Espaces vectoriels

Dans tout le chapitre, K =R ou C.

17.1 Structure d’espace vectoriel

17.1.1 Définition

Définition 1: Espace vectoriel

Soit E un ensemble non vide muni d’une loi de composition interne associative et com-

mutative notée
ExE — E

(x,y) — x4y
vérifiant les axiomes suivants :
1. Il existe un élément neutre O € F tel que pour tout x € E,xz + 0 = 0g + x = x;
2. VeeE,Iye E,x+y=y+2=0g. On note y = —x.

On dit que le couple (E,+) est un groupe commutatif.
On dit que E est un K-espace vectoriel s’il existe une loi externe notée

KxFE — F
Nzx) — Az
vérifiant :
1. Vxe E,1- -z =ux;
2. V(z,y) e E2VAEK - (z+y)=A-z+A-y;
3.Ve e EVOLu) e R, (A +p)-2=X-z+pu-x;
4. Vx € EY(O\pu) € K2 N (p-2) = (M) - .

Les éléments d’un espace vectoriel sont appelés des vecteurs et Op est appelé le vecteur
nul de F. Les éléments du corps K sont appelés des scalaires.

Remarque 1. e En pratique, on note Az plutot que A - x.
e Pour tout (z,y) € E?, on note x — y plutdt que x + (—y).
e Il y a unicité de I’élément neutre O € E. En effet, supposons qu’il existe un autre élément
neutre 0, on aurait 0%; = 0%; + 0g = Og en utilisant successivement la neutralité de Og et de
0.
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e L’inverse de x est en fait unique. En effet, supposons qu’il existe (y,z) € E? tels que
r+y=y+zrz=x+z=z+2=0g.
Alors
y=y+0g=y+(x+2)=W+z)+2=0+z2=-=z

e Pour tout x € E,0-x = 0p puisque
0-2=(04+0)-2=0-2+0-x

donc en ajoutant —(0 - z) de part et d’autre, on obtient 0 -z = 0p.
e Pour tout z € E, on a (—1) -z = —z puisque

Op=0-z2=(1+(-1) - z=x+(-1) - x.
e Pour tout A € K, on a \-0g = 0 puisque
)\'OE:)\'(OE—FOE):)\'OE—F)\-OE

donc en ajoutant —(\ - 0g) de part et d’autre, on obtient A - 0g = Op.
e Tout élément est simplifiable : si on a x + y = = + 2, en ajoutant —z de chaque coté, on
obtient y = z.

Définition 2: Combinaison linéaire d’une famille finie de vecteurs

Soit F un K-espace vectoriel. Soit (x1,...,z,) une famille finie de vecteurs de E.
On appelle combinaison linéaire des vecteurs z1, ..., z, tout vecteur de E de la forme

n
Z AT = ANT1 + -+ + ATy,
k=1

ott (A\1,- .., \n) € K™

Remarque 2. En pratique, un espace vectoriel est un ensemble dans lequel on peut effectuer
des combinaisons linéaires sur ses éléments.
Exemple 1. 1. Pour tout n € N, K" est un K- espace vectoriel.

En effet, pour tout scalaire A € K et pour tout couple de n-uplets (z1,...,z,) € K" et
(Y1,.-.,yn) € K", on a

A(z1, oo zn) + (Y1, n) = Az +y1, .0 Az, +ypn) € K™

Le vecteur nul de K" est Ox» = (0,...,0).
2. C est un R—espace vectoriel. Le vecteur nul de C est le nombre complexe nul.

3. Pour tout intervalle I C R, pour tout n € N,C"(I, R) est un R- espace vectoriel. Le vecteur
nul de C"(I,R) est la fonction nulle.

4. Pour tout (n,p) € (N*)2, M,, ,(K) est un K-espace vectoriel. Le vecteur nul de M,, ,(K)
est la matrice nulle 0, .

5. Pour tout n € N, K,,[X], 'ensemble des polynomes a ceefficients dans K de degré inférieur
ou égal a n, est un K-espace vectoriel. Le vecteur nul de K,[X] est le polynoéme nul.

6. L’ensemble des solutions d’une équation différentielle linéaire homogene de degré 1 ou 2
a valeurs dans K est un K-espace vectoriel. Le vecteur nul d’un tel espace vectoriel est la
fonction nulle.

7. L’ensemble des suites KN est un K-espace vectoriel. Le vecteur nul de KN est la suite
constante égale a 0.

8. Plus généralement, si €2 est un ensemble et F est un K-espace vectoriel, alors I'ensemble
des fonctions de  vers E, noté E%, est également un espace vectoriel.
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17.1.2 Sous-espaces vectoriels

Définition 3: Sous-espaces vectoriels

Soit F' C E.
On dit que F' est un sous-espace vectoriel de F si :

1. Og € F';
2. V(\, p) € K2, V(x,y) € F2 \x+uy € F.

Remarque 3. e Il est équivalent de définir un sous-espace vectoriel F' de £ comme un sous-
ensemble F' C E non vide tel que pour tout A € K, pour tout (z,y) € F? Az +y € F.
En effet, si F' vérifie ces deux conditions, il existe un élément = € F et on a alors

(-1)-z4+x=—-2+2=0g€F.

En outre, soient (x,7) € F?, soient (A, u) € R2.

D’une part, \e = Az +0g € F et py = py+0g € F donc Az + py € F puisque F' est stable
par somme.

e Un sous-espace vectoriel F' de E devient un espace vectoriel en héritant de la loi interne
de F et de la loi externe de K.

En effet, par exemple, si x € F, —x € F car (—1).x 4+ 1.0g € F par définition.

e Plus généralement, on peut montrer par récurrence que si F' est un sous-espace vectoriel
de F, alors F est stable par combinaisons linéaires, i.e

n
YA, An) €KY Y(m1,. . a,) € F™)Y My € F.
k=1
Exemple 2. 1. {0} et E sont des sous-espaces triviaux de E.

2. R et iR sont des sous-espaces vectoriels du R-espace vectoriel C.
3. L’ensemble F' = {(x, y) ER2 20—y = 0} est un sous-espace vectoriel de R2.

En effet, (0,0) € F puisque 2 x 0 —0 = 0.

De méme, soient (z,y) € F, (z/,y') € F et (\, u) € R%. Alors

20z 4+ pa’) — Ay +py') = A2z —y) + (22’ —y') =0

donc \(x,y) + u(2’,y') = (\x + px’, \y + py') € F.
Plus généralement, les droites du plan d’équation axz+by+c = 0 sont des sous-espaces vec-
toriels de R? si et seulement si ¢ = 0 (sinon, le vecteur nul (0, 0) ne vérifie pas ’équation).
On dit alors que ce sont des droites vectorielles de R?.

4. L’ensemble I = {(m, y,2) ER3, 20—y + 2 = 0} est un sous-espace vectoriel de R3.
En effet, (0,0,0) € F puisque 2 x 0—0+0=0.
De méme, soient (z,y,2) € F,(z',9/,2') € F et (A, u) € R% Alors

200 4+ p') — Ay + )+ Az +p2) =Xz —y+2) +p2r —y +2)=0

donc A(z,y,z) + u(z', v, 2") = A\ + pa’, \y + py', Az + pz')) € F.

Plus généralement, les plans de ’espace d’équation ax + by + cz + d = 0 sont des sous-
espaces vectoriels de R3 si et seulement si d = 0 (sinon, le vecteur nul (0,0, 0) ne vérifie
pas I’équation). On dit alors que ce sont des plans vectoriels de R3.
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5. Pour tout n € N, K,,[X] est un sous-espace vectoriel de K[X].
En effet, notons tout d’abord que Og|x] € Ky [X].
De plus, si (P, Q) € K,[X]?, alors pour tout (\, u) € K2,

deg(AP + p@Q) < max(deg(P), deg(Q)) < n

donc AP + puQ € K, [X].

