Liste d'exercices n°8

Fonctions d'une variable réelle

Exercice 1. Etudier la parité de la fonction $f: x \longmapsto (1-x^2) \ln \left(\frac{1+x}{1-x}\right)$.

Exercice 2. Soit f une fonction dérivable sur \mathbb{R} .

- 1. Montrer que si la fonction f est paire, alors la fonction f' est impaire.
- 2. Montrer que si la fonction f est impaire, alors la fonction f' est paire.
- 3. Montrer que si la fonction f est périodique, alors la fonction f' est périodique aussi.

Exercice 3. Déterminer si les fonctions suivantes sont majorées, minorées, bornées sur E. Admettent-elles un maximum, un minimum, une borne supérieure, une borne inférieure?

1.
$$E = \mathbb{R}$$
 et $f(x) = -x^2 + \pi$;

3.
$$E = \mathbb{R}$$
 et $f(x) = \frac{1}{x^2 + x + 1}$;

2.
$$E = \mathbb{R}$$
 et $f(x) = \frac{1}{2 - \sin(x)}$;

4.
$$E = \mathbb{R}_+^*$$
 et $f(x) = x \left\lfloor \frac{1}{x} \right\rfloor$.

Exercice 4. Donner le domaine de définition, de dérivabilité et la dérivée des fonctions suivantes.

1.
$$x \longmapsto 3x \cos(x) - 5^x$$

6.
$$x \mapsto e^x \ln(\sin(x))$$

2.
$$x \mapsto e^x + \frac{x}{(\tan(x+1))^7}$$

7.
$$x \longmapsto \ln(\ln(\ln(x)))$$

3.
$$x \longmapsto \sqrt{x^7 \cos(x)}$$

8.
$$x \longmapsto \sqrt{|1-x^2|}$$

$$4. \ x \longmapsto \ln\left(\sqrt{3x^2 - 5}\right)$$

9.
$$x \mapsto |\sin(x)|$$

5.
$$x \longmapsto |x^2 - 4|$$

10.
$$x \longmapsto \ln(|x^2 - 5x + 6|)$$

Exercice 5. Etudier les fonctions suivantes.

1.
$$f: x \longmapsto x^x$$

3.
$$h: x \longmapsto x\sqrt{\frac{x-1}{x+1}}$$

$$2. \ g \colon x \longmapsto x + \sin^2(x)$$

Exercice 6. Mener une étude complète des fonctions suivantes.

1.
$$f: x \longmapsto x \exp\left(\frac{x-1}{x+1}\right)$$
.

2.
$$g: t \longmapsto \frac{2t}{1+t} - \ln(1+t)$$
.

Exercice 7.

- 1. Montrer que pour tout $x \in \mathbb{R}$, $e^x \geqslant x + 1$.
- 2. Montrer que pour tout x > 0, $\ln(x) \leq x 1$.

Exercice 8. Soient a et b deux réels strictement positifs. Montrer que

$$\frac{1}{2}\left(\ln(a) + \ln(b)\right) \leqslant \ln\left(\frac{a+b}{2}\right).$$

Exercice 9. Montrer que pour tout élément x de $[1; +\infty[$, on a :

$$(x-2)\sqrt{x-1} \geqslant -\frac{2}{3^{3/2}}.$$

Exercice 10.

- 1. Résoudre dans \mathbb{R}_+^* l'équation $x^{x^3} = (x^x)^3$.
- 2. Résoudre l'inéquation $ln(x+3) ln(x-1) \ge 1$.

Exercice 11. Soit f la fonction définie par $f(x) = (1 + 2x)^{\frac{1}{x}}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Calculer f'(x) en tout point x où f est dérivable.
- 3. Etudier les variations de f.
- 4. Représenter graphiquement la fonction f.

Exercice 12. Montrer que pour tout élément x de]0;1[, on a :

$$x^x(1-x)^{1-x} \geqslant \frac{1}{2}.$$

Exercice 13. Soit x un réel strictement positif. Posons

$$a = \exp(x^2)$$
 et $b = \frac{1}{x} \ln\left(x^{\frac{1}{x}}\right)$.

Simplifier a^b .

Exercice 14.

- 1. Calculer $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$.
- 2. En déduire qu'il existe deux nombres réels positifs irrationnels a et b tels que a^b est un nombre rationnel.

Exercice 15.

- 1. Montrer que pour tout $x \in [-1, 1], \arccos(x) + \arccos(-x) = \pi$.
- 2. Montrer que pour tout $x \in [-1, 1]$, $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$.
- 3. Montrer que

$$\forall x > 0, \arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2} \text{ et } \forall x < 0, \arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}.$$

Exercice 16.

- 1. Montrer que pour tout $x \ge 0$, $\arccos\left(\frac{1-x}{1+x}\right) = 2\arctan(\sqrt{x})$.
- 2. Montrer que pour tout $x \in \mathbb{R}$, $\arcsin\left(\frac{x}{\sqrt{x^2+1}}\right) = \arctan(x)$.
- 3. Montrer que pour tout $x \in \mathbb{R}$, $\cos(\arctan(x)) = \frac{1}{\sqrt{x^2 + 1}}$.