Chapitre 30 – Fonctions de deux variables Partie B : Dérivées partielles d'une fonction sur un ouvert de \mathbb{R}^2

Dans toute cette partie, U désigne un ouvert de \mathbb{R}^2 et f une fonction de U dans $\mathbb{R}: f: U \to \mathbb{R}$.

I) Un peu plus large que sur \mathbb{R}

a) Dérivées partielles en un point

Définition : On dit que f admet une dérivée partielle par rapport à la première variable en (a, b) lorsque la limite suivante existe :

$$\lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}$$

On note alors:

$$\lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a} = \frac{\partial f}{\partial x}(a,b) = \partial_1 f(a,b)$$

De même, on dit que f admet une dérivée partielle par rapport à la deuxième variable en (a, b) lorsque la limite suivante existe :

$$\lim_{y \to b} \frac{f(a, y) - f(a, b)}{y - b}$$

On note alors:

$$\lim_{x \to a} \frac{f(a, y) - f(a, b)}{y - b} = \frac{\partial f}{\partial y}(a, b) = \partial_2 f(a, b)$$

Exemple I.a.1: On pose:

$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x, y) \mapsto (x^2 + y^2) \cos(xy) \end{cases}$$

Montrer que f admet une dérivée partielle par rapport à la première et à la deuxième variable en (a,b) et déterminer $\partial_1 f(a,b)$ et $\partial_2 f(a,b)$.

Exemple I.a.2: On pose $f:(x,y) \mapsto \cos(x+y) e^{x^2+xy+y}$.

- a) Déterminer l'ensemble de définition de f.
- b) Justifier que f admet une dérivée partielle par rapport à la première et à la deuxième variable en (x, y) et déterminer $\partial_1 f(x, y)$ et $\partial_2 f(x, y)$.

ATTENTION : L'existence de dérivées partielles en un point (a, b) n'assure pas la continuité de f en (a, b).

Contre-exemple I.a.3: On pose:

$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

1) Montrer que:

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

2) Montrer que f n'est pas continue en (0,0)

b) Le gradient

Définition: Soit $f \in C^1(U)$. Pour tout $(x, y) \in U$, on appelle gradient de f en (x, y), noté $\nabla f(x, y)$, le vecteur définie par :

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{pmatrix}$$

Exemple II.b.1 : On pose :

$$f\colon (x,y)\mapsto \frac{x^2y^3}{x^2+y^2}$$

Déterminer $\nabla f(2,3)$

II) Fonction de classe C^1

a) Développement limité à l'ordre 1 sur \mathbb{R}^2

Définition: On dit que f est de classe C^1 sur U lorsque les deux points suivants sont vérifiés :

- 1) f admet des dérivées partielles sur U par rapport à ses deux variables
- 2) Toutes les dérivées partielles de f sont continues sur U

Exemple II.a.1: Montrer que $f:(x,y)\mapsto \ln(x)\times y^2$ est de classe \mathbb{C}^1 sur son ensemble de définition à déterminer.

Théorème II.a.2 (développement limité à l'ordre 1) : Soit $f \in C^1(U)$. On a alors :

$$\forall (a,b) \in U, f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b) \times h + \frac{\partial f}{\partial y}(a,b) \times k + o(\|(h,k)\|)$$

Exemple II.a.3: Déterminer le développement limité à l'ordre 1 au point (0;0) de la fonction $f:(x,y) \mapsto$ ln(1+x)cos(y), après avoir déterminer son ensemble de définition.

Corollaire II.a.4: On a:

$$\forall (a,b) \in U, f(a+h,b+k) = f(a,b) + < \nabla f(a,b); (h,k) > + o(\|(h,k)\|)$$

Remarque: On a:

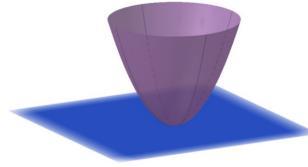
$$\forall (a,b) \in U, f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b) \times h + \frac{\partial f}{\partial y}(a,b) \times k + o(\|(h,k)\|)$$

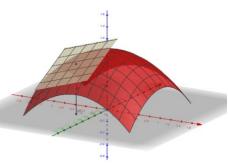
$$\Leftrightarrow f(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b) \times (x-a) + \frac{\partial f}{\partial y}(a,b) \times (y-b) + o(\|(x-a,y-b)\|)$$

Ainsi on généralise l'idée de tangente en dimension 1 avec le plan tangent en dimension 2.