6. L’ensemble des matrices diagonales (resp. triangulaires supérieures) a ccefficients réels est
un sous-espace vectoriel de M,,(K). De méme, les ensembles S,,(R) et A, (R) des matrices
symétriques et antisyémtriques respectivement sont des sous-espaces vectoriels de M, (R).

7. L’ensemble des suites réelles vérifiant la relation de récurrence linéaire d’ordre 2 suivante :
Vn € N, upt2 = Upt1 + Uy est un sous-espace vectoriel de RN,

Proposition 1: Intersection de sous-espaces vectoriels

Soit E un espace vectoriel. Soient F7, ..., F), des sous-espaces vectoriels de FE.

n
Alors ﬂ F. = FiN---NFE, est un sous-espace vectoriel de E.
k=1

Démonstration. e Pour tout k € [1,n],05 € F) puisque F}, est un sous-espace vectoriel

n
de E. Ainsi, 0 € (] Fx.
k=1
" 2
e Soient (z,y) € (ﬂ Fk) . Soient (A, ) € R2,
k=1
Soit k € [1,n]. Puisque F} est un sous-espace vectoriel de E, \x + uy € F.

n
Ainsi, pour tout k € [1,n], Az + py € Fy, donc A\x + py € m Fy.
k=1

n
On a donc bien montré que ﬂ F}. est un sous-espace vectoriel de E. |
k=1

Exemple 3. Soit F' = {(x,y,z) eER3 2z —3y+5z= 0} CR3etG = {(w,y,z) ER?, —x+2y = O} -
R3.

F et G sont des sous-espaces vectoriels de R? (ce sont des plans vectoriels de l’espace).
Leur intersection F N G est donc un sous-espace vectoriel de R? et elle admet pour systeme
d’équations cartésiennes

r—3y+52z = 0
—rx+2y = 0

On reconnailt un systéme d’équations cartésiennes qui définit une droite de ’espace, obtenue
comme intersection de deux plans.

Remarque 4. En revanche, 'union de sous-espaces vectoriels n’est pas toujours un sous-espace
vectoriel.

En effet, soit E = R?, soit F = {(z,y) € R*,y =0} et G = {(z,y) e R*,z =0} .

F et GG sont des sous-espaces vectoriels de E mais F' U G n’est pas un sous-espace vectoriel
de E puisque (1,0) ¢ F C FUG,(0,1) € G C FUG mais (1,0) + (0,1) = (1,1) ¢ FUG.
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17.1.3 Sous-espace vectoriel engendré

Proposition 2: Sous-espace vectoriel engendré par une famille finie de vec-
teurs

Soit E un K-espace vectoriel, soit (z1,...,x,) € E™.
On appelle sous-espace vectoriel de E engendré par la famille (xy,...,2,), et noté
Vect(z1, ..., 2n) ou Vect(z;);e[1,n], I'ensemble

Vect(x1,...,2,) = {Z ATy (A1, .00, \p) € K"} ,
k=1

c’est a dire ’ensemble des combinaisons linéaires formées sur les vecteurs (zy, ..., x,).

En outre, c’est le plus petit sous-espace vectoriel de E & contenir la famille (x1,...,x,).

Démonstration. e Montrons tout d’abord que Vect(z1, ..., x,) est un sous-espace vectoriel
de F.

En prenant pour tout 1 < k < n, A\, = 0, on montre que O € Vect(z1,...,x,).

Soient (x,z') € (Vect(x1,...,7,))%
Il existe des scalaires (A1,...,Ap) € K" et (M,..., ) € K" tels que

n n
T = E M\ezr et o = g )\;c:ck.
k=1 k=1

Ainsi, pour tout (A, \') € R?, on a

n

Az + N/ = Z()\/\k + Nz € Vect(z1, ..., 25),
k=1

ce qui prouve que Vect(x1,...,x,) est bien un sous-espace vectoriel de E.

e Soit F' un sous-espace vectoriel de E qui contient la famille (z1,...,z,).

n
Puisque F est stable par combinaisons linéaires, alors pour tout (A1,...,\,) € K*, Z AkT) €
k=1
F donc Vect(z1,...,2z,) C F, ce qui prouve que Vect(z1,...,x,) est le plus petit sous-espace
vectoriel de E & contenir la famille (zq,...,x,). [ |

Exemple 4. o Vect(()) = {0}.
e Si x est un vecteur non nul de E, alors Vect(z) = {Az, A € K} est une droite vectorielle
de E.

e Si z et y sont deux vecteurs non colindaires de R?, alors Vect(z,y) = { Az + py, (A, ) € R?}
est un plan vectoriel de base (z,y).

e Si p < n, Vect(z1,...,x,) C Vect(zy,...,z,).

Remarque 5. Plus généralement, pour toute partie A C E, on définit Vect(A) comme étant
I’ensemble des combinaisons linéaires des vecteurs de A. C’est le plus petit-sous espace vectoriel
de E qui contient A.

Année 2025-2026 5/ 23 Alex Panetta



PCSI Lycée Fénelon

17.2 Familles libres, familles génératrices, bases

17.2.1 Familles libres

Définition 4: Famille libre

On appelle famille libre d’'un K-espace vectoriel E toute famille (z1,...,2,) de vecteurs
de F telle que

V(AL oo An) €K™ Mg = 05 = V1 < k < n, A = 0.
k=1

Une famille qui n’est pas libre est dite liée, i.e. la famille (x1,...,z,) est liée s’il existe
(A, 5A0) #(0,...,0) € K™ tels que

Z )\kxk = OE.
k=1

Remarque 6. e Une famille qui contient le vecteur nul n’est jamais libre. En effet, pour toute
famille (0g, z1,...,x,) de vecteurs de E, on a

1x0p+0x21+---4+0x2, =08

n
donc \g0g + Z)\kwk = 0p avec (Ao, A1,,A\n) = (1,0,...,0).
k=1
e Si z est un vecteur non nul de E, alors la famille (z) est libre puisque A\x =0 = A = 0.
e Soient (z,y) une famille de deux vecteurs de R2.
Alors la famille (z,y) est libre si et seulement si x et y ne sont pas colinéaires.

1. Supposons que la famille (z,y) est libre.
S’il existe un réel A tel que z = Ay (loisible car y # (0,0) puisque la famille (x,y) est
libre), alors 1 x z — A X y = O, ce qui contredit la liberté de la famille (x,y).

2. Supposons que x et y ne soient pas colinéaires.
Soient (A, 1) € R? tels que Az + uy = Og.
Supposons par exemple que A £ 0. On a alors x = —gy donc x et y sont colinéaires, ce
qui est absurde. Nécessairement, A\ = 0.

Ainsi, py = O et puisque x et y ne sont pas colinéaires, y ne peut pas étre le vecteur nul
donc p =0, d’out (A, ) = (0,0), ce qui prouve la liberté de la famille (z,y).

e Soit (z1,...,xy,) une famille de n vecteurs d’un K-espace vectoriel E.
Soit p < m. On suppose que la famille (z1,...,2z)) est liée. Il existe alors des scalaires
p
(A, ) #(0,...,0) € KP tels que Z)\kﬂfk =0g.
k=1

Ainsi, en posant pour tout k € [p+ 1,n],\rx =0, on a

n
Z Az = 0p
k=1

avec (A1,...,Ap) # (0,...,0) donc la famille (x1,...,z,) est liée.
Ceci montre que toute famille contenant une sous-famille liée est liée.
Par contraposée, on obtient que toute sous-famille d’une famille libre est libre.
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e Une famille (x1,...,zy) est liée si et seulement si I'un des vecteurs de la famille s’écrit
comme combinaison linéaire des autres.
En effet, supposons que la famille est liée, i.e. il existe (A1,...,\,) # (0,...,0) € K" tels

n
que Z)\k:nk =0g.
k=1

1
Par hypothese, il existe i € [1,n] tel que A; # 0 donc z; = - Z ALTk.
Y ki
Réciproquement, supposons qu'il existe i € [1,n] tel que z; = Z Meh, O (AL, ooy Nim 1, Aig Ly oy Ap) €
ki
Kn—l
’ n
Alors Z)\kxk = O en posant \; = —1. Il existe donc (\1,...,A,) # (0,...,0) € K" tels
k=1
n
que Z)\kxk = 0p, ce qui prouve que la famille (z1,...,x,) est liée.
k=1

Proposition 3

Soit F un K-espace vectoriel.

