I,R) est un R- espace vectoriel. Le vecteur
nul de Cn(I,R) est la fonction nulle.

4. Pour tout (n, p) ∈ (N∗)2,Mn,p(K) est un K-espace vectoriel. Le vecteur nul de Mn,p(K)
est la matrice nulle 0n,p.

5. Pour tout n ∈ N,Kn[X], l’ensemble des polynômes à cœfficients dans K de degré inférieur
ou égal à n, est un K-espace vectoriel. Le vecteur nul de Kn[X] est le polynôme nul.

6. L’ensemble des solutions d’une équation différentielle linéaire homogène de degré 1 ou 2
à valeurs dans K est un K-espace vectoriel. Le vecteur nul d’un tel espace vectoriel est la
fonction nulle.

7. L’ensemble des suites KN est un K-espace vectoriel. Le vecteur nul de KN est la suite
constante égale à 0.

8. Plus généralement, si Ω est un ensemble et E est un K-espace vectoriel, alors l’ensemble
des fonctions de Ω vers E, noté EΩ, est également un espace vectoriel.
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17.1.2 Sous-espaces vectoriels

Définition 3: Sous-espaces vectoriels

Soit F ⊂ E.
On dit que F est un sous-espace vectoriel de E si :

1. 0E ∈ F ;

2. ∀(λ, µ) ∈ K2, ∀(x, y) ∈ F 2, λx+ µy ∈ F .

Remarque 3. • Il est équivalent de définir un sous-espace vectoriel F de E comme un sous-
ensemble F ⊂ E non vide tel que pour tout λ ∈ K, pour tout (x, y) ∈ F 2, λx+ y ∈ F.

En effet, si F vérifie ces deux conditions, il existe un élément x ∈ F et on a alors

(−1) · x+ x = −x+ x = 0E ∈ F.

En outre, soient (x, y) ∈ F 2, soient (λ, µ) ∈ R2.

D’une part, λx = λx+0E ∈ F et µy = µy+0E ∈ F donc λx+µy ∈ F puisque F est stable
par somme.

• Un sous-espace vectoriel F de E devient un espace vectoriel en héritant de la loi interne
de E et de la loi externe de K.

En effet, par exemple, si x ∈ F,−x ∈ F car (−1).x+ 1.0E ∈ F par définition.

• Plus généralement, on peut montrer par récurrence que si F est un sous-espace vectoriel
de E, alors F est stable par combinaisons linéaires, i.e

∀(λ1, . . . , λn) ∈ Kn, ∀(x1, . . . , xn) ∈ Fn,
n∑

k=1

λkxk ∈ F.

Exemple 2. 1. {0} et E sont des sous-espaces triviaux de E.

2. R et iR sont des sous-espaces vectoriels du R-espace vectoriel C.

3. L’ensemble F =
{
(x, y) ∈ R2, 2x− y = 0

}
est un sous-espace vectoriel de R2.

En effet, (0, 0) ∈ F puisque 2× 0− 0 = 0.

De même, soient (x, y) ∈ F, (x′, y′) ∈ F et (λ, µ) ∈ R2. Alors

2(λx+ µx′)− (λy + µy′) = λ(2x− y) + µ(2x′ − y′) = 0

donc λ(x, y) + µ(x′, y′) = (λx+ µx′, λy + µy′) ∈ F.

Plus généralement, les droites du plan d’équation ax+by+c = 0 sont des sous-espaces vec-
toriels de R2 si et seulement si c = 0 (sinon, le vecteur nul (0, 0) ne vérifie pas l’équation).
On dit alors que ce sont des droites vectorielles de R2.

4. L’ensemble F =
{
(x, y, z) ∈ R3, 2x− y + z = 0

}
est un sous-espace vectoriel de R3.

En effet, (0, 0, 0) ∈ F puisque 2× 0− 0 + 0 = 0.

De même, soient (x, y, z) ∈ F, (x′, y′, z′) ∈ F et (λ, µ) ∈ R2. Alors

2(λx+ µx′)− (λy + µy′) + (λz + µz′) = λ(2x− y + z) + µ(2x′ − y′ + z′) = 0

donc λ(x, y, z) + µ(x′, y′, z′) = (λx+ µx′, λy + µy′, λz + µz′)) ∈ F.

Plus généralement, les plans de l’espace d’équation ax + by + cz + d = 0 sont des sous-
espaces vectoriels de R3 si et seulement si d = 0 (sinon, le vecteur nul (0, 0, 0) ne vérifie
pas l’équation). On dit alors que ce sont des plans vectoriels de R3.
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5. Pour tout n ∈ N, Kn[X] est un sous-espace vectoriel de K[X].

En effet, notons tout d’abord que 0K[X] ∈ Kn[X].

De plus, si (P,Q) ∈ Kn[X]2, alors pour tout (λ, µ) ∈ K2,

deg(λP + µQ) ⩽ max(deg(P ),deg(Q)) ⩽ n

donc λP + µQ ∈ Kn[X].

6. L’ensemble des matrices diagonales (resp. triangulaires supérieures) à cœfficients réels est
un sous-espace vectoriel de Mn(K). De même, les ensembles Sn(R) et An(R) des matrices
symétriques et antisyémtriques respectivement sont des sous-espaces vectoriels de Mn(R).

7. L’ensemble des suites réelles vérifiant la relation de récurrence linéaire d’ordre 2 suivante :
∀n ∈ N, un+2 = un+1 + un est un sous-espace vectoriel de RN.

Proposition 1: Intersection de sous-espaces vectoriels

Soit E un espace vectoriel. Soient F1, . . . , Fn des sous-espaces vectoriels de E.

Alors
n⋂

k=1

Fk = F1 ∩ · · · ∩ Fn est un sous-espace vectoriel de E.

Démonstration. • Pour tout k ∈ J1, nK, 0E ∈ Fk puisque Fk est un sous-espace vectoriel

de E. Ainsi, 0E ∈
n⋂

k=1

Fk.

• Soient (x, y) ∈

(
n⋂

k=1

Fk

)2

. Soient (λ, µ) ∈ R2.

Soit k ∈ J1, nK. Puisque Fk est un sous-espace vectoriel de E, λx+ µy ∈ Fk.

Ainsi, pour tout k ∈ J1, nK, λx+ µy ∈ Fk donc λx+ µy ∈
n⋂

k=1

Fk.

On a donc bien montré que
n⋂

k=1

Fk est un sous-espace vectoriel de E. ■

Exemple 3. Soit F =
{
(x, y, z) ∈ R3, x− 3y + 5z = 0

}
⊂ R3 etG =

{
(x, y, z) ∈ R3,−x+ 2y = 0

}
⊂

R3.

F et G sont des sous-espaces vectoriels de R3 (ce sont des plans vectoriels de l’espace).
Leur intersection F ∩ G est donc un sous-espace vectoriel de R3 et elle admet pour système
d’équations cartésiennes {

x− 3y + 5z = 0
−x+ 2y = 0

On reconnâıt un système d’équations cartésiennes qui définit une droite de l’espace, obtenue
comme intersection de deux plans.

Remarque 4. En revanche, l’union de sous-espaces vectoriels n’est pas toujours un sous-espace
vectoriel.

En effet, soit E = R2, soit F =
{
(x, y) ∈ R2, y = 0

}
et G =

{
(x, y) ∈ R2, x = 0

}
.

F et G sont des sous-espaces vectoriels de E mais F ∪G n’est pas un sous-espace vectoriel
de E puisque (1, 0) ∈ F ⊂ F ∪G, (0, 1) ∈ G ⊂ F ∪G mais (1, 0) + (0, 1) = (1, 1) /∈ F ∪G.
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17.1.3 Sous-espace vectoriel engendré

Proposition 2: Sous-espace vectoriel engendré par une famille finie de vec-
teurs

Soit E un K-espace vectoriel, soit (x1, . . . , xn) ∈ En.
On appelle sous-espace vectoriel de E engendré par la famille (x1, . . . , xn), et noté
Vect(x1, . . . , xn) ou Vect(xi)i∈J1,nK, l’ensemble

Vect(x1, . . . , xn) =

{
n∑

k=1

λkxk, (λ1, . . . , λn) ∈ Kn

}
,

c’est à dire l’ensemble des combinaisons linéaires formées sur les vecteurs (x1, . . . , xn).
En outre, c’est le plus petit sous-espace vectoriel de E à contenir la famille (x1, . . . , xn).