Définition (Plan tangent): Si $f \in \mathcal{C}^1(U)$, alors on définit le plan tangent à la surface représentative de f en (a,b) par

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b) \times (x-a) + \frac{\partial f}{\partial y}(a,b) \times (y-b)$$





Exemple II.a.4: Trouver l'équation du plan tangent pour la surface $z = \sqrt{19 - x^2 - y^2}$ au point M(1,3,3).

Application II.a.5: Déterminer une valeur approchée de $\arctan(\sqrt{4.03} - 2e^{0.01})$.

Théorème II.a.6: Toute fonction de classe \mathcal{C}^1 sur un ouvert de \mathbb{R}^2 est continue sur cet ouvert.

b) Opération sur les fonctions de classe \mathcal{C}^1

Dans toute cette partie f et g désignent deux fonctions de classe C^1 sur U.

Propriété II.b.1 (Dérivée d'une somme, d'un produit) : On a :
$$\forall (\lambda, \mu) \in \mathbb{R}^2, \forall (x, y) \in U$$
 :
$$\begin{cases} \frac{\partial(\lambda f + \mu g)}{\partial x}(x, y) = \lambda \frac{\partial f}{\partial x}(x, y) + \mu \frac{\partial g}{\partial x}(x, y) \\ \frac{\partial(\lambda f + \mu g)}{\partial y}(x, y) = \lambda \frac{\partial f}{\partial y}(x, y) + \mu \frac{\partial g}{\partial y}(x, y) \end{cases}$$

$$\Leftrightarrow \nabla(\lambda f + \mu g)(a, b) = \lambda(\nabla f)(a, b) + \mu(\nabla f)(a, b)$$

$$\begin{cases} \frac{\partial(f \times g)}{\partial x}(x, y) = \frac{\partial f}{\partial x}(x, y) \times g(x, y) + f(x, y) \times \frac{\partial g}{\partial x}(x, y) \\ \frac{\partial(f \times g)}{\partial y}(x, y) = \frac{\partial f}{\partial y}(x, y) \times g(x, y) + f(x, y) \times \frac{\partial g}{\partial y}(x, y) \end{cases}$$

$$\Leftrightarrow \nabla(f \times g)(a, b) = g(a, b)(\nabla f)(a, b) + f(a, b)(\nabla f)(a, b)$$

Application II.b.2: On pose:

$$f:(x,y) \mapsto e^{xy^2} + \ln(1+y^2)$$

Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2)$ puis déterminer ses dérivées partielles et son gradient.

Propriété II.b.3 (Dérivée d'un quotient) : Ici g qui ne s'annule pas sur U. On a alors $\frac{f}{g} \in C^1(U)$ et : $\begin{cases}
\frac{\partial \left(\frac{f}{g}\right)}{\partial x}(x,y) = \frac{\left[\frac{\partial f}{\partial x}(x,y) \times g(x,y) - f(x,y) \times \frac{\partial g}{\partial x}(x,y)\right]}{g(x,y)^2} \\
\frac{\partial \left(\frac{f}{g}\right)}{\partial y}(x,y) = \frac{\left[\frac{\partial f}{\partial y}(x,y) \times g(x,y) - f(x,y) \times \frac{\partial g}{\partial y}(x,y)\right]}{g(x,y)^2} \\
\Leftrightarrow \nabla \left(\frac{f}{g}\right)(x,y) = \frac{g(x,y)(\nabla f)(x,y) - f(x,y)\nabla(g)(x,y)}{g(x,y)^2}$

Application I.b.4: On pose:

$$f: (x,y) \mapsto \frac{\sin(x) + \arctan(x+y)}{1 + x^2 + e^y}$$

Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2)$ puis déterminer ses dérivées partielles et son gradient.

Propriété I.b.5 (Dérivée d'une composée) : Soit
$$\varphi \in C^1(f(U))$$
. Alors $\varphi \circ f \in C^1(U)$ et :
$$\begin{cases} \frac{\partial (\varphi \circ f)}{\partial x}(x,y) = (\varphi' \circ f)(x,y) \times \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial (\varphi \circ f)}{\partial y}(x,y) = (\varphi' \circ f)(x,y) \times \frac{\partial f}{\partial y}(x,y) \end{cases}$$

Application I.b.6: On pose:

$$f:(x,y) \mapsto \ln(x^2 + y^4 + 1)$$

Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2)$ puis déterminer ses dérivées partielles et son gradient.