Soit (x1,...,x,) une famille libre de vecteurs de E. Soit 2,41 € E.
Alors la famille (z1, ..., 2Ty, Tpy1) est libre si et seulement si @, 41 ¢ Vect(xy,...,z,).
Démonstration. En effet, d’apres la remarque précédente, si (x1,...,Zn, Tnt1) est libre,
alors zp4+1 ¢ Vect(zy,...,zy).
Réciproquement, supposons que 2,1 ¢ Vect(z1,...,x,). Montrons que la famille (z1, ..., Zp4+1)
est libre.
n+1
Soit (A1, .., Ans Any1) € K tel que Z)\k:nk =0g.
k=1
1 n
Si Api1 # 0, alors xp01 = o Z)\kack € Vect(x1,...,2,), ce qui est contraire a I’hy-
T
pothese. =
n
Ainsi, A\, 11 = 0, et on obtient Z Az = 0p, d’ou pour tout k € [1,n], A\x = 0 par liberté
k=1
de la famille (z1,...,2,). On en déduit que pour tout k € [1,n + 1], \x = 0, ce qui prouve la
liberté de la famille (x1,...,Zp41)- [ |

Exemple 5. e Soient x = (1,1),y = (2,—1) et z = (—6,3). La famille (z,y) est libre tandis
que la famille (y, z) est liée.

La famille (z,y, z) est donc liée puisqu’elle contient une sous-famille liée.

e La famille (z,y,2) avec z = (1,1,-1),y = (1,2,3) et z = (—1,1,9) est liée puisque
z = 2x — 3y donc 2x — 3y + z = (0,0, 0) est une combinaison linéaire nulle des vecteurs (z,y, z)
a ccefficients non tous nuls.

e La famille (cos,sin) est une famille libre du R-espace vectoriel C°(R,R).

En effet, soit (\, ) € R? tels que pour tout = € R, Acos(z) + psin(z) = 0.

Pour z = 0, on obtient A = 0 et pour = 7, on obtient y = 0 donc (A, ) = (0,0), ce qui
prouve la liberté de la famille (cos, sin).

e Soient (n,p) € (N*)2. Pour tout (i,5) € [1,n] x [1,p], on considere la matrice E;; €
M,, »(K) définie pour tout (k,l) € [1,n] x [1,p] par

(Ei )kt = i 10j1,
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c’est a dire la matrice dont tous les coefficients sont nuls, excepté le ccefficient en i-eme ligne et
j-eme colonne qui vaut 1.
Alors la famille (E; j)1<i<n est une famille libre.

1<i<p
En effet, s’il existe des scalaires (a;j)1<i<n € K™ tels que
NS
> aijEi; =0,
1<i<n
1<y<p

alors la matrice E a; ;I; j est la matrice nulle et ses ceefficients sont les a; ; donc pour tout

1<isn
1<j<p
(2,7) € [1,n] x [1,p],a;; = 0, ce qui prouve que la famille (E; ;)1<i<n est une famille libre.
I<j<p
e Pour tout n € N, la famille (1, X, ..., X™) est une famille libre dans K[X].

n
En effet, soient (aq,...,a,) € K" tels que Z axX® = 0. Par unicité des ceefficients d’un
k=0
polynoéme (en 'occurence, du polynéme nul), on en déduit que pour tout k € [0,n], ar = 0, ce

qui prouve que la famille (1, X, ..., X™) est libre.
Plus généralement, on peut montrer que toute famille de polynomes a degrés distincts est
libre dans K[X].

Proposition 4: Unicité des ceefficients d’une combinaison linéaire d’une famille

libre de vecteurs

Soit (z1,...,%,) une famille libre de vecteurs d’un K-espace vectoriel E.
Supposons qu'il existe des scalaires (A1,...,\,) € K" et (A],...,\,) € K" tels que

n n
Z )\kxk = Z )\;ka
k=1 k=1

Alors pour tout k € [1,n], A\ = X,

Démonstration. Par hypothese, on a

n

Z()\k — )\;C){Ifk = OE.

k=1

Puisque la famille (z1, ..., zy) est libre, on en déduit que pour tout k € [1,n], Ay = A}, d’ou
le résultat. n

Remarque 7. Ceci justifie qu’on puisse identifier les coefficients dans des expressions de la
forme

Vo € R,acos(x) + bsin(x) = a’ cos(x) + V' sin(z)

et conclure que a =a’ et b=1'.
n

n
De méme, si pour un certain n € N et pour tout z € R, on a g apz = g bia”, alors on

k=0 k=0
peut conclure que pour tout k € [0,n], ax = bg.
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17.2.2 Famille génératrice

Définition 5: Famille génératrice

On appelle famille génératrice d'un K-espace vectoriel E toute famille (z1,...,z,) de
vecteurs de E telle que Vect(x1,...,x,) = E.

On dit que la famille (x1,...,z,) engendre l'espace vectoriel E.
Remarque 8. e Pour montrer qu’une famille (z1,...,x,) engendre F, il suffit de montrer que
tout vecteur de E peut s’écrire comme combinaison linéaire de vecteurs de la famille (z1, ..., x,).
En effet, on a toujours Vect(zy,...,z,) C E donc il suffit de montrer que E C Vect(z1,...,Zy,).

e Si une famille de vecteurs de E contient une sous-famille de vecteurs qui engendre F, alors
cette famille engendre elle aussi F.

En effet, soit (z1,...,z,) une famille de vecteurs de E.

Supposons qu’il existe p < n tel que Vect(xy,...,z,) = E.

Alors Vect(z1,...,zp) C Vect(zy,...,z,) donc E C Vect(zy,...,zy), ce qui prouve que
E = Vect(z1,...,2,).

e On a la méme définition pour tout sous-espace vectoriel F' de F. Ainsi, si F' est un sous-
espace vectoriel de F, une famille génératrice de F' est une famille de vecteurs (z1,...,x,) de
F telle que Vect(z1, ..., x,) = F.

Exemple 6. e La famille (;, ;) oni = <(1)> et j = <(1)) est une famille génératrice de R? puisque

pour tout @ = Z) €R2 on a @ = ai + bj donc Vect(g, _") =R2
1 0 0
e La famille (Z, 7, E) oni=[0],7=[1] etk =|0] estune famille génératrice de R3
0 0 1
a
puisque pour tout ¥ = | b | € R3, on a @ = ai + bj + ck donc Vect(;, 7, E) = R3.
c

e Soit D la droite du plan R? d’équation cartésienne 2z —y = 0 < y = 2z.

T T T 1
On a alors <y> ED@y—2x®<y>— <2x>—x(2>
donc
p={o(D)rer)

Ceci montre que D = Vect <<;>>

e Soit P le plan de I’espace R® d’équation cartésienne 3z — y + z = 0.