Démonstration. • Montrons tout d’abord que Vect(x1, . . . , xn) est un sous-espace vectoriel
de E.

En prenant pour tout 1 ⩽ k ⩽ n, λk = 0, on montre que 0E ∈ Vect(x1, . . . , xn).

Soient (x, x′) ∈ (Vect(x1, . . . , xn))
2.

Il existe des scalaires (λ1, . . . , λn) ∈ Kn et (λ′
1, . . . , λ

′
n) ∈ Kn tels que

x =

n∑
k=1

λkxk et x′ =

n∑
k=1

λ′
kxk.

Ainsi, pour tout (λ, λ′) ∈ R2, on a

λx+ λ′x′ =
n∑

k=1

(λλk + λ′λ′
k)xk ∈ Vect(x1, . . . , xn),

ce qui prouve que Vect(x1, . . . , xn) est bien un sous-espace vectoriel de E.

• Soit F un sous-espace vectoriel de E qui contient la famille (x1, . . . , xn).

Puisque F est stable par combinaisons linéaires, alors pour tout (λ1, . . . , λn) ∈ Kn,
n∑

k=1

λkxk ∈

F donc Vect(x1, . . . , xn) ⊂ F, ce qui prouve que Vect(x1, . . . , xn) est le plus petit sous-espace
vectoriel de E à contenir la famille (x1, . . . , xn). ■

Exemple 4. • Vect(∅) = {0}.
• Si x est un vecteur non nul de E, alors Vect(x) = {λx, λ ∈ K} est une droite vectorielle

de E.

• Si x et y sont deux vecteurs non colinéaires de R3, alors Vect(x, y) =
{
λx+ µy, (λ, µ) ∈ R2

}
est un plan vectoriel de base (x, y).

• Si p ⩽ n,Vect(x1, . . . , xp) ⊂ Vect(x1, . . . , xn).

Remarque 5. Plus généralement, pour toute partie A ⊂ E, on définit Vect(A) comme étant
l’ensemble des combinaisons linéaires des vecteurs de A. C’est le plus petit-sous espace vectoriel
de E qui contient A.
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17.2 Familles libres, familles génératrices, bases

17.2.1 Familles libres

Définition 4: Famille libre

On appelle famille libre d’un K-espace vectoriel E toute famille (x1, ..., xn) de vecteurs
de E telle que

∀(λ1, ..., λn) ∈ Kn,
n∑

k=1

λkxk = 0E ⇒ ∀1 ≤ k ≤ n, λk = 0.

Une famille qui n’est pas libre est dite liée, i.e. la famille (x1, . . . , xn) est liée s’il existe
(λ1, . . . , λn) ̸= (0, . . . , 0) ∈ Kn tels que

n∑
k=1

λkxk = 0E .

Remarque 6. • Une famille qui contient le vecteur nul n’est jamais libre. En effet, pour toute
famille (0E , x1, . . . , xn) de vecteurs de E, on a

1× 0E + 0× x1 + · · ·+ 0× xn = 0E

donc λ00E +
n∑

k=1

λkxk = 0E avec (λ0, λ1, , λn) = (1, 0, . . . , 0).

• Si x est un vecteur non nul de E, alors la famille (x) est libre puisque λx = 0E ⇒ λ = 0.

• Soient (x, y) une famille de deux vecteurs de R2.

Alors la famille (x, y) est libre si et seulement si x et y ne sont pas colinéaires.

1. Supposons que la famille (x, y) est libre.

S’il existe un réel λ tel que x = λy (loisible car y ̸= (0, 0) puisque la famille (x, y) est
libre), alors 1× x− λ× y = 0E , ce qui contredit la liberté de la famille (x, y).

2. Supposons que x et y ne soient pas colinéaires.

Soient (λ, µ) ∈ R2 tels que λx+ µy = 0E .

Supposons par exemple que λ ̸= 0. On a alors x = −µ

λ
y donc x et y sont colinéaires, ce

qui est absurde. Nécessairement, λ = 0.

Ainsi, µy = 0E et puisque x et y ne sont pas colinéaires, y ne peut pas être le vecteur nul
donc µ = 0, d’où (λ, µ) = (0, 0), ce qui prouve la liberté de la famille (x, y).

• Soit (x1, . . . , xn) une famille de n vecteurs d’un K-espace vectoriel E.

Soit p ⩽ n. On suppose que la famille (x1, . . . , xp) est liée. Il existe alors des scalaires

(λ1, . . . , λp) ̸= (0, . . . , 0) ∈ Kp tels que

p∑
k=1

λkxk = 0E .

Ainsi, en posant pour tout k ∈ Jp+ 1, nK, λk = 0, on a

n∑
k=1

λkxk = 0E

avec (λ1, . . . , λn) ̸= (0, . . . , 0) donc la famille (x1, . . . , xn) est liée.

Ceci montre que toute famille contenant une sous-famille liée est liée.

Par contraposée, on obtient que toute sous-famille d’une famille libre est libre.

Année 2025-2026 6 / 23 Alex Panetta



PCSI Lycée Fénelon

• Une famille (x1, . . . , xn) est liée si et seulement si l’un des vecteurs de la famille s’écrit
comme combinaison linéaire des autres.

En effet, supposons que la famille est liée, i.e. il existe (λ1, . . . , λn) ̸= (0, . . . , 0) ∈ Kn tels

que
n∑

k=1

λkxk = 0E .

Par hypothèse, il existe i ∈ J1, nK tel que λi ̸= 0 donc xi = − 1

λi

∑
k ̸=i

λkxk.

Réciproquement, supposons qu’il existe i ∈ J1, nK tel que xi =
∑
k ̸=i

λkxk, où (λ1, . . . , λi−1, λi+1, . . . , λn) ∈

Kn−1.

Alors
n∑

k=1

λkxk = 0E en posant λi = −1. Il existe donc (λ1, . . . , λn) ̸= (0, . . . , 0) ∈ Kn tels

que
n∑

k=1

λkxk = 0E , ce qui prouve que la famille (x1, . . . , xn) est liée.

Proposition 3

Soit E un K-espace vectoriel.
Soit (x1, . . . , xn) une famille libre de vecteurs de E. Soit xn+1 ∈ E.
Alors la famille (x1, . . . , xn, xn+1) est libre si et seulement si xn+1 /∈ Vect(x1, . . . , xn).

Démonstration. En effet, d’après la remarque précédente, si (x1, . . . , xn, xn+1) est libre,
alors xn+1 /∈ Vect(x1, . . . , xn).

Réciproquement, supposons que xn+1 /∈ Vect(x1, . . . , xn).Montrons que la famille (x1, . . . , xn+1)
est libre.

Soit (λ1, . . . , λn, λn+1) ∈ Kn+1 tel que
n+1∑
k=1

λkxk = 0E .

Si λn+1 ̸= 0, alors xn+1 = − 1

λn+1

n∑
k=1

λkxk ∈ Vect(x1, . . . , xn), ce qui est contraire à l’hy-

pothèse.

Ainsi, λn+1 = 0, et on obtient
n∑

k=1

λkxk = 0E , d’où pour tout k ∈ J1, nK, λk = 0 par liberté

de la famille (x1, . . . , xn). On en déduit que pour tout k ∈ J1, n + 1K, λk = 0, ce qui prouve la
liberté de la famille (x1, . . . , xn+1). ■

Exemple 5. • Soient x = (1, 1), y = (2,−1) et z = (−6, 3). La famille (x, y) est libre tandis
que la famille (y, z) est liée.

La famille (x, y, z) est donc liée puisqu’elle contient une sous-famille liée.

