DM n°1 PCSI 2024-2025

A rendre pour le mercredi 2 octobre

Exercice : Calcul d'une somme de deux manières différentes

Soit n un entier naturel. Le but de cet exercice est de déterminer de deux manières différentes la somme :

$$S_n = \sum_{k=0}^n k 2^{k-1}$$

Partie A: A l'aide d'une somme double

1) Démontrer que :

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} \sum_{j=k}^{n} 2^{j} = n2^{n+1} + 1$$

2) Démontrer que :

$$\sum_{k=0}^{n} \sum_{j=k}^{n} 2^{j} = \sum_{j=0}^{n} (j+1)2^{j}$$

3) En déduire la valeur de S_n .

Partie B: A l'aide d'une fonction

On pose la fonction définie sur \mathbb{R} par :

$$f_n(x) = \sum_{k=0}^n x^k$$

- 1) Exprimer $f_n(x)$ à l'aide de x et de x^{n+1}
- 2) On suppose que f_n est dérivable. Déterminer $f_n'(x)$.
- 3) En déduire la valeur de :

$$S_n = \sum_{k=0}^n k 2^{k-1}$$

Problème : Approximation de $\sqrt{2}$

Nous avons vu dans le DS n°1 une façon de trouver une valeur approchée de e, en encadrant e par deux fonctions, l'une croissante, l'autre décroissante, avec les deux qui tendaient vers e. Le but de ce problème est de présenter la méthode de Newton-Raphson, une méthode « efficace » pour trouver numériquement une approximation précise d'un zéro d'une fonction réelle d'une variable réelle. Nous allons appliquer cette méthode pour trouver une valeur approchée de $\sqrt{2}$.

I) Présentation du procédé

a) TVI

On pose la fonction définie sur [1; 3] par $f(x) = x^2 - 2$:

$$f \colon \begin{cases} [1;2] \to \mathbb{R} \\ x \mapsto x^2 - 2 \end{cases}$$

 $f \colon \begin{cases} [1;2] \to \mathbb{R} \\ \chi \mapsto \chi^2 - 2 \end{cases}$ 1) Etudier les variations de f sur [1; 3] et en déduire l'existence d'un unique $\alpha \in [1;2]$ tel que $f(\alpha) = 0$:

$$\exists ! \alpha \in [1; 2], f(\alpha) = 0$$

On écrit alors $\alpha = \sqrt{2}$, mais si l'on utilise un symbole pour ce nombre, nous ne pouvons qu'en donner une valeur approchée, car, nous le verrons plus tard, il est irrationnel.

b) Le procédé

Début du procédé: On pose $u_0 = 2$, $A_0(u_0; f(u_0))$ le point de la courbe d'abscisse u_0 et (T_{u_0}) la tangente à la courbe de f au point d'abscisse $x = u_0$.

De plus on pose u_1 l'abscisse de l'intersection entre (T_{u_0}) et l'axe des abscisses.

De même on pose $A_1(u_1; f(u_1))$ le point de la courbe d'abscisse u_1 et (T_{u_1}) la tangente à la courbe de f au point d'abscisse $x = u_1$ et u_2 l'abscisse de l'intersection entre (T_{u_1}) et l'axe des abscisses. Construire u_2 sur votre figure puis déterminer sa valeur.

On construit ainsi de proche en proche une suite (u_n) intersection de la tangente au point d'abscisse $(T_{u_{n-1}})$ et de l'axe des abscisses :

$$\begin{cases} u_0 = 1 \\ (u_{n+1}, 0) = (T_{u_n}) \cap (O_x) \end{cases}$$

- 2) Tracer sur votre copie C_f puis (T_{u_0}) et (T_{u_1}) .
- 3) Démontrer que la suite (u_n) est définie par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right) \end{cases}$$

- 4) Montrer par récurrence que : $\forall n \in \mathbb{N}, \sqrt{2} < u_{n+1} < u_n$. En déduire la convergence de la suite (u_n) .
- 5) Montrer que:

$$\forall n \in \mathbb{N}, u_{n+1} - \sqrt{2} \le \frac{1}{2} \left(u_n - \sqrt{2} \right)^2$$

6) En déduire que :

$$\forall n \in \mathbb{N}, u_n - \sqrt{2} \le \frac{1}{2^{2^n - 1}}$$

- 7) Déterminer la limite de la suite (u_n).
- 8) Combien de termes de la suite faut-il calculer pour avoir une approximation de $\sqrt{2}$ à 10^{-100} près.
- 9) Ecrire un programme Python qui permet d'obtenir une valeur approchée de $\sqrt{2}$ à 10^{-n} où n est choisi par l'utilisateur.