T T T 1 0
Onaalors |y| ePey=3r+ze |y|=|3x+2z|=2|3]+2|1] donc
z z z 0 1
1 0
P=X=z(3|+2z|1],(z,2) eR?
0 1
1 0
Ceci montre que P = Vect 31,11
0 1
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e Soit D la droite de I'espace définie par le systeme d’équations cartésiennes

—x+3y—z = 0 z = —x+3y z = —x+3y z = Ty
{ 2r+y+ 2 —0(:}{1'—1—43/— 0 @{m— —4y < r = —dy
T T —4y —4
Onaalors |yl eD&e |y | = Y =y | 1 | donc
z z Ty 7
—4
D=}yl 1 |,yeR
7
—4
Ceci montre que D = Vect 1
7
e Soient (n,p) € (N*)2. La famille de matrices (Eij)i<i<n définie précédemment est une

1<j<p
famille génératrice de M,, ,(K) puisque pour toute matrice A = (a; j)1<i<n de M, ,(K), on a

1<j<p
A=) ai;Ei

1<i§n
1<j<p

donc Vect {E; j, (4,7) € [1,n] x [1,p]} = M, ,(K).
e Soit n € N. La famille (1, X,..., X™) est une famille génératrice de K,[X] car pour tout
P € K,[X], il existe (ag, .. .,a,) € K™ tels que

n
P = Zaka
k=0
donc Vect(1, X, ..., X") = K,[X].

17.2.3 Bases

Définition 6: Base

On dit qu'une famille (z1, ...,z,) de vecteurs de E est une base de FE si elle est libre et
génératrice.

Exemple 7. e Pour tout n € N, le K-espace vectoriel K" admet une base dite canonique
constituée des vecteurs

er = (1,0...,0),e2 = (0,1,0,...,0),e3 = (0,0,1,0,...,0),...,en = (0,...,0,1).

e Reprenons l'exemple vu précédemment de la droite D du plan R? d’équation cartésienne
20 —y = 0.
1
Une base de D est le vecteur <2> .

e Reprenons Iexemple vu précédemment du plan P de I'espace R3 d’équation cartésienne
3r—y+2z=0.

1 0
Une base de P est le couple de vecteurs 31,
0 1
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e Soient (n,p) € (N*)2. La famille de matrices (F; ;)1<i<n définie précédemment est une
I<ysp
base de M,, ,(K) appelée base canonique de M,, ,(K).

e Soit n € N. La famille (1, X,...,X") est une base de K, [X]| appelée base canonique de
K, [X].

Théoréme 1: Coordonnées d’un vecteur dans une base

Soit E un K- espace vectoriel muni d’une base B = (ey, ..., ey).
Soit « un vecteur de E.
Alors il existe un unique n-uplet de scalaires (z1,...,z,) € K" tel que

n
xr = g TE€r = T1€1 + -+ + Tnep.

k=1
Les scalaires (z1,...,2,) sont appelés les coordonnées du vecteur x dans la base B =
(e1,-..,€n).
z1
On note Matg(z) = | @ | la matrice colonne des coordonnées du vecteur x dans la base
TIn
B.
Démonstration. Puisque la famille (ej,...,e,) engendre FE, i.e. Vect(ey,...,e,) = E,
n
x € Vect(ey,...,ey), donc il existe des scalaires (x1,...,z,) € K" tels que x = kaek.
k=1
En outre, puisque la famille (eq,...,e,) est une base de E, elle est a fortiori libre donc les
scalaires (x1,...,2,) sont uniques comme démontré dans la Proposition 17.2.1. |

Remarque 9. e En apppliquant les regles usuelles de calcul dans les espaces vectoriels, on
obtient que pour tout (z,y) € E2, pour tout (), u) € K2,

Matg(Az + py) = AMatg(z) + pMatp(y).

e Le résultat est en fait une équivalence, c’est a dire qu'une famille de vecteurs (eq, ..., e,)
est une base de F si et seulement si tout vecteur de F s’écrit comme une unique combinaison
linéaire des vecteurs (eq, ..., e,). Montrons la réciproque du résultat démontré dans le théoreme
ci-dessus.

On suppose que pour tout x € F, il existe un unique n-uplet (x1,...,z,) € K" tel que

n
xr = E TkEL.
k=1

C;ci signifie que E = Vect(ey,...,ey,) donc la famille (eq,. .., ey,) est une famille génératrice
de FE.

n n

Par ailleurs, si Zxkek =0 = ZO X e, par unicité de la combinaison linéaire, on en
k=1 k=1

déduit que pour tout k € [1,n],xx = 0, ce qui prouve que la famille (eq,...,e,) est libre.

Finalement, (e1,...,e,) est bien une base de E.

Exemple 8. e Pour tout vecteur (z1,...,z,) de K", ses coordonnées dans la base canonique
T

de K" sont

Tn

Année 2025-2026 11 /23 Alex Panetta



PCSI Lycée Fénelon

e Soit P le plan de I’espace R? d’équation cartésienne 3z —y+2z = 0. Le vecteur @ = (1,1, —2)
appartient & P et on a 4 = (1,3,0) — 2(0,1,1) donc les coordonnées du vecteur @ dans la base

((1,3,0),(0,1,1)) sont <—12>

n
e Soit n € N. Pour tout P = Z arX"* € K[X], les coordonnées de P dans la base canonique

k=0
ag
ax
de K, [X] sont | .

an
Définition 7: Matrice d’une famille de vecteurs dans une base
Soit E un K-espace vectoriel muni d’une base B = (e1,...,ey,).
Soient (z1,...,zp) une famille de p vecteurs de E.

n
Pour tout 1 < j < p, on note x; = E xi j€;, ou les (x;j)1<i<n sont les coordonnées de

x; dans la base B. i
On appelle matrice de la famille (z1,...,2,) dans la base B la matrice
Ti1 T2 ... Tip
Matg(z1,...,2p) = x21 1‘22 x?’p € M, ,(K)
T 1l 1'7;72 e a:,'hp

ou les colonnes sont les matrices colonnes des coordonnées des vecteurs x; dans la base

B.

17.2.4 Somme de deux sous-espaces vectoriels

Définition 8: Somme de deux sous-espaces vectoriels

Soit E un K-espace vectoriel. Soient F' et G deux sous-espaces vectoriels de E.
On appelle somme de F' et G ’ensemble

F+G={z+y,(r,y) e F xG} CE.

Remarque 10. e On a clairement F'C FF+ G et G C F 4+ G.
e Si F' est un sous-espace vectoriel de E, alors F + E = E et F' 4+ {0g} = F.
e Si F' = Vect(x1,...,2,) et G = Vect(y1,...,Yp), alors F+G = Vect(x1,...,Tn, Y1, -, Yp)-

Exemple 9. Si £ = K[X], F = Vect(X) et G = Vect(X?, X*), alors
F 4 G = Vect(X, X%, X*) = {aX* + bX? + ¢X, (a,b, ¢) € K3}.

Proposition 5

Soit E un K-espace vectoriel. Soient F' et G deux sous-espaces vectoriels de E.
Alors F' 4+ G est un sous-espace vectoriel de E.

Démonstration. e Tout d’abord, puisque F' et G sont des sous-espaces vectoriels de F,
alors 0Op € FNG donc Og = O + Op € F+G.
—~— O~~~

cFr eG
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e Soient (u,v) € (F + G)2. Soient (A, u) € K.

Par définition de F' + G, il existe un couple (x,y) € F x G tel que u = x + y et un couple
(,y) € Fx G tel quev=1a'+1y.

Alnsi, Au+pv = Az +y) + p(@’ +¢') = Az + pa’) + Ay + py').

Puisque (z,2') € F? et que F est un sous-espace vectoriel de E, on a Az + pz’ € F. De
meéme, \y + py’ € G donc A\u + uv € F + G.