• La famille (x, y, z) avec x = (1, 1,−1), y = (1, 2, 3) et z = (−1, 1, 9) est liée puisque
z = 2x− 3y donc 2x− 3y+ z = (0, 0, 0) est une combinaison linéaire nulle des vecteurs (x, y, z)
à cœfficients non tous nuls.

• La famille (cos, sin) est une famille libre du R-espace vectoriel C0(R,R).
En effet, soit (λ, µ) ∈ R2 tels que pour tout x ∈ R, λ cos(x) + µ sin(x) = 0.

Pour x = 0, on obtient λ = 0 et pour x = π
2 , on obtient µ = 0 donc (λ, µ) = (0, 0), ce qui

prouve la liberté de la famille (cos, sin).

• Soient (n, p) ∈ (N∗)2. Pour tout (i, j) ∈ J1, nK × J1, pK, on considère la matrice Ei,j ∈
Mn,p(K) définie pour tout (k, l) ∈ J1, nK × J1, pK par

(Ei,j)k,l = δi,kδj,l,
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c’est à dire la matrice dont tous les cœfficients sont nuls, excepté le cœfficient en i-ème ligne et
j-ème colonne qui vaut 1.

Alors la famille (Ei,j)1⩽i⩽n
1⩽j⩽p

est une famille libre.

En effet, s’il existe des scalaires (ai,j)1⩽i⩽n
1⩽j⩽p

∈ Knp tels que

∑
1⩽i⩽n
1⩽j⩽p

ai,jEi,j = 0,

alors la matrice
∑

1⩽i⩽n
1⩽j⩽p

ai,jEi,j est la matrice nulle et ses cœfficients sont les ai,j donc pour tout

(i, j) ∈ J1, nK × J1, pK, ai,j = 0, ce qui prouve que la famille (Ei,j)1⩽i⩽n
1⩽j⩽p

est une famille libre.

• Pour tout n ∈ N, la famille (1, X, . . . ,Xn) est une famille libre dans K[X].

En effet, soient (a0, . . . , an) ∈ Kn+1 tels que
n∑

k=0

akX
k = 0. Par unicité des cœfficients d’un

polynôme (en l’occurence, du polynôme nul), on en déduit que pour tout k ∈ J0, nK, ak = 0, ce
qui prouve que la famille (1, X, . . . ,Xn) est libre.

Plus généralement, on peut montrer que toute famille de polynômes à degrés distincts est
libre dans K[X].

Proposition 4: Unicité des cœfficients d’une combinaison linéaire d’une famille
libre de vecteurs

Soit (x1, . . . , xn) une famille libre de vecteurs d’un K-espace vectoriel E.
Supposons qu’il existe des scalaires (λ1, . . . , λn) ∈ Kn et (λ′

1, . . . , λ
′
n) ∈ Kn tels que

n∑
k=1

λkxk =

n∑
k=1

λ′
kxk.

Alors pour tout k ∈ J1, nK, λk = λ′
k.

Démonstration. Par hypothèse, on a

n∑
k=1

(λk − λ′
k)xk = 0E .

Puisque la famille (x1, . . . , xn) est libre, on en déduit que pour tout k ∈ J1, nK, λk = λ′
k, d’où

le résultat. ■

Remarque 7. Ceci justifie qu’on puisse identifier les cœfficients dans des expressions de la
forme

∀x ∈ R, a cos(x) + b sin(x) = a′ cos(x) + b′ sin(x)

et conclure que a = a′ et b = b′.

De même, si pour un certain n ∈ N et pour tout x ∈ R, on a

n∑
k=0

akx
k =

n∑
k=0

bkx
k, alors on

peut conclure que pour tout k ∈ J0, nK, ak = bk.
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17.2.2 Famille génératrice

Définition 5: Famille génératrice

On appelle famille génératrice d’un K-espace vectoriel E toute famille (x1, ..., xn) de
vecteurs de E telle que Vect(x1, ..., xn) = E.
On dit que la famille (x1, . . . , xn) engendre l’espace vectoriel E.

Remarque 8. • Pour montrer qu’une famille (x1, . . . , xn) engendre E, il suffit de montrer que
tout vecteur de E peut s’écrire comme combinaison linéaire de vecteurs de la famille (x1, . . . , xn).

En effet, on a toujours Vect(x1, . . . , xn) ⊂ E donc il suffit de montrer que E ⊂ Vect(x1, . . . , xn).

• Si une famille de vecteurs de E contient une sous-famille de vecteurs qui engendre E, alors
cette famille engendre elle aussi E.

En effet, soit (x1, . . . , xn) une famille de vecteurs de E.

Supposons qu’il existe p ⩽ n tel que Vect(x1, . . . , xp) = E.

Alors Vect(x1, . . . , xp) ⊂ Vect(x1, . . . , xn) donc E ⊂ Vect(x1, . . . , xn), ce qui prouve que
E = Vect(x1, . . . , xn).

• On a la même définition pour tout sous-espace vectoriel F de E. Ainsi, si F est un sous-
espace vectoriel de E, une famille génératrice de F est une famille de vecteurs (x1, . . . , xn) de
F telle que Vect(x1, ..., xn) = F.

Exemple 6. • La famille (⃗i, j⃗) où i⃗ =

(
1
0

)
et j⃗ =

(
0
1

)
est une famille génératrice de R2 puisque

pour tout u⃗ =

(
a
b

)
∈ R2, on a u⃗ = a⃗i+ b⃗j donc Vect(⃗i, j⃗) = R2.

• La famille (⃗i, j⃗, k⃗) où i⃗ =

1
0
0

, j⃗ =

0
1
0

 et k⃗ =

0
0
1

 est une famille génératrice de R3

puisque pour tout u⃗ =

a
b
c

 ∈ R3, on a u⃗ = a⃗i+ b⃗j + ck⃗ donc Vect(⃗i, j⃗, k⃗) = R3.

• Soit D la droite du plan R2 d’équation cartésienne 2x− y = 0 ⇔ y = 2x.

On a alors

(
x
y

)
∈ D ⇔ y = 2x ⇔

(
x
y

)
=

(
x
2x

)
= x

(
1
2

)
donc

D =

{
x

(
1
2

)
, x ∈ R

}
.

Ceci montre que D = Vect

((
1
2

))
.

• Soit P le plan de l’espace R3 d’équation cartésienne 3x− y + z = 0.

On a alors

x
y
z

 ∈ P ⇔ y = 3x+ z ⇔

x
y
z

 =

 x
3x+ z

z

 = x

1
3
0

+ z

0
1
1

 donc

P =

= x

1
3
0

+ z

0
1
1

 , (x, z) ∈ R2

 .

Ceci montre que P = Vect

1
3
0

 ,

0
1
1

 .
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• Soit D la droite de l’espace définie par le système d’équations cartésiennes{
−x+ 3y − z = 0
2x+ y + z = 0

⇔
{

z = −x+ 3y
x+ 4y = 0

⇔
{

z = −x+ 3y
x = −4y

⇔
{

z = 7y
x = −4y

.

On a alors

x
y
z

 ∈ D ⇔

x
y
z

 =

−4y
y
7y

 = y

−4
1
7

 donc

D =

y

−4
1
7

 , y ∈ R

 .

Ceci montre que D = Vect

−4
1
7

 .

• Soient (n, p) ∈ (N∗)2. La famille de matrices (Ei,j)1⩽i⩽n
1⩽j⩽p

définie précédemment est une

famille génératrice de Mn,p(K) puisque pour toute matrice A = (ai,j)1⩽i⩽n
1⩽j⩽p

de Mn,p(K), on a

A =
∑

1⩽i⩽n
1⩽j⩽p

ai,jEi,j

donc Vect {Ei,j , (i, j) ∈ J1, nK × J1, pK} = Mn,p(K).
• Soit n ∈ N. La famille (1, X, . . . ,Xn) est une famille génératrice de Kn[X] car pour tout

P ∈ Kn[X], il existe (a0, . . . , an) ∈ Kn+1 tels que

P =
n∑

k=0

akX
k

donc Vect(1, X, . . . ,Xn) = Kn[X].

