Activité 1 : Espace euclidien

Dans toute cette partie E désigne un \mathbb{R} -espace vectoriel et Soit $\Phi: E \times E \to \mathbb{R}$ une application quelconque.

Question 1: On dit que Φ est symétrique si et seulement si :

$$\forall (x, y) \in E^2, \Phi(x, y) = \Phi(y, x)$$

Déterminer une application $\Phi_1: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ symétrique et une application $\Phi_2: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ non symétrique.

Question 2: On dit que Φ est:

• <u>Linéaire à droite</u> si et seulement si :

$$\forall x \in E, y \mapsto \Phi(x, y) \in \mathcal{L}(E)$$

• Linéaire à gauche si et seulement si :

$$\forall y \in E, x \mapsto \Phi(x, y) \in \mathcal{L}(E)$$

Déterminer une application $\Phi_3: \mathcal{C}^0(\mathbb{R}) \times \mathcal{C}^0(\mathbb{R}) \to \mathbb{R}$ linéaire à gauche mais pas à droite.

Question 3 : On dit que Φ est <u>bilinéaire</u> si elle est linéaire à gauche et à droite. Déterminer une application $\Phi_3: \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$ bilinéaire.

Question 4: Montrer que:

$$\begin{cases} \Phi \text{ est symétrique} \\ \Phi \text{ est linéaire à droite} \end{cases} \Rightarrow \Phi \text{ est bilinéaire}$$

Question 5: On dit que Φ est définie positive si et seulement si :

$$\forall x \in E, \Phi(x, x) \ge 0 \ (Positive)$$

 $\Phi(x, x) = 0 \Leftrightarrow x = 0 \ (définie)$

Déterminer Φ_4 une application définie positive de $\mathbb{R}^3 \times \mathbb{R}^3$ dans \mathbb{R} .

Question 6 : Déterminer $\Phi_5: \mathcal{C}^0(\mathbb{R}) \times \mathcal{C}^0(\mathbb{R}) \to \mathbb{R}$ une forme bilinéaire symétrique définie positive, de même que $\Phi_6: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

Activité 1 : Espace euclidien

Dans toute cette partie E désigne un \mathbb{R} -espace vectoriel et Soit $\Phi: E \times E \to \mathbb{R}$ une application quelconque.

Question 1: On dit que Φ est symétrique si et seulement si :

$$\forall (x,y) \in E^2, \Phi(x,y) = \Phi(y,x)$$

Déterminer une application $\Phi_1: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ symétrique et une application $\Phi_2: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ non symétrique.

Question 2: On dit que Φ est :

• Linéaire à droite si et seulement si :

$$\forall y \in E, x \mapsto \Phi(x, y) \in \mathcal{L}(E)$$

• Linéaire à gauche si et seulement si :

$$\forall x \in E, y \mapsto \Phi(x, y) \in \mathcal{L}(E)$$

Déterminer une application $\Phi_3: \mathcal{C}^0(\mathbb{R}) \times \mathcal{C}^0(\mathbb{R}) \to \mathbb{R}$ linéaire à gauche mais pas à droite.

Question 3: On dit que Φ est <u>bilinéaire</u> si elle est linéaire à gauche et à droite. Déterminer une application $\Phi_3: \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$ bilinéaire.

Question 4: Montrer que:

$$\begin{cases} \Phi \text{ est symétrique} \\ \Phi \text{ est linéaire à droite} \end{cases} \Rightarrow \Phi \text{ est bilinéaire}$$

Question 5 : On dit que Φ est définie positive si et seulement si :

$$\forall x \in E, \Phi(x, x) \ge 0 \ (Positive)$$

 $\Phi(x, x) = 0 \iff x = 0 \ (définie)$

Déterminer Φ_4 une application définie positive de $\mathbb{R}^3 \times \mathbb{R}^3$ dans \mathbb{R} .

Question 6 : Déterminer $\Phi_5: \mathcal{C}^0(\mathbb{R}) \times \mathcal{C}^0(\mathbb{R}) \to \mathbb{R}$ une forme bilinéaire symétrique définie positive, de même que $\Phi_6: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$