On a donc bien montré que F' + GG est un sous-espace vectoriel de F. |

Remarque 11. e En fait, F' + G = Vect(F U G).

En effet, puisque F C F+Get G C F+G,ona FUG C F+ G. Ainsi, F'+ G est un
sous-espace vectoriel de E qui contient F'U G donc Vect(FUG) C F' + G.

Réciproquement, tout vecteur de F + G est une combinaison linéaire de vecteurs de FFU G
donc F' + G C Vect(F UG) d’ou finalement 1'égalité F' + G = Vect(F U G).

Ainsi, F + G est ’ensemble des combinaisons linéaires des vecteurs de F' ou G.

e En conséquence, F'+ G = F si et seulement si G C F.

Définition 9: Somme directe de deux sous-espaces vectoriels

Soit £ un K-espace vectoriel, soient F' et G deux sous-espaces vectoriels de E.

On dit que la somme F'+ G est directe si pour tout u € F'+ G, il existe un unique couple
(z,y) € F x G tel que u =z +y.

Dans ce cas, on note F + G = F & G.

Remarque 12. Autrement dit, F' + G = F @® G signifie que pour tout (x,z’) € F?, pour tout

(y,y') € G2, /
x+y:xl+yl<:>{x -7
y =y

Proposition 6: Caractérisation de la somme directe de deux sous-espaces vec-
toriels

Soit F un K-espace vectoriel, soient F' et G deux sous-espaces vectoriels de E.
Les trois assertions suivantes sont équivalentes :

1. F+G =F & G;
2. V(z,y) e FxG,(r+y=0g < x=y=0g);
3. FNG = {0g).

Démonstration. ¢ Montrons (1) = (2). Supposons que (1) est vraie.
Soient (z,y) € F x G. Si x =y = 0g, on a clairement z +y = 0p.
Réciproquement, supposons que z + y = Og. On a alors

r + y = 0 + Op
e e
er e €r e
donc par définition d’une somme directe, ceci implique que x =y = 0p.
e Montrons (2) = (3). Supposons que (2) est vraie, et montrons que F' NG = {0g}.
Puisque F' et G sont des sous-espaces vectoriels de E, on a O € F et Og € G donc
{0 E‘} Cc FnG.
Montrons 'inclusion réciproque. Soit z € F N G.
Puisque = € G et que G est un sous-espace vectoriel de F, alors —x € GG donc

r + (—a:) = OE.
NI/
eF cq
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D’apres la propriété (2), ceci implique que x = —z = O donc FFNG C {0g} et finalement,
FNG = {OE}

e Montrons (3) = (1).

Supposons que F'NG = {0g}. Montrons que F '+ G = F & G.

Soit u € F + G. Supposons qu'il existe (z,2') € F2, (y,y/) € G tel que u =z +y = 2’ + /.
Montrons que z = 2’ et y = v/.

Par hypotheése, on a z — 2’ = 3 — y. Puisque (z,2') € F? et que F est un sous-espace
vectoriel de E, alors x — 2’ € F. De méme, ¢y —y € G.

—— —
Ainsi, z — 2/ =y —ye FNG = {0g} donc{ :;, ;v Or Jie.x =12 et y =1/, ce qui

prouve que la somme F' + G est directe.
|

Exemple 10. e Soit £ = R3. Soit ' = Vect(1,2,3) et G = Vect(2,1, 3).
Puisque FNG ={(0,0,0)},ona F+G=F & G.
e Soit £ = K[X]. Soit F' = Vect(X, X?) et G = Vect(1, X?).
On a F'NG = Vect(X?) # {Og[y]} donc la somme F + G n'est pas directe.

Définition 10: Sous-espaces supplémentaires

Soit E un K-espace vectoriel. Soient F' et G deux sous-espaces vectoriels de E.
On dit que F' et G sont supplémentaires dans F si

E=Fa¢d.

Autrement dit, pour tout u € FE, il existe un unique couple (z,y) € F x G tel que
uU=x-+y.

Exemple 11. e Soit £ = R3, F = Vect((1,0,0),(0,1,0) et G = Vect(0,0,1). Alors E = F®G.
e Soit £ = K3[X], F = Vect(1, X?) et G = Vect(X, X3). Alors E = F @ G.
e Soit S, (R) (resp. A,(R)) le sous-espace vectoriel des matrices symétriques (resp. anti-
symétriques) de M, (R).
Alors M, (R) = S, (R) & A, (R).

Remarque 13. On peut avoir F'+ G = E sans que F' et GG soient en somme directe.

Par exemple, si £ = R3, que F' = Vect((1,0,0), (0,1,0)) et G = Vect((1,0,0), (0,0,1)), on a
F+G =R3 mais FNG = Vect(1,0,0) # {(0,0,0)} donc F et G ne sont pas en somme directe.

17.3 Dimension d’un espace vectoriel

17.3.1 Espace vectoriel de dimension finie

Définition 11: Espace vectoriel de dimension finie

On dit que le K—espace vectoriel E est de dimension finie s’il posseéde une famille
génératrice finie.

Exemple 12. Les espaces vectoriels K", M,, ,(K) et K,,[X] sont de dimension finie.
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Théoréme 2: Théoréme de la base extraite

Soit E un K-espace vectoriel de dimension finie admettant une famille génératrice

(e1,...,€n).
On peut extraire de la famille (e, ..., e,) une base de E, i.e. quitte a renuméroter les e;,
il existe p < n tel que (eq,...,e,) est une base de E.

Démonstration. e Si F est ’espace vectoriel nul, pour tout 1 < i < n,e; =0g.
Supposons dorénavant que E # {0g}. A fortiori, il existe i € [1,n], tel que e; # Og.

e Si la famille (ey,...,e,) est libre, c’est une famille libre et génératrice de E, donc c’est
une base de E.

e Supposons que la famille (eq, ..., e,) n’est pas libre. Soit p < n le cardinal de la plus grande
sous-famille libre de la famille (eq,...,e,). (On sait que p > 1 puisque la famille contient au
moins un vecteur non nul.)

Quitte & renuméroter les vecteurs, on peut supposer que la famille (eq,...,e,) est libre.
Montrons alors que Vect(eq, ..., e,) = Vect(eq, ..., ep).

On a clairement Vect(ey,...,e,) C Vect(ey,...,e,). Montrons I'inclusion réciproque.

Soit i € [p+1,n].

Par hypothese, la famille (eq,...,ep,e;) est liée (puisqu’elle contient p + 1 vecteurs) donc
e; € Vect(eq,...,ep) (en effet, puisque (ey,...,ep,) est libre, alors (eq,...,ep, €;) est libre si et
seulement si e; ¢ Vect(eq,...,ep)).

Le sous-espace vectoriel Vect(eq,...,e,) contient donc tous les vecteurs e; pour i € [1,n].
Or, Vect(ey,...,e,) est le plus petit-sous espace vectoriel de E & contenir tous les vecteurs e;
pour i € [1,n] donc Vect(eq,...,e,) C Vect(eq,...,ep).

Finalement, on a donc bien Vect(e1,...,e,) = Vect(ey,...,e,) = E.

La famille (eq,...,e,) est donc libre et génératrice dans E : c’est donc une base de E. W

Remarque 14. e On vient donc de montrer le théoreme de la base extraite : de toute famille
génératrice, on peut extraire une base.

e Une version plus générale est la suivante : si (x;)1<i<n, engendre E et si (x;);er est libre
pour une certaine partie I de {1,...,n}, alors il existe une partie J de {1,...,n} contenant [
pour laquelle (z;);jcs est une base de E.