17.2.3 Bases

Définition 6: Base

On dit qu’une famille (x1, ..., xn) de vecteurs de E est une base de E si elle est libre et
génératrice.

Exemple 7. • Pour tout n ∈ N, le K-espace vectoriel Kn admet une base dite canonique
constituée des vecteurs

e1 = (1, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), e3 = (0, 0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

• Reprenons l’exemple vu précédemment de la droite D du plan R2 d’équation cartésienne
2x− y = 0.

Une base de D est le vecteur

(
1
2

)
.

• Reprenons l’exemple vu précédemment du plan P de l’espace R3 d’équation cartésienne
3x− y + z = 0.

Une base de P est le couple de vecteurs

1
3
0

 ,

0
1
1

 .
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• Soient (n, p) ∈ (N∗)2. La famille de matrices (Ei,j)1⩽i⩽n
1⩽j⩽p

définie précédemment est une

base de Mn,p(K) appelée base canonique de Mn,p(K).

• Soit n ∈ N. La famille (1, X, . . . ,Xn) est une base de Kn[X] appelée base canonique de
Kn[X].

Théorème 1: Coordonnées d’un vecteur dans une base

Soit E un K- espace vectoriel muni d’une base B = (e1, . . . , en).
Soit x un vecteur de E.
Alors il existe un unique n-uplet de scalaires (x1, . . . , xn) ∈ Kn tel que

x =
n∑

k=1

xkek = x1e1 + · · ·+ xnen.

Les scalaires (x1, . . . , xn) sont appelés les coordonnées du vecteur x dans la base B =
(e1, . . . , en).

On note MatB(x) =

x1
...
xn

 la matrice colonne des coordonnées du vecteur x dans la base

B.

Démonstration. Puisque la famille (e1, . . . , en) engendre E, i.e. Vect(e1, . . . , en) = E,

x ∈ Vect(e1, . . . , en), donc il existe des scalaires (x1, . . . , xn) ∈ Kn tels que x =
n∑

k=1

xkek.

En outre, puisque la famille (e1, . . . , en) est une base de E, elle est a fortiori libre donc les
scalaires (x1, . . . , xn) sont uniques comme démontré dans la Proposition 17.2.1. ■

Remarque 9. • En apppliquant les règles usuelles de calcul dans les espaces vectoriels, on
obtient que pour tout (x, y) ∈ E2, pour tout (λ, µ) ∈ K2,

MatB(λx+ µy) = λMatB(x) + µMatB(y).

• Le résultat est en fait une équivalence, c’est à dire qu’une famille de vecteurs (e1, . . . , en)
est une base de E si et seulement si tout vecteur de E s’écrit comme une unique combinaison
linéaire des vecteurs (e1, . . . , en). Montrons la réciproque du résultat démontré dans le théorème
ci-dessus.

On suppose que pour tout x ∈ E, il existe un unique n-uplet (x1, . . . , xn) ∈ Kn tel que

x =

n∑
k=1

xkek.

Ceci signifie que E = Vect(e1, . . . , en) donc la famille (e1, . . . , en) est une famille génératrice
de E.

Par ailleurs, si
n∑

k=1

xkek = 0E =
n∑

k=1

0 × ek, par unicité de la combinaison linéaire, on en

déduit que pour tout k ∈ J1, nK, xk = 0, ce qui prouve que la famille (e1, . . . , en) est libre.
Finalement, (e1, . . . , en) est bien une base de E.

Exemple 8. • Pour tout vecteur (x1, . . . , xn) de Kn, ses coordonnées dans la base canonique

de Kn sont

x1
...
xn

 .
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• Soit P le plan de l’espace R3 d’équation cartésienne 3x−y+z = 0. Le vecteur u⃗ = (1, 1,−2)
appartient à P et on a u⃗ = (1, 3, 0)− 2(0, 1, 1) donc les coordonnées du vecteur u⃗ dans la base

((1, 3, 0), (0, 1, 1)) sont

(
1
−2

)
.

• Soit n ∈ N. Pour tout P =
n∑

k=0

akX
k ∈ K[X], les coordonnées de P dans la base canonique

de Kn[X] sont


a0
a1
...
an

 .

Définition 7: Matrice d’une famille de vecteurs dans une base

Soit E un K-espace vectoriel muni d’une base B = (e1, . . . , en).
Soient (x1, . . . , xp) une famille de p vecteurs de E.

Pour tout 1 ⩽ j ⩽ p, on note xj =

n∑
i=1

xi,jei, où les (xi,j)1⩽i⩽n sont les coordonnées de

xj dans la base B.
On appelle matrice de la famille (x1, . . . , xp) dans la base B la matrice

MatB(x1, . . . , xp) =


x1,1 x1,2 . . . x1,p
x2,1 x2,2 . . . x2,p
...

...
...

xn,1 xn,2 . . . xn,p

 ∈ Mn,p(K)

où les colonnes sont les matrices colonnes des coordonnées des vecteurs xj dans la base
B.

17.2.4 Somme de deux sous-espaces vectoriels

Définition 8: Somme de deux sous-espaces vectoriels

Soit E un K-espace vectoriel. Soient F et G deux sous-espaces vectoriels de E.
On appelle somme de F et G l’ensemble

F +G = {x+ y, (x, y) ∈ F ×G} ⊂ E.

Remarque 10. • On a clairement F ⊂ F +G et G ⊂ F +G.
• Si F est un sous-espace vectoriel de E, alors F + E = E et F + {0E} = F.
• Si F = Vect(x1, . . . , xn) et G = Vect(y1, . . . , yp), alors F+G = Vect(x1, . . . , xn, y1, . . . , yp).

Exemple 9. Si E = K[X], F = Vect(X) et G = Vect(X2, X4), alors

F +G = Vect(X,X2, X4) = {aX4 + bX2 + cX, (a, b, c) ∈ K3}.

Proposition 5

Soit E un K-espace vectoriel. Soient F et G deux sous-espaces vectoriels de E.
Alors F +G est un sous-espace vectoriel de E.

Démonstration. • Tout d’abord, puisque F et G sont des sous-espaces vectoriels de E,
alors 0E ∈ F ∩G donc 0E = 0E︸︷︷︸

∈F

+ 0E︸︷︷︸
∈G

∈ F +G.
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• Soient (u, v) ∈ (F +G)2. Soient (λ, µ) ∈ K2.
Par définition de F + G, il existe un couple (x, y) ∈ F × G tel que u = x + y et un couple

(x′, y′) ∈ F ×G tel que v = x′ + y′.
Ainsi, λu+ µv = λ(x+ y) + µ(x′ + y′) = (λx+ µx′) + (λy + µy′).
Puisque (x, x′) ∈ F 2 et que F est un sous-espace vectoriel de E, on a λx + µx′ ∈ F. De

même, λy + µy′ ∈ G donc λu+ µv ∈ F +G.
On a donc bien montré que F +G est un sous-espace vectoriel de E. ■

Remarque 11. • En fait, F +G = Vect(F ∪G).
En effet, puisque F ⊂ F + G et G ⊂ F + G, on a F ∪ G ⊂ F + G. Ainsi, F + G est un

sous-espace vectoriel de E qui contient F ∪G donc Vect(F ∪G) ⊂ F +G.
Réciproquement, tout vecteur de F +G est une combinaison linéaire de vecteurs de F ∪G

donc F +G ⊂ Vect(F ∪G) d’où finalement l’égalité F +G = Vect(F ∪G).
Ainsi, F +G est l’ensemble des combinaisons linéaires des vecteurs de F ou G.
• En conséquence, F +G = F si et seulement si G ⊂ F.

Définition 9: Somme directe de deux sous-espaces vectoriels

Soit E un K-espace vectoriel, soient F et G deux sous-espaces vectoriels de E.
On dit que la somme F +G est directe si pour tout u ∈ F +G, il existe un unique couple
(x, y) ∈ F ×G tel que u = x+ y.
Dans ce cas, on note F +G = F ⊕G.

