Chapitre 23: Applications linéaires Partie D : Rang d'une application linéaire

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . E et F deux \mathbb{K} -espace vectoriels.

I) Rang d'une application linéaire

a) La dimension finie

Propriété I.a.1: Soient E et F deux K-espace vectoriels, dont au moins l'un des deux est de dimension finie. Soit $f \in \mathcal{L}(E, F)$. On a alors Im(f) de dimension finie et :

$$\dim(\operatorname{Im}(f)) \leq \min(\dim(E), \dim(F))$$

Définition: Soient E et F deux K-espace vectoriels, dont au moins l'un des deux est de dimension finie. Soit $f \in \mathcal{L}(E, F)$. On appelle rang de f, noté rg(f), la dimension de Im(f):

$$rg(f) = dim(Im(f))$$

Exemple I.a.2: On pose:

$$f: \begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x, y, z) \mapsto (x + y; x - z; y + z) \end{cases}$$

Déterminer le rang de f.

Exemple I.a.3: On pose:

$$f: \begin{cases} \mathbb{R}_3[X] \to \mathbb{R}_3[X] \\ P \mapsto P(X+1) + P(X-1) - 2P(X) \end{cases}$$

Déterminer le rang de f.

b) Invariance du rang

Propriété I.b.1: Soient E,F,G et H quatre espaces vectoriels de dimension finie. Soit $f \in \mathcal{L}(E,F)$. Soient $g \in \mathcal{L}(G,E)$ et $h \in \mathcal{L}(F,G)$ deux isomorphismes. On a alors :

$$rg(f) = rg(fog) = rg(hof)$$

c) Théorème du rang

Propriété I.c.1 (Théorème du rang) : Soit E de dimension finie, F quelconque et $f \in \mathcal{L}(E, F)$. Alors tout supplémentaire de ker(f) dans E est isomorphe à Im(f) :

$$E = \ker(f) \oplus S \implies S \simeq \operatorname{Im}(f)$$

Propriété I.c.2 (Théorème du rang 2) : Soit E de dimension finie, F quelconque et $f \in \mathcal{L}(E, F)$. On a alors :

$$dim(E) = dim(Ker(f)) + rg(f)$$

Application I.c.3 : On pose :

$$f : \begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x, y, z) \mapsto (x + y; x - z; y + z) \end{cases}$$

Déterminer rg(f).

d) Applications au noyau d'une forme linéaire

Propriété I.d.1: Soit $f \in \mathcal{L}(E, \mathbb{K})$ une forme linéaire avec E de dimension finie. Alors on a :

$$dim\big(ker(f)\big) = \begin{cases} dim(E) \text{ si } f = \mathbf{0}_{\mathcal{L}(E,\mathbb{K})} \\ dim(E) - 1 \text{ sinon} \end{cases}$$

Application I.d.2: On pose:

$$F = \left\{ P \in \mathbb{R}_n[X], \int_0^1 P(t)dt = 0 \right\}$$

Déterminer la dimension de F.

Propriété I.d.3: Soit H un sous-espace vectoriel d'un espace vectoriel de dimension finie.

- (1) H est un hyperplan si et seulement si H est le noyau d'une forme linéaire non nulle.
- (2) Si H = Ker(ϕ) = Ker(ψ), alors il existe $\lambda \in \mathbb{K}^*$ tel que $\phi = \lambda . \psi$

II) Equations linéaires

a) Un classique

Définition: Soient E et F deux espaces vectoriel. Soit $b \in F$ et $f \in \mathcal{L}(E, F)$. On appelle équation linéaire d'inconnue toute équation de la forme f(x) = b.

Remarque : Si $b = 0_F$ on dit que l'équation est homogène. On appelle équation homogène associée à b l'équation $f(x) = 0_{F}.$

Exemple II.a.1 : On pose :

Exemple II.a.1 : On pose :
$$f \colon \begin{cases} x \to \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (x+y;x-z;y+z) \end{cases}$$
 Résoudre l'équation homogène $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Propriété II.a.2 : Soit f(x) = b une équation homogène. On a alors :

- (1) L'ensemble S_0 des solutions de l'équation homogène $f(x) = 0_E$ est ker(f)
- (2)L'ensembleS des solutions de l'équation f(x) = b est non vide si et seulement si $b \in Im(f)$ et on a alors :

$$S = x_0 + \ker(f)$$

Avec x_0 une solution particulière de f(x) = b.

Exemple II.a.3 : On pose :

f:
$$\begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x, y, z) \mapsto (x + y; x - z; y + z) \end{cases}$$

b) Formes linéaires et équations linéaires

Résoudre l'équation $f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Remarque : On pose un système homogène à n équations et p inconnues :

(E):
$$\begin{cases} a_{1,1} \mathbf{x_1} + a_{1,2} \mathbf{x_2} + \dots + a_{1,p} \mathbf{x_p} = 0 \\ a_{2,1} \mathbf{x_1} + a_{2,2} \mathbf{x_2} + \dots + a_{2,p} \mathbf{x_p} = 0 \\ \vdots & \vdots & \vdots \\ a_{n,1} \mathbf{x_1} + a_{n,2} \mathbf{x_2} + \dots + a_{n,p} \mathbf{x_p} = 0 \end{cases}$$

On pose:

$$\forall i \in [\![1,n]\!] \varphi_i \big(x_1,\dots,x_p\big) = a_{i,1}\,\boldsymbol{x_1} + a_{i,2}\,\boldsymbol{x_2} + \dots + a_{i,p}\boldsymbol{x_p}$$

 ϕ_i est une forme linéaire non nulle sur \mathbb{R}^p . Ainsi l'ensemble des solutions du système correspond à l'intersection des hyperplans $Ker(\phi_i)$:

$$S = \bigcap_{i \in [\![1,n]\!]} Ker(\varphi_i)$$