En effet, il suffit de rajouter des vecteurs de la famille (z;)1<;<, dans la famille libre (x;);cr
jusqu’a obtenir la plus grande famille libre possible et la preuve précédente montre que c’est
alors une base de E.

1 0 2
Exemple 13. Soit F le sous-espace vectoriel de R? défini par F' = Vect 21,1-21),16
3 1 5
1 0 2 2 1 0
La famille 21,1-2),1(6 est liée puisque 6| =2 2] — | -2
3 1 5 5 3 1
La famille
1 0
21,1 -2 est donc une famille libre de plus grand cardinal possible incluse dans la fa-
3 1
1 0 2 1
mille 21,1-21/,16 donc elle constitue une base de F' et on a donc F' = Vect 2],
3 1 5 3

Corollaire 1: Existence de bases

Tout espace vectoriel de dimension finie admet une base.
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Démonstration. Par définition, un espace vectoriel de dimension finie admet une famille
génératrice finie. D’apres le théoreme précédent, il admet donc une base. |

17.3.2 Dimension d’un espace vectoriel

Théoréme 3

Soit E un K-espace vectoriel de dimension finie. Soit (eq,...,e,) une famille génératrice
de F.
Alors toute famille constituée de n + 1 vecteurs de E est liée.

Démonstration. Nous allons prouver ce résultat par récurrence sur n € N*,
e Initialisation : pour n = 1. Supposons que E = Vect(ey), ol e est un vecteur non nul de

Soient z et y deux vecteurs distincts de F.

Alors il existe (\,u) € K2 tels que z = ey et y = uep. Puisque les vecteurs z et y sont
distincts, ils ne peuvent pas étre tous les deux nuls. Supposons sans perte de généralité que
x # 0 donc X\ # 0.

Ainsi, y = gx donc les vecteurs x et y sont liés.

e Hérédité : Soit n € N*. On suppose que si un espace vectoriel admet une famille génératrice
a n éléments, alors toute famille constituée de n + 1 vecteurs de E est liée.

Montrons la propriété au rang n+1. Supposons que E = Vect(ey, ..., €,41). Soit (21, ..., Tpi2)
une famille de n + 2 éléments de E. Montrons que la famille (z1,...,2,12) est liée.
Pour tout 1 < j < n+ 2, il existe des scalaires (x1j,...,Zn41;) € K"+ tels que
n+1
l'j = Z :Ui,je,'.
i=1
Si pour tout 1 < j < n+2,2,41,; =0, alors pour tout 1 < j < n+2,z; € Vect(zq,...,zy)
donc par hypothese de récurrence, les vecteurs (z1, ..., Tn12) sont liés.

Supposons dorénavant qu’il existe j € [1,n + 2] tel que x,41; # 0. Quitte & renuméroter
les vecteurs xj, on peut supposer que Zp41,1 7 0.

P )
Posons pour tout 2 < j <n+2,y; = x; — b o

Tn+1,1
Alors, pour tout 2 < j <n+2,y; € Vect(er,...,en).

La famille (yo, . . . ,yn+2) est donc constituée de n+1 vecteurs appartenant a Vect(eq, ..., ey,).
Par hypothese de récurrence, les vecteurs (yo, ..., yn+2) sont liés donc il existe des scalaires

(A2, ..oy Any2) # (0,...,0) tels que

n+2 n—+2

n+2 n+2
Z)\]yJ_OE@Z)\ <xj n+1,jx>:0E<:>_ Z}\ Tn+1,5 1 +Z)\x]—OE

Tn+1,1 Tn+1,1

C’est une combinaison linéaire nulle des vecteurs (z1,...,Z,+2) & ceefficients non tous nuls
puisque (Ag,...,Apq2) # (0,...,0). Ainsi, la famille (z1,...,2,42) est liée, ce qui prouve la
propriété au rang n + 1 et acheve la récurrence. |

Remarque 15. e A fortiori, si Vect(ey,...,e,) = E, toute famille de vecteurs de E constituée
de plus de n + 1 vecteurs est liée.

e Par contraposée, on en déduit que si Vect(ei,...,e,) = E, et si (z1,...,zp) est une famille
libre de F, alors p < n. Moralement, une famille libre a toujours moins de vecteurs qu’une
famille génératrice.
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Corollaire 2: Dimension d’un espace vectoriel

Soit E un K-espace vectoriel de dimension finie.
Alors toutes les bases de F ont méme cardinal, et ce nombre s’appelle la dimension de
E. On le note dim(E).

Démonstration. Soient (e1,...,e,) et (€], ...,¢,) deux bases de E.
Puisque la famille (e1,...,e,) est libre et Vect(el, ..., e,) = E, alors n < p.
De méme, puisque la famille (e}, .., ej) est libre et Vect(ey,...,e,) = E, alors p < n.

Finalement, on a bien p = n donc toutes les bases de F ont méme cardinal. |

Exemple 14. e Pour tout n € N* K" est un K-espace vectoriel de dimension n puisqu’il admet
comme base canonique B = (€;)1<i<n o1 €1 = (1,0,...,0),...,e, = (0,...,0,1).

e C est un R-espace vectoriel de dimension 2 puisqu’il admet comme base (1,1).

e Pour tout n € N,K,[X] est un K-espace vectoriel de dimension n + 1 puisqu’il admet
comme base canonique (1, X, ..., X").

e Pour tout (n,p) € (N*)2, M,, ,(K) est un K-espace vectoriel de dimension np puisqu’il

admet comme base canonique les matrices (E; j)1<i<n-
1<i<p
e L’espace vectoriel réel des solutions de ’équation différentielle y' 4+ 3y = 0 (resp. y" + 3y’ +

3y = 0) est de dimension 1 (resp. 2).
e [’espace vectoriel des suites réelles vérifiant la relation de récurrence linéaire d’ordre 2
suivante : Vn € N, w12 = upy1 + uy, est un espace vectoriel de dimension 2.

Théoreme 4: Cardinal d’une famille libre et d’une famille génératrice

Soit £ un K-espace vectoriel de dimension 7.
1. Toute famille libre de F a au plus n éléments.

2. Toute famille génératrice de £ a au moins n éléments.

Démonstration.

1. E admet une famille génératrice a n éléments, donc d’apres le théoreme 17.3.2 toute famille
constituée de plus de n + 1 éléments est liée. Par contraposée, toute famille libre de E a
au plus n éléments.

2. Soit (eq,...,e,) une base de E. Soit (z1,...,zp) une famille génératrice de E. Puisque la
famille (eq,...,e,) est libre, on déduit du théoreme 17.3.2 que n < p donc toute famille
génératrice a au moins n éléments.

17.3.3 Théoreme de la base incomplete

Théoreme 5: Théoreme de la base incompléete

Soit E un K-espace vectoriel de dimension dim(F) =n € N*.
Soit (e1,...,ep) une famille libre de E.
Alors :

1. Sip=mn,(e1,...,ep) est une base de E.

2. Sip < n, il existe des vecteurs (ep+1,...,e,) de E tels que (eq, ..., e,) est une base
de F.

Démonstration.
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1. On suppose que p = n. La famille (e, ..., e,) est une famille libre de E, avec dim(E) = n.
Montrons que Vect(eq,...,e,) = E.

On a toujours Vect(ey,...,e,) C E. Montrons que E C Vect(ey,...,ey,).

Soit x € F.
Puisque la famille (ey, ..., e, z) contient n+ 1 vecteurs de F qui est un espace vectoriel de
dimension n, c’est une famille liée. Puisque (e1, ..., e,) est libre, la famille (eq,..., ey, x)
est liée si et seulement si x € Vect(ey,...,ey). On en conclut que z € Vect(ey,...,ey,)
d’out l'inclusion E C Vect(ey,...,ep).
On a donc bien prouvé que E = Vect(ey,...,ep).
Finalement, la famille (eq, ..., e,) est une famille libre et génératrice de E : ¢’est donc une
base de E.