Remarque 12. Autrement dit, F +G = F ⊕G signifie que pour tout (x, x′) ∈ F 2, pour tout
(y, y′) ∈ G2,

x+ y = x′ + y′ ⇔
{

x = x′

y = y′
.

Proposition 6: Caractérisation de la somme directe de deux sous-espaces vec-
toriels

Soit E un K-espace vectoriel, soient F et G deux sous-espaces vectoriels de E.
Les trois assertions suivantes sont équivalentes :

1. F +G = F ⊕G;

2. ∀(x, y) ∈ F ×G, (x+ y = 0E ⇔ x = y = 0E);

3. F ∩G = {0E}.

Démonstration. • Montrons (1) ⇒ (2). Supposons que (1) est vraie.
Soient (x, y) ∈ F ×G. Si x = y = 0E , on a clairement x+ y = 0E .
Réciproquement, supposons que x+ y = 0E . On a alors

x︸︷︷︸
∈F

+ y︸︷︷︸
∈G

= 0E︸︷︷︸
∈F

+ 0E︸︷︷︸
∈G

donc par définition d’une somme directe, ceci implique que x = y = 0E .
• Montrons (2) ⇒ (3). Supposons que (2) est vraie, et montrons que F ∩G = {0E}.
Puisque F et G sont des sous-espaces vectoriels de E, on a 0E ∈ F et 0E ∈ G donc

{0E} ⊂ F ∩G.
Montrons l’inclusion réciproque. Soit x ∈ F ∩G.
Puisque x ∈ G et que G est un sous-espace vectoriel de E, alors −x ∈ G donc

x︸︷︷︸
∈F

+(−x)︸ ︷︷ ︸
∈G

= 0E .
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D’après la propriété (2), ceci implique que x = −x = 0E donc F ∩G ⊂ {0E} et finalement,
F ∩G = {0E}.

• Montrons (3) ⇒ (1).

Supposons que F ∩G = {0E}. Montrons que F +G = F ⊕G.

Soit u ∈ F +G. Supposons qu’il existe (x, x′) ∈ F 2, (y, y′) ∈ G2 tel que u = x+ y = x′ + y′.
Montrons que x = x′ et y = y′.

Par hypothèse, on a x − x′ = y′ − y. Puisque (x, x′) ∈ F 2 et que F est un sous-espace
vectoriel de E, alors x− x′ ∈ F. De même, y′ − y ∈ G.

Ainsi, x− x′ = y′ − y ∈ F ∩G = {0E} donc

{
x− x′ = 0E
y′ − y = 0E

, i.e. x = x′ et y = y′, ce qui

prouve que la somme F +G est directe.

■

Exemple 10. • Soit E = R3. Soit F = Vect(1, 2, 3) et G = Vect(2, 1, 3).

Puisque F ∩G = {(0, 0, 0)}, on a F +G = F ⊕G.

• Soit E = K[X]. Soit F = Vect(X,X2) et G = Vect(1, X2).

On a F ∩G = Vect(X2) ̸= {0K[X]} donc la somme F +G n’est pas directe.

Définition 10: Sous-espaces supplémentaires

Soit E un K-espace vectoriel. Soient F et G deux sous-espaces vectoriels de E.
On dit que F et G sont supplémentaires dans E si

E = F ⊕G.

Autrement dit, pour tout u ∈ E, il existe un unique couple (x, y) ∈ F × G tel que
u = x+ y.

Exemple 11. • Soit E = R3, F = Vect((1, 0, 0), (0, 1, 0) et G = Vect(0, 0, 1). Alors E = F ⊕G.

• Soit E = K3[X], F = Vect(1, X2) et G = Vect(X,X3). Alors E = F ⊕G.

• Soit Sn(R) (resp. An(R)) le sous-espace vectoriel des matrices symétriques (resp. anti-
symétriques) de Mn(R).

Alors Mn(R) = Sn(R)⊕An(R).

Remarque 13. On peut avoir F +G = E sans que F et G soient en somme directe.

Par exemple, si E = R3, que F = Vect((1, 0, 0), (0, 1, 0)) et G = Vect((1, 0, 0), (0, 0, 1)), on a
F +G = R3 mais F ∩G = Vect(1, 0, 0) ̸= {(0, 0, 0)} donc F et G ne sont pas en somme directe.

17.3 Dimension d’un espace vectoriel

17.3.1 Espace vectoriel de dimension finie

Définition 11: Espace vectoriel de dimension finie

On dit que le K−espace vectoriel E est de dimension finie s’il possède une famille
génératrice finie.

Exemple 12. Les espaces vectoriels Kn,Mn,p(K) et Kn[X] sont de dimension finie.
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Théorème 2: Théorème de la base extraite

Soit E un K-espace vectoriel de dimension finie admettant une famille génératrice
(e1, . . . , en).
On peut extraire de la famille (e1, . . . , en) une base de E, i.e. quitte à renuméroter les ei,
il existe p ⩽ n tel que (e1, . . . , ep) est une base de E.

Démonstration. • Si E est l’espace vectoriel nul, pour tout 1 ⩽ i ⩽ n, ei = 0E .
Supposons dorénavant que E ̸= {0E}. A fortiori, il existe i ∈ J1, nK, tel que ei ̸= 0E .
• Si la famille (e1, . . . , en) est libre, c’est une famille libre et génératrice de E, donc c’est

une base de E.
• Supposons que la famille (e1, . . . , en) n’est pas libre. Soit p < n le cardinal de la plus grande

sous-famille libre de la famille (e1, . . . , en). (On sait que p ⩾ 1 puisque la famille contient au
moins un vecteur non nul.)

Quitte à renuméroter les vecteurs, on peut supposer que la famille (e1, . . . , ep) est libre.
Montrons alors que Vect(e1, . . . , ep) = Vect(e1, . . . , en).

On a clairement Vect(e1, . . . , ep) ⊂ Vect(e1, . . . , en). Montrons l’inclusion réciproque.
Soit i ∈ Jp+ 1, nK.
Par hypothèse, la famille (e1, . . . , ep, ei) est liée (puisqu’elle contient p + 1 vecteurs) donc

ei ∈ Vect(e1, . . . , ep) (en effet, puisque (e1, . . . , ep) est libre, alors (e1, . . . , ep, ei) est libre si et
seulement si ei /∈ Vect(e1, . . . , ep)).

Le sous-espace vectoriel Vect(e1, . . . , ep) contient donc tous les vecteurs ei pour i ∈ J1, nK.
Or, Vect(e1, . . . , en) est le plus petit-sous espace vectoriel de E à contenir tous les vecteurs ei
pour i ∈ J1, nK donc Vect(e1, . . . , en) ⊂ Vect(e1, . . . , ep).

Finalement, on a donc bien Vect(e1, . . . , ep) = Vect(e1, . . . , en) = E.
La famille (e1, . . . , ep) est donc libre et génératrice dans E : c’est donc une base de E. ■

Remarque 14. • On vient donc de montrer le théorème de la base extraite : de toute famille
génératrice, on peut extraire une base.

• Une version plus générale est la suivante : si (xi)1⩽i⩽n engendre E et si (xi)i∈I est libre
pour une certaine partie I de {1, . . . , n}, alors il existe une partie J de {1, . . . , n} contenant I
pour laquelle (xj)j∈J est une base de E.

En effet, il suffit de rajouter des vecteurs de la famille (xi)1⩽i⩽n dans la famille libre (xi)i∈I
jusqu’à obtenir la plus grande famille libre possible et la preuve précédente montre que c’est
alors une base de E.

Exemple 13. Soit F le sous-espace vectoriel de R3 défini par F = Vect

1
2
3

 ,

 0
−2
1

 ,

2
6
5

 .

La famille

1
2
3

 ,

 0
−2
1

 ,

2
6
5

 est liée puisque

2
6
5

 = 2

1
2
3

−

 0
−2
1

 .

La famille1
2
3

 ,

 0
−2
1

 est donc une famille libre de plus grand cardinal possible incluse dans la fa-

mille

1
2
3

 ,

 0
−2
1

 ,

2
6
5

 donc elle constitue une base de F et on a donc F = Vect

1
2
3

 ,

 0
−2
1

.

