Colle no 14, semaine du 13/01 au 18/01

Matrices

1. Définition, opérations sur les matrices

- Matrice de format (n, p) à coefficients dans K $(K = \mathbb{R} \text{ ou } \mathbb{C})$, notation $\mathcal{M}_{n,p}(K)$.
- Addition de deux matrices, multiplication d'une matrice par un scalaire. Toute matrice est combinaison linéaire des matrices de base $E_{i,j}$.
- Définition du produit d'une matrice de format (n,p) par une matrice colonne à p lignes, puis plus généralement par une matrice de format (p,q). Formule sur les coefficients du produit, calcul pratique.
- Propriétés du produit : associativité, bilinéarité (admises).
- Transposition : définition, transposée d'une combinaison linéaire, d'un produit de deux matrices.

2. Opérations élémentaires

- Définition des opérations élémentaires sur les lignes ou les colonnes d'une matrice.
- Définition des matrices carrées élémentaires associées aux opérations élémentaires sur les lignes : matrices de permutation, transvection ou dilatation. Traduction matricielle des opérations sur les lignes ou colonnes.

3. Systèmes linéaires

- Définition d'un système linéaire de n équations à p inconnues. Système homogène, second membre. Définition de la matrice associée A (de format (n,p)) et de la matrice B second membre (de format (n,1)).
- Définition de la compatibilité. Un système est compatible si et seulement si B est combinaison linéaire des colonnes de A. Pour un système compatible, description de l'ensemble des solutions.

4. Matrices carrées d'ordre n

- Matrice identité de taille n, notée I_n . Matrices symétriques et antisymétriques, puissances d'une matrice, formule du binôme pour les matrices qui commutent.
- Matrices triangulaires supérieures et inférieures. Le produit de deux matrices triangulaires supérieures (resp. inférieure) est triangulaire supérieure (resp. inférieure), expression de ses coefficients diagonaux.
 - Matrices diagonales. Produit de deux matrices diagonales, puissances d'une matrice diagonale.
- Matrices carrées inversibles. On admet que A inversible $\Leftrightarrow \exists B \in \mathcal{M}_n(K)$ tq $AB = I_n$. Exemples, inversibilité des matrices élémentaires. Inverse d'un produit, inverse de la transposée.
 - A est inversible si et seulement si le système AX = B admet une unique solution pour tout $B \in \mathcal{M}_{n,1}(K)$. Application pratique au calcul de l'inverse par résolution d'un système.
 - Caractérisation de l'inversibilité des matrices triangulaires. Cas des matrices diagonales : expression de l'inverse.

Polynômes

1. Définitions et opérations

- Définition de K[X] ($K = \mathbb{R}$ ou \mathbb{C}), du degré, du coefficient dominant pour $P \neq 0$. Polynômes unitaires. Fonction polynômiale associée à un polynôme.
- Addition et multiplication de deux polynômes : définitions, propriétés. Le degré d'une somme est inférieur ou égal au maximum des deux degrés (avec égalité si les degrés sont différents) celui d'un produit égal à la somme des degrés, et le coefficient dominant du produit (s'il est non nul) est égal au produit des 2 coefficients dominants.
- Composition de deux polynômes.

2. Divisibilité et division euclidienne

Diviseurs et multiples dans K[X]. Division euclidienne dans K[X] (existence admise). Méthode pratique de la division, exemples. Cas d'une division par un polynôme de degré 1.

3. Dérivation

Dérivée d'un polynôme, dérivée d'une somme et d'un produit. Dérivées successives.

Expression des coefficients à l'aide des dérivées en 0. Formule de Taylor en un point $\alpha \in K$.

4. Racines

- $\alpha \in K$ est une racine d'un polynôme P si $P(\alpha) = 0$. C'est équivalent à $X \alpha$ divise P. Un polynôme de degré $n \ge 0$ (donc non nul) admet au plus n racines distinctes.
- Racines multiples : définition de la multiplicité d'une racine α de P (plus grand entier m tel que $(X \alpha)^m$ divise P). Caractérisation de la multiplicité à l'aide des dérivées successives.

Questions de cours envisageables

- 1. Le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure.
- 2. A est inversible si et seulement si le système AX = B admet une unique solution pour tout $B \in \mathcal{M}_{n,1}(K)$.
- 3. Division euclidienne dans K[X], preuve de l'unicité.