Activité 6.B.2 : Propriété de U

Partie A: Un nombre complexe sur U

On pose le point A d'affixe :

$$z_A = \frac{1}{2} - \frac{i\sqrt{3}}{2}$$

Montrer que $z_A \in \mathbb{U}$

2) Déterminer alors deux réels θ et θ' tel que $z_A = \cos(\theta) + i\sin(\theta) = \cos(\theta') + i\sin(\theta')$

Partie B: Une propriété de U

Soit ϑ un nombre réel. On pose la fonction f définie sur $\mathbb R$ à valeur dans $\mathbb C$ telle que :

$$f(\vartheta) = \cos(\vartheta) + i\sin(\vartheta)$$

- 1) Déterminer f(0), $f\left(\frac{\pi}{2}\right)$ et $f\left(\frac{3\pi}{4}\right)$
- 2) Montrer que : $\forall \vartheta \in \mathbb{R}, f(\vartheta) \in \mathbb{U}$
- 3) Pour tout ϑ , ϑ' réels, déterminer la forme algébrique de : $f(\vartheta) \times f(\vartheta')$. Que constatez-vous ?
- 4) On a donc:

$$\begin{cases} f(0) = \\ f(\vartheta) \times f(\vartheta') = \end{cases}$$

Activité 6.B.2 : Propriété de U

Partie A: Un nombre complexe sur U

On pose le point A d'affixe :

$$z_A = \frac{1}{2} - \frac{i\sqrt{3}}{2}$$

Montrer que $z_A \in \mathbb{U}$

2) Déterminer alors deux réels ϑ et ϑ' tel que $z_A = \cos(\vartheta) + i\sin(\vartheta) = \cos(\vartheta') + i\sin(\vartheta')$

Partie B : Une propriété de U

Soit ϑ un nombre réel. On pose la fonction f définie sur $\mathbb R$ à valeur dans $\mathbb C$ telle que :

$$f(\vartheta) = \cos(\vartheta) + i\sin(\vartheta)$$

- 1) Déterminer f(0), $f\left(\frac{\pi}{2}\right)$ et $f\left(\frac{3\pi}{4}\right)$
- 2) Montrer que : $\forall \vartheta \in \mathbb{R}, f(\vartheta) \in \mathbb{U}$
- 3) Pour tout ϑ , ϑ' réels, déterminer la forme algébrique de : $f(\vartheta) \times f(\vartheta')$. Que constatez-vous?
- 4) On a donc:

$$\begin{cases} f(0) = \\ f(\vartheta) \times f(\vartheta') = \end{cases}$$

Activité 6.B.2 : Propriété de U

Partie A: Un nombre complexe sur U

On pose le point A d'affixe :

$$z_A = \frac{1}{2} - \frac{i\sqrt{3}}{2}$$

Montrer que $z_A \in \mathbb{U}$

2) Déterminer alors deux réels θ et θ' tel que $z_A = \cos(\theta) + i\sin(\theta) = \cos(\theta') + i\sin(\theta')$

Partie B: Une propriété de U

Soit ϑ un nombre réel. On pose la fonction f définie sur $\mathbb R$ à valeur dans $\mathbb C$ telle que :

$$f(\vartheta) = \cos(\vartheta) + i\sin(\vartheta)$$

- 1) Déterminer f(0), $f\left(\frac{\pi}{2}\right)$ et $f\left(\frac{3\pi}{4}\right)$
- 2) Montrer que : $\forall \vartheta \in \mathbb{R}, f(\vartheta) \in \mathbb{U}$
- 3) Pour tout θ , θ' réels, déterminer la forme algébrique de : $f(\theta) \times f(\theta')$. Que constatez-vous?
- 4) On a donc:

$$\begin{cases} f(0) = \\ f(\theta) \times f(\theta') = \end{cases}$$