Corollaire 1: Existence de bases

Tout espace vectoriel de dimension finie admet une base.
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Démonstration. Par définition, un espace vectoriel de dimension finie admet une famille
génératrice finie. D’après le théorème précédent, il admet donc une base. ■

17.3.2 Dimension d’un espace vectoriel

Théorème 3

Soit E un K-espace vectoriel de dimension finie. Soit (e1, . . . , en) une famille génératrice
de E.
Alors toute famille constituée de n+ 1 vecteurs de E est liée.

Démonstration. Nous allons prouver ce résultat par récurrence sur n ∈ N∗.

• Initialisation : pour n = 1. Supposons que E = Vect(e1), où e1 est un vecteur non nul de
E.

Soient x et y deux vecteurs distincts de E.

Alors il existe (λ, µ) ∈ K2 tels que x = λe1 et y = µe1. Puisque les vecteurs x et y sont
distincts, ils ne peuvent pas être tous les deux nuls. Supposons sans perte de généralité que
x ̸= 0E donc λ ̸= 0.

Ainsi, y =
µ

λ
x donc les vecteurs x et y sont liés.

• Hérédité : Soit n ∈ N∗. On suppose que si un espace vectoriel admet une famille génératrice
à n éléments, alors toute famille constituée de n+ 1 vecteurs de E est liée.

Montrons la propriété au rang n+1. Supposons que E = Vect(e1, . . . , en+1). Soit (x1, . . . , xn+2)
une famille de n+ 2 éléments de E. Montrons que la famille (x1, . . . , xn+2) est liée.

Pour tout 1 ⩽ j ⩽ n+ 2, il existe des scalaires (x1,j , . . . , xn+1,j) ∈ Kn+1 tels que

xj =
n+1∑
i=1

xi,jei.

Si pour tout 1 ⩽ j ⩽ n+ 2, xn+1,j = 0, alors pour tout 1 ⩽ j ⩽ n+ 2, xj ∈ Vect(x1, . . . , xn)
donc par hypothèse de récurrence, les vecteurs (x1, . . . , xn+2) sont liés.

Supposons dorénavant qu’il existe j ∈ J1, n + 2K tel que xn+1,j ̸= 0. Quitte à renuméroter
les vecteurs xj , on peut supposer que xn+1,1 ̸= 0.

Posons pour tout 2 ⩽ j ⩽ n+ 2, yj = xj −
xn+1,j

xn+1,1
x1.

Alors, pour tout 2 ⩽ j ⩽ n+ 2, yj ∈ Vect(e1, . . . , en).

La famille (y2, . . . , yn+2) est donc constituée de n+1 vecteurs appartenant à Vect(e1, . . . , en).

Par hypothèse de récurrence, les vecteurs (y2, . . . , yn+2) sont liés donc il existe des scalaires
(λ2, . . . , λn+2) ̸= (0, . . . , 0) tels que

n+2∑
j=2

λjyj = 0E ⇔
n+2∑
j=2

λj

(
xj −

xn+1,j

xn+1,1
x1

)
= 0E ⇔ −

n+2∑
j=2

λj
xn+1,j

xn+1,1

x1 +
n+2∑
j=2

λjxj = 0E .

C’est une combinaison linéaire nulle des vecteurs (x1, . . . , xn+2) à cœfficients non tous nuls
puisque (λ2, . . . , λn+2) ̸= (0, . . . , 0). Ainsi, la famille (x1, . . . , xn+2) est liée, ce qui prouve la
propriété au rang n+ 1 et achève la récurrence. ■

Remarque 15. • A fortiori, si Vect(e1, . . . , en) = E, toute famille de vecteurs de E constituée
de plus de n+ 1 vecteurs est liée.

• Par contraposée, on en déduit que si Vect(e1, . . . , en) = E, et si (x1, . . . , xp) est une famille
libre de E, alors p ⩽ n. Moralement, une famille libre a toujours moins de vecteurs qu’une
famille génératrice.
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Corollaire 2: Dimension d’un espace vectoriel

Soit E un K-espace vectoriel de dimension finie.
Alors toutes les bases de E ont même cardinal, et ce nombre s’appelle la dimension de
E. On le note dim(E).

Démonstration. Soient (e1, . . . , en) et (e
′
1, . . . , e

′
p) deux bases de E.

Puisque la famille (e1, . . . , en) est libre et Vect(e′1, . . . , e
′
p) = E, alors n ⩽ p.

De même, puisque la famille (e′1, . . . , e
′
p) est libre et Vect(e1, . . . , en) = E, alors p ⩽ n.

Finalement, on a bien p = n donc toutes les bases de E ont même cardinal. ■

Exemple 14. • Pour tout n ∈ N∗,Kn est un K-espace vectoriel de dimension n puisqu’il admet
comme base canonique B = (ei)1⩽i⩽n où e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

• C est un R-espace vectoriel de dimension 2 puisqu’il admet comme base (1, i).

• Pour tout n ∈ N,Kn[X] est un K-espace vectoriel de dimension n + 1 puisqu’il admet
comme base canonique (1, X, . . . ,Xn).

• Pour tout (n, p) ∈ (N∗)2,Mn,p(K) est un K-espace vectoriel de dimension np puisqu’il
admet comme base canonique les matrices (Ei,j)1⩽i⩽n

1⩽j⩽p
.

• L’espace vectoriel réel des solutions de l’équation différentielle y′+3y = 0 (resp. y′′+3y′+
3y = 0) est de dimension 1 (resp. 2).

• L’espace vectoriel des suites réelles vérifiant la relation de récurrence linéaire d’ordre 2
suivante : ∀n ∈ N, un+2 = un+1 + un est un espace vectoriel de dimension 2.

Théorème 4: Cardinal d’une famille libre et d’une famille génératrice

Soit E un K-espace vectoriel de dimension n.

1. Toute famille libre de E a au plus n éléments.

2. Toute famille génératrice de E a au moins n éléments.

Démonstration.

1. E admet une famille génératrice à n éléments, donc d’après le théorème 17.3.2 toute famille
constituée de plus de n + 1 éléments est liée. Par contraposée, toute famille libre de E a
au plus n éléments.

2. Soit (e1, . . . , en) une base de E. Soit (x1, . . . , xp) une famille génératrice de E. Puisque la
famille (e1, . . . , en) est libre, on déduit du théorème 17.3.2 que n ⩽ p donc toute famille
génératrice a au moins n éléments.

■

17.3.3 Théorème de la base incomplète

Théorème 5: Théorème de la base incomplète

Soit E un K-espace vectoriel de dimension dim(E) = n ∈ N∗.
Soit (e1, . . . , ep) une famille libre de E.
Alors :

1. Si p = n, (e1, . . . , ep) est une base de E.

2. Si p < n, il existe des vecteurs (ep+1, . . . , en) de E tels que (e1, . . . , en) est une base
de E.

Démonstration.
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1. On suppose que p = n. La famille (e1, . . . , en) est une famille libre de E, avec dim(E) = n.
Montrons que Vect(e1, . . . , en) = E.

On a toujours Vect(e1, . . . , en) ⊂ E. Montrons que E ⊂ Vect(e1, . . . , en).

Soit x ∈ E.

Puisque la famille (e1, . . . , en, x) contient n+1 vecteurs de E qui est un espace vectoriel de
dimension n, c’est une famille liée. Puisque (e1, . . . , en) est libre, la famille (e1, . . . , en, x)
est liée si et seulement si x ∈ Vect(e1, . . . , en). On en conclut que x ∈ Vect(e1, . . . , en)
d’où l’inclusion E ⊂ Vect(e1, . . . , en).

On a donc bien prouvé que E = Vect(e1, . . . , en).

Finalement, la famille (e1, . . . , en) est une famille libre et génératrice de E : c’est donc une
base de E.

2. Supposons que p < n. La famille (e1, . . . , ep) ne peut donc pas être une base de E. Puisque
c’est une famille libre, elle n’est donc pas génératrice, i.e. Vect(e1, . . . , ep) ̸= E.

