Programme de Colle nº6 PCSI 2025-2026

(3 novembre au 7 novembre)

Nombres complexes

L'objectif de cette section, que l'on illustrera par de nombreuses figures, est de donner une solide pratique des nombres complexes, à travers les aspects suivants :

- l'étude algébrique de l'ensemble € et la notion d'équation algébrique;
- l'interprétation géométrique des nombres complexes et l'utilisation des nombres complexes en géométrie plane;
- l'exponentielle complexe et ses applications à la trigonométrie.

Contenus	Capacités & commentaires
a) Nombres complexes	
Parties réelle et imaginaire. Opérations sur les nombres complexes.	La construction de $\mathbb C$ est hors programme.
Brève extension du calcul de $\sum_{k=0}^{n} x^k$, de la factorisation	
de $a^n - b^n$, de la formule du binôme. Point du plan associé à un nombre complexe, affixe d'un point, affixe d'un