2. Supposons que p < n. La famille (eq, ..., e,) ne peut donc pas étre une base de E. Puisque
c’est une famille libre, elle n’est donc pas génératrice, i.e. Vect(er,...,ep,) # E.
Il existe donc un vecteur ey ¢ Vect(eq, ..., ep). Puisque (eg,. .., ep) est une famille libre,
on sait que la famille (eq, ..., ept1) est libre.
Si Vect(eq,...,epr1) = E (possible si n = p+1), la famille (ey, ..., ept1) est alors libre et
génératrice, donc c’est une base de E. Sinon, il existe e,12 ¢ Vect(er,...,ept1) et par le
méme argument que précédemment, la famille (eq, ..., ep42) est libre.
On réitere ce procédé jusqu’a avoir trouvé des vecteurs (ep41,...,ey) tels que la famille
(e1,...,en) est libre. On aura donc obtenu une famille libre & n éléments dans un espace

vectoriel de dimension n : c’en est donc une base d’apres le premier alinéa.

Remarque 16. e Autrement dit, une famille libre de vecteurs de E peut toujours se compléter
en une base de F.

e Deux vecteurs non colinéaires de R? forment une famille libre de R? qui est un R-espace
vectoriel de dimension 2. Ils forment donc une base de R2.

e Trois vecteurs non coplanaires de R3 forment une famille libre de R? qui est un R-espace
vectoriel de dimension 3. Ils forment donc une base de R3.

e Plus généralement, il faut retenir le résultat suivant : dans un espace vectoriel de dimension
n, toute famille libre contenant n vecteurs est une base.

Corollaire 3: Base de polynomes a degrés échelonnés

Soit n € N.

Soit (Py, ..., P,) € (K,[X])"*! une famille de polynomes & degrés échelonnés, i.e. pour
tout k € [0,n], deg(Py) = k.

Alors (P, ..., P,) est une base de K,[X].

Démonstration. Montrons que la famille (P, ..., P,) est libre.

n
Soient (Ao, ..., An) € R™" tels que Z Ak Py = Og[y)- Puisque les degrés sont échelonnés, si

k=0
n

An # 0, le ceefficient dominant de Z A Py serait A\pa, # 0, ol ay, est le ceefficient dominant de

k=0
n

P,,. Ainsi, on aurait Z At Py # Og[x], ce qui est absurde. Nécessairement, A, = 0, puis par une

k=0
récurrence descendante, on montre successivement que A,—1 =--- = A1 = Ay = 0.
Ainsi, la famille (Pp, ..., P,) est une famille libre consituée de n + 1 vecteurs de K,,[X], qui
est de dimension n + 1 : ¢’en est donc une base. |
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Exemple 15. La famille (2, X — 1, X? + 3X + 2) est une base de Ry[X].

Corollaire 4: Formule de Taylor polynomiale

Soit n € N. Soit P € K[X] de degré n. Soit a € K.
Alors

" pk)(qg
P(X):ZP ( )(X—a)k

k!
k=0

ott P%) désigne la dérivée k-eme de P.

Démonstration. D’apres le corollaire précédent, la famille ((X — a)¥)ocr<n est une base

de K, [X] puisque c’est une famille de polynémes a degrés échelonnés.
n

Ainsi, il existe des coordonnées (A;)o<k<n telles que P = Z Ap(X — a)k.
k=0
Pour tout i € [0,n], on a alors
P i )\kik (X —a)Ft
= " (k=)

, . . : , P (a)

En évaluant en a, on obtient pour tout i € [0,n], P®(a) = \si! donc \; = —
il
. - 2L Pk (q)

Ainsi, P = Z Me(X —a)f = Z i (X —a)k. [ |

k=0 k=0

Théoréme 6

Soit £ un K-espace vectoriel de dimension n.

Soit (e1,...,e,) une famille génératrice de E.

Alors (eq,...,e,) est une base de E.

Démonstration. Il suffit de montrer que la famille (ey, ..., e,) est libre.

Supposons par ’absurde qu’elle ne ’est pas. D’apres le théoreme 17.3.1, on peut extraire
de la famille (e1,...,e,) une sous-famille (eq,...,e,) de la famille (eq,...,e,) (quitte & les
renuméroter) avec p < n telle que (e, ..., e,) forme une base de E.

On a donc une base de E qui contient p éléments avec p < n = dim(FE). Or, toute base de
F doit contenir n éléments. C’est donc une absurdité.

Nécessairement, la famille (eq,. .., e,) est libre et puisqu’elle est génératrice de E, c’est une
base de E. |

Remarque 17. Autrement dit, une famille génératrice d’'un espace vectoriel dont le cardinal
est égal a la dimension de I’espace est une base de I’espace.

Exemple 16. Soit P le plan de R? d’équation 2z 4+ y — z = 0.
Ona (z,y,2) EPez=2x4+y < (z,y,2) = (x,y,2x + y) = 2(1,0,2) + (0,1, 1).
Ainsi, les vecteurs (1,0,2) et (0,1,1) engendrent P donc P = Vect((1,0,2),(0,1,1)).
Puisque dim(P) = 2, d’apres le théoreme précédent, les vecteurs (1,0,2) et (0,1, 1) forment
une base de P.
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Théoreme 7: Sous-espaces vectoriels d’un espace vectoriel de dimension finie

Soit E un K-espace vectoriel de dimension finie. Soit F' un sous-espace vectoriel de E.

1. F est de dimension finie et dim(F) < dim(E).
2. On a dim(F') = dim(F) si et seulement si £ = F.

Démonstration.
Soit n = dim(FE) € N*.
1. o Si F'={0},dim(F) = 0.
e Supposons que F' # {0}. Il s’agit de montrer que F posséde une famille génératrice finie.

Soit (e1,...,ep) une famille libre de F. (On a nécessairement p < n, puisque la famille
(é1,...,€p) est une famille libre de E, puisque F' C E.)

Si Vect(eq,...,ep) = F, la famille (eq,...,e,) engendre F' et alors F' est de dimension
finie.

Si Vect(ey,...,ep) # F, alors il existe e, 1 € F' tel que ey ¢ Vect(eq,...,ep). On a alors
montré précédemment que la famille (eq,...,e,11) est libre.

Si Vect(ey,...,ep+1) = F, on a fini. Sinon on réitere le procédé et on trouve un vecteur
ept2 € F tel que (eq,...,epq2) est libre.

Le procédé s’arréte forcément a un moment puisque F' C E et que F est de dimension
finie égale a n donc toute famille libre de F, qui est une famille libre de E, admet au plus
n éléments.

Il existe donc nécessairement un entier g € [p, n] tel que la famille (eq, ..., eq) est libre et
Vect(ey,...,eq) = F.
La famille (eq,...,eq) est alors une famille libre et génératrice de F : c’est donc une base

de F et on a dim(F) = ¢ < n = dim(F).
2. ¢ Si E = F, il est clair que dim(E) = dim(F).
e Supposons que dim(F') = dim(F) = n et montrons que F = F.

Soit (eq, ..., ey) une base de F, i.e. (e1,...,ey,) est une famille libre de F et Vect(ey, ..., e,)
F.
Puisque F' C E, la famille (eq,...,e,) est une famille libre de E a n éléments, c’est donc

une base de F, a fortiori, une famille génératrice de E.
Ainsi, E = Vect(ey,...,e,) = F.
|

Remarque 18. En pratique, on utilise trés souvent ce théoreme pour montrer que deux espaces
vectoriels E et F' sont égaux. Pour cela, il suffit de vérifier que FF C FE (ou E C F) et que
dim(E) = dim(F).