Il existe donc un vecteur ep+1 /∈ Vect(e1, . . . , ep). Puisque (e1, . . . , ep) est une famille libre,
on sait que la famille (e1, . . . , ep+1) est libre.

Si Vect(e1, . . . , ep+1) = E (possible si n = p+1), la famille (e1, . . . , ep+1) est alors libre et
génératrice, donc c’est une base de E. Sinon, il existe ep+2 /∈ Vect(e1, . . . , ep+1) et par le
même argument que précédemment, la famille (e1, . . . , ep+2) est libre.

On réitère ce procédé jusqu’à avoir trouvé des vecteurs (ep+1, . . . , en) tels que la famille
(e1, . . . , en) est libre. On aura donc obtenu une famille libre à n éléments dans un espace
vectoriel de dimension n : c’en est donc une base d’après le premier alinéa.

■

Remarque 16. • Autrement dit, une famille libre de vecteurs de E peut toujours se compléter
en une base de E.

• Deux vecteurs non colinéaires de R2 forment une famille libre de R2 qui est un R-espace
vectoriel de dimension 2. Ils forment donc une base de R2.

• Trois vecteurs non coplanaires de R3 forment une famille libre de R3 qui est un R-espace
vectoriel de dimension 3. Ils forment donc une base de R3.

• Plus généralement, il faut retenir le résultat suivant : dans un espace vectoriel de dimension
n, toute famille libre contenant n vecteurs est une base.

Corollaire 3: Base de polynômes à degrés échelonnés

Soit n ∈ N.
Soit (P0, . . . , Pn) ∈ (Kn[X])n+1 une famille de polynômes à degrés échelonnés, i.e. pour
tout k ∈ J0, nK, deg(Pk) = k.
Alors (P0, . . . , Pn) est une base de Kn[X].

Démonstration. Montrons que la famille (P0, . . . , Pn) est libre.

Soient (λ0, . . . , λn) ∈ Rn+1 tels que

n∑
k=0

λkPk = 0K[x]. Puisque les degrés sont échelonnés, si

λn ̸= 0, le cœfficient dominant de

n∑
k=0

λkPk serait λnan ̸= 0, où an est le cœfficient dominant de

Pn. Ainsi, on aurait

n∑
k=0

λkPk ̸= 0K[X], ce qui est absurde. Nécessairement, λn = 0, puis par une

récurrence descendante, on montre successivement que λn−1 = · · · = λ1 = λ0 = 0.

Ainsi, la famille (P0, . . . , Pn) est une famille libre consituée de n+ 1 vecteurs de Kn[X], qui
est de dimension n+ 1 : c’en est donc une base. ■
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Exemple 15. La famille (2, X − 1, X2 + 3X + 2) est une base de R2[X].

Corollaire 4: Formule de Taylor polynomiale

Soit n ∈ N. Soit P ∈ K[X] de degré n. Soit a ∈ K.
Alors

P (X) =
n∑

k=0

P (k)(a)

k!
(X − a)k

où P (k) désigne la dérivée k-ème de P .

Démonstration. D’après le corollaire précédent, la famille ((X − a)k)0⩽k⩽n est une base
de Kn[X] puisque c’est une famille de polynômes à degrés échelonnés.

Ainsi, il existe des coordonnées (λk)0⩽k⩽n telles que P =

n∑
k=0

λk(X − a)k.

Pour tout i ∈ J0, nK, on a alors

P (i) =

n∑
k=i

λk
k!

(k − i)!
(X − a)k−i.

En évaluant en a, on obtient pour tout i ∈ J0, nK, P (i)(a) = λii! donc λi =
P (i)(a)

i!
.

Ainsi, P =

n∑
k=0

λk(X − a)k =

n∑
k=0

P (k)(a)

k!
(X − a)k. ■

Théorème 6

Soit E un K-espace vectoriel de dimension n.
Soit (e1, . . . , en) une famille génératrice de E.
Alors (e1, . . . , en) est une base de E.

Démonstration. Il suffit de montrer que la famille (e1, . . . , en) est libre.

Supposons par l’absurde qu’elle ne l’est pas. D’après le théorème 17.3.1, on peut extraire
de la famille (e1, . . . , en) une sous-famille (e1, . . . , ep) de la famille (e1, . . . , en) (quitte à les
renuméroter) avec p < n telle que (e1, . . . , ep) forme une base de E.

On a donc une base de E qui contient p éléments avec p < n = dim(E). Or, toute base de
E doit contenir n éléments. C’est donc une absurdité.

Nécessairement, la famille (e1, . . . , en) est libre et puisqu’elle est génératrice de E, c’est une
base de E. ■

Remarque 17. Autrement dit, une famille génératrice d’un espace vectoriel dont le cardinal
est égal à la dimension de l’espace est une base de l’espace.

Exemple 16. Soit P le plan de R3 d’équation 2x+ y − z = 0.

On a (x, y, z) ∈ P ⇔ z = 2x+ y ⇔ (x, y, z) = (x, y, 2x+ y) = x(1, 0, 2) + y(0, 1, 1).

Ainsi, les vecteurs (1, 0, 2) et (0, 1, 1) engendrent P donc P = Vect((1, 0, 2), (0, 1, 1)).

Puisque dim(P ) = 2, d’après le théorème précédent, les vecteurs (1, 0, 2) et (0, 1, 1) forment
une base de P.
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Théorème 7: Sous-espaces vectoriels d’un espace vectoriel de dimension finie

Soit E un K-espace vectoriel de dimension finie. Soit F un sous-espace vectoriel de E.

1. F est de dimension finie et dim(F ) ⩽ dim(E).

2. On a dim(F ) = dim(E) si et seulement si E = F.

Démonstration.
Soit n = dim(E) ∈ N∗.

1. • Si F = {0}, dim(F ) = 0.

• Supposons que F ̸= {0}. Il s’agit de montrer que F possède une famille génératrice finie.

Soit (e1, . . . , ep) une famille libre de F. (On a nécessairement p ⩽ n, puisque la famille
(e1, . . . , ep) est une famille libre de E, puisque F ⊂ E.)

Si Vect(e1, . . . , ep) = F, la famille (e1, . . . , ep) engendre F et alors F est de dimension
finie.

Si Vect(e1, . . . , ep) ̸= F, alors il existe ep+1 ∈ F tel que ep+1 /∈ Vect(e1, . . . , ep). On a alors
montré précédemment que la famille (e1, . . . , ep+1) est libre.

Si Vect(e1, . . . , ep+1) = F, on a fini. Sinon on réitère le procédé et on trouve un vecteur
ep+2 ∈ F tel que (e1, . . . , ep+2) est libre.

Le procédé s’arrête forcément à un moment puisque F ⊂ E et que E est de dimension
finie égale à n donc toute famille libre de F, qui est une famille libre de E, admet au plus
n éléments.

Il existe donc nécessairement un entier q ∈ Jp, nK tel que la famille (e1, . . . , eq) est libre et
Vect(e1, . . . , eq) = F.

La famille (e1, . . . , eq) est alors une famille libre et génératrice de F : c’est donc une base
de F et on a dim(F ) = q ⩽ n = dim(E).

2. • Si E = F, il est clair que dim(E) = dim(F ).

• Supposons que dim(F ) = dim(E) = n et montrons que E = F.

Soit (e1, . . . , en) une base de F, i.e. (e1, . . . , en) est une famille libre de F et Vect(e1, . . . , en) =
F.

Puisque F ⊂ E, la famille (e1, . . . , en) est une famille libre de E à n éléments, c’est donc
une base de E, a fortiori, une famille génératrice de E.

Ainsi, E = Vect(e1, . . . , en) = F.

■

Remarque 18. En pratique, on utilise très souvent ce théorème pour montrer que deux espaces
vectoriels E et F sont égaux. Pour cela, il suffit de vérifier que F ⊂ E (ou E ⊂ F ) et que
dim(E) = dim(F ).

17.3.4 Dimension d’une somme de deux sous-espaces

Proposition 7: Dimension d’une somme directe de deux sous-espaces

Soit E un K-espace vectoriel de dimension finie. Soient F et G des sous-espaces vectoriels
de E tels que F +G = F ⊕G.
Soient n = dim(F ) et p = dim(G). Soient (f1, . . . , fn) et (g1, . . . , gp) des bases de F et G
respectivement.
Alors la famille (f1, . . . , fn, g1, . . . , gp) est une base de F ⊕G.
On dit que la base (f1, . . . , fn, g1, . . . , gp) est une base adaptée à la somme directe F ⊕G.
En particulier, dim(F ⊕G) = dim(F ) + dim(G).
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Démonstration.

• On a déjà vu que F+G = Vect(f1, . . . , fn, g1, . . . , gp) donc la famille (f1, . . . , fn, g1, . . . , gp)
est une famille génératrice de F ⊕G.

• Montrons que la famille (f1, . . . , fn, g1, . . . , gp) est libre.

Soient (λ1, . . . , λn, µ1, . . . , µp) ∈ Kn+p tels que

n∑
k=1

λkfk +

p∑
k=1

µkgk = 0E .

Puisque

n∑
k=1

λkfk ∈ F, que

p∑
k=1

µkgk ∈ G et que la somme F + G est directe, on sait que

ceci implique que

n∑
k=1

λkfk =

p∑
k=1

µkgk = 0E . Par liberté des familles (f1, . . . , fn) et (g1, . . . , gp),

ceci implique que pour tout k ∈ J1, nK, λk = 0 et pour tout k ∈ J1, pK, µk = 0 donc la famille
(f1, . . . , fn, g1, . . . , gp) est libre.

On a donc bien montré que (f1, . . . , fn, g1, . . . , gp) est une base de F ⊕G. Il en découle que
dim(F ⊕G) = n+ p = dim(F ) + dim(G). ■

Proposition 8

Soit E un K-espace vectoriel de dimension finie. Soit F un sous-espace vectoriel de E.
Alors il existe un sous-espace vectoriel G de E tel que E = F ⊕G.

Démonstration. Posons n = dim(E) et p = dim(F ) ⩽ n = dim(E).

Soit (f1, . . . , fp) une base de F. D’après le théorème de la base incomplète, il existe des
vecteurs (fp+1, . . . , fn) tels que (f1, . . . , fp, fp+1, . . . , fn) est une base de E.

Posons G = Vect(fp+1, . . . , fn) et montrons que F ⊕G = E.

• Tout d’abord, on a bien F + G = Vect(f1, . . . , fp, fp+1, . . . , fn) = E puisque la famille
(f1, . . . , fn) est une famille génératrice de E.

• Montrons que F +G = F ⊕G. Pour cela, considérons (x, y) ∈ F ×G tels que x+ y = 0E
et montrons que x = y = 0E .

Il existe des scalaires (λ1, . . . , λp, λp+1, . . . , λn) ∈ Kn tels que x =

n∑
k=1

λkfk et y =

n∑
k=p+1

λkfk.

Ainsi, 0E = x+y =
n∑

k=1

λkfk. Puisque la famille (f1, . . . , fn) est libre, on en déduit que pour

tout k ∈ J1, nK, λk = 0 donc x = y = 0E , ce qui prouve que la somme est directe.

Finalement, on a bien F ⊕G = E. ■

Remarque 19. Cette propriété se résume ainsi : tout sous-espace d’un espace de dimension
finie possède un supplémentaire. Mais ce supplémentaire n’est pas unique.

Exemple 17. Soit E = R2, F = Vect(1, 0), G = Vect(0, 1) et H = Vect(1, 1).

Alors E = F ⊕G = F ⊕H.

Théorème 8: Formule de Grassmann

Soit E un K-espace vectoriel de dimension finie.
Soient F et G des sous-espaces vectoriels de E.
Alors

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G).

Remarque 20. Dans le cas particulier où F et G sont en somme directe, on retrouve le résultat
du théorème précédent.
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Démonstration. Soit H un supplémentaire de F ∩G dans G de telle sorte qu’on ait

G = (F ∩G)⊕H.

Alors on a F +G = F +H. Montrons cette égalité par double inclusion.

On a H ⊂ G par définition donc l’inclusion F +H ⊂ F +G est évidente.

Réciproquement, soit x ∈ F + G. Alors il existe xF ∈ F et xG ∈ G tels que x = xF + xG.
Or G = F ∩ G ⊕ H donc il existe yF ∈ F ∩ G (donc a fortiori yF ∈ F ) et yH ∈ H tels que
xG = yF + yH . Ainsi, x = (xF + yF ) + yH avec xF + yF ∈ F et yH ∈ H donc x ∈ F +H, ce qui
montre l’inclusion F +G ⊂ F +H. Ainsi, F +G = F +H.

Montrons maintenant que la somme F +H est directe. Pour cela, il suffit de montrer que
F ∩H = 0.

Puisque H ⊂ G,H = H ∩G donc F ∩H = F ∩ (G ∩H) = (F ∩G) ∩H = 0 puisque H et
F ∩G sont en somme directe. Finalement, on a{

G = (F ∩G)⊕H
F +G = F ⊕H.

Il en résulte que {
dim(G) = dim(F ∩G) + dim(H)
dim(F +G) = dim(F ) + dim(H)

d’où dim(H) = dim(G)− dim(F ∩G) = dim(F +G)− dim(F ), i.e.

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G).

■

Exemple 18. Soit E = R3, F = Vect((1, 0, 0), (0, 1, 0)) et G = Vect((1, 0, 0), (0, 0, 1)).

On a F +G = Vect((1, 0, 0), (0, 1, 0), (0, 0, 1)) = R3 et F ∩G = Vect(1, 0, 0).

On a alors dim(F +G) = 3 et dim(F ) + dim(G)− dim(F ∩G) = 2+ 2− 1 = 3. On retrouve
bien la formule de Grassmann.

Corollaire 5: Caractérisation dimensionnelle des couples de sous-espaces
supplémentaires

Soit E un K-espace vectoriel de dimension finie. Soient F et G des sous-espaces vectoriels
de E.

Alors F et G sont supplémentaires si et seulement si

{
F +G = E

dim(F ) + dim(G) = dim(E)
.

Démonstration. • Supposons que F et G sont supplémentaires, i.e. F ⊕G = E. On a alors
bien F +G = E et dim(F ) + dim(G) = dim(F ⊕G) = dim(E).

• Supposons que

{
F +G = E

dim(F ) + dim(G) = dim(E)
.

D’après la formule de Grassmann, on a alors

dim(E) = dim(F +G) = dim(F ) + dim(G)︸ ︷︷ ︸
dim(E)

− dim(F ∩G) = dim(E)− dim(F ∩G)

donc dim(F ∩G) = 0. Ainsi, F ∩G = {0E}, ce qui prouve que F et G sont en somme directe.
On a donc bien F ⊕G = F +G = E, i.e. F et G sont supplémentaires. ■
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17.3.5 Rang d’une famille de vecteurs

Définition 12: Rang d’une famille de vecteurs

Soit E un K-espace vectoriel de dimension finie.
Soit (x1, . . . , xn) une famille de vecteurs de E.
On appelle rang de la famille (x1, . . . , xn), et on note rg(x1, . . . , xn) la dimension de
l’espace vectoriel Vect(x1, . . . , xn), c’est-à-dire

rg(x1, . . . , xn) = dim (Vect(x1, . . . , xn)) .

Exemple 19. Soit x1 = (1, 3, 2), x2 = (0, 2, 1), x3 = (−1, 1, 0).
On a x3 = 2x2 − x1 donc la famille (x1, x2, x3) est liée. On constate que les vecteurs x1 et

x2 sont libres donc (x1, x2) est une base de Vect(x1, x2, x3) et Vect(x1, x2, x3) = Vect(x1, x2).
Ainsi, dim(Vect(x1, x2, x3)) = 2 donc la famille (x1, x2, x3) est de rang 2.
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