17.3.4 Dimension d’une somme de deux sous-espaces

Proposition 7: Dimension d’une somme directe de deux sous-espaces

Soit E un K-espace vectoriel de dimension finie. Soient F' et G des sous-espaces vectoriels
de F tels que F'+ G = F & G.

Soient n = dim(F') et p = dim(G). Soient (f1,..., fn) et (g1,...,9p) des bases de F' et G
respectivement.

Alors la famille (fi,..., fn, 91,-..,9p) est une base de F' @& G.

On dit que la base (fi,..., fn,91,-..,9p) est une base adaptée a la somme directe FF & G.
En particulier, dim(F & G) = dim(F') + dim(G).

Année 2025-2026 20 /23 Alex Panetta



PCSI Lycée Fénelon

Démonstration.
e On a déja vu que F'+G = Vect(f1,..., fn,91,--.,9p) donc la famille (fi,..., fn,91,---,9p)
est une famille génératrice de F' & G.

e Montrons que la famille (fi,..., fn,01,...,9p) est libre.
n P

Soient (A1,..., Any i1, - - -5 f1p) € K"P tels que Z Aefr + Zﬂkgk =0g.
k=1 k=1

n p
uisque Lfk € I, que Hegr € et que la somme + es irecte, on salt que
Pui Nofw € F G et 1 F + G est direct it

=l pk:l
ceci implique que Z e fr = Z pigr = Op. Par liberté des familles (fi,..., fn) et (91,...,9p),
k=1 k=1

ceci implique que pour tout k € [1,n], \x = 0 et pour tout k € [1,p], ur = 0 donc la famille
(fi,- -y fng1,-- ., gp) est libre.

On a donc bien montré que (f1,..., fn,91,--.,9p) est une base de F' & G. Il en découle que
dim(F @ G) =n + p = dim(F) + dim(G). [ |

Proposition 8

Soit E un K-espace vectoriel de dimension finie. Soit F' un sous-espace vectoriel de E.
Alors il existe un sous-espace vectoriel G de F tel que £ = F @& G.

Démonstration. Posons n = dim(FE) et p = dim(F') < n = dim(FE).

Soit (fi,..., fp) une base de F. D’apres le théoreme de la base incomplete, il existe des
vecteurs (fpi1,. .., fn) tels que (fi1,..., fp, fp+1, .-, fn) est une base de E.

Posons G = Vect(fp+1,..., fn) et montrons que FF & G = E.

e Tout d’abord, on a bien F'+ G = Vect(fi,..., fp, fp+1,--.,fn) = E puisque la famille
(f1,.--, fn) est une famille génératrice de E.

e Montrons que F'+ G = F @ G. Pour cela, considérons (z,y) € F' x G tels que z +y = Og
et montrons que z =y = Og.

n n
Il existe des scalaires (A1, ..., Ap, Aps1,. .., Ap) € K" tels que x = Z Aefrety = Z e Sk
k=1 k=p+1

n
Ainsi, Op =x+y = Z Ak fre- Puisque la famille (fi,..., f,) est libre, on en déduit que pour
k=1
tout k € [1,n], Ay = 0 donc =z = y = Op, ce qui prouve que la somme est directe.

Finalement, on a bien F & G = E. |

Remarque 19. Cette propriété se résume ainsi : tout sous-espace d’un espace de dimension
finie possede un supplémentaire. Mais ce supplémentaire n’est pas unique.

Exemple 17. Soit E = R?, F = Vect(1,0),G = Vect(0,1) et H = Vect(1,1).
Alors E=F@&G=F&H.

Théoréme 8: Formule de Grassmann

Soit E un K-espace vectoriel de dimension finie.
Soient F' et G des sous-espaces vectoriels de F.
Alors
dim(F + G) = dim(F) 4+ dim(G) — dim(F N G).

Remarque 20. Dans le cas particulier ou F' et G sont en somme directe, on retrouve le résultat
du théoreme précédent.
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Démonstration. Soit H un supplémentaire de F'N G dans G de telle sorte qu’on ait
G=(FNG)® H.

Alors on a F'+ G = F + H. Montrons cette égalité par double inclusion.

On a H C G par définition donc l'inclusion F' + H C F + G est évidente.

Réciproquement, soit x € F + G. Alors il existe zp € F et xg € G tels que x = 2p + 2.
Or G = FNG @ H donc il existe yr € F NG (donc a fortiori yp € F) et yg € H tels que
xG =yr+yy. Ainsi, x = (xp +yr) + yg avec xp +yp € F et yy € H donc x € F + H, ce qui
montre l'inclusion '+ G C F'+ H. Ainsi, F+G=F + H.

Montrons maintenant que la somme F + H est directe. Pour cela, il suffit de montrer que
FNH=0.

Puisque H C G, H =HNGdonc FNH =FN(GNH)=(FNG)NH =0 puisque H et
F NG sont en somme directe. Finalement, on a

G=(FNG)&H
F+G=Fa&H.

Il en résulte que
dim(G) = dim(F N G) + dim(H)
dim(F + G) = dim(F) + dim(H)

d’ott dim(H) = dim(G) — dim(F N G) = dim(F + G) — dim(F), i.e.

dim(F + G) = dim(F) 4+ dim(G) — dim(F N G).

Exemple 18. Soit £ = R3, F' = Vect((1,0,0), (0,
On a F + G = Vect((1,0,0), (0,1,0), (0,0, 1))
On a alors dim(F' + G) = 3 et dim(F') 4+ dim(G)

bien la formule de Grassmann.

1,0)) et G = Veet((1,0,0), (0,0,1)).
=R3 et FNG = Vect(1,0,0).
—dim(FNG) =242—1=3. On retrouve

Corollaire 5: Caractérisation dimensionnelle des couples de sous-espaces

supplémentaires

Soit F un K-espace vectoriel de dimension finie. Soient F' et G des sous-espaces vectoriels
de E.

. . . F = E
Alors F et G sont supplémentaires si et seulement si { -G

dim(F) + dim(G) = dim(F)

Démonstration. e Supposons que F' et GG sont supplémentaires, i.e. F@®G = E. On a alors
bien F'+ G = E et dim(F) + dim(G) = dim(F & G) = dim(E).
e Supposons que { F+G - E
dim(F) +dim(G) = dim(E)
D’apres la formule de Grassmann, on a alors

dim(E) = dim(F + G) = dim(F) + dim(G) — dim(F N G) = dim(F) — dim(F N G)

dim(E)

donc dim(F N G) = 0. Ainsi, FNG = {0g}, ce qui prouve que F et G sont en somme directe.
On a donc bien F G = F + G = E, ie. F et G sont supplémentaires. |

Année 2025-2026 22 /23 Alex Panetta



PCSI Lycée Fénelon

17.3.5 Rang d’une famille de vecteurs

Définition 12: Rang d’une famille de vecteurs

Soit E un K-espace vectoriel de dimension finie.

Soit (x1,...,x,) une famille de vecteurs de E.

On appelle rang de la famille (xy,...,2,), et on note rg(zy,...,x,) la dimension de
Iespace vectoriel Vect(xy,...,zy), c’est-a-dire

rg(z1,...,oy) = dim (Vect(z,...,zy)) .

Exemple 19. Soit z; = (1,3,2),2z2 = (0,2,1),23 = (—1,1,0).
On a x3 = 2x9 — 1 donc la famille (z1, 9, z3) est liée. On constate que les vecteurs x; et
x9 sont libres donc (z1,x2) est une base de Vect(x1, z2,x3) et Vect(xy, z2,x3) = Vect(x1, x2).
Ainsi, dim(Vect(x1, 2, z3)) = 2 donc la famille (z1,x2,z3) est de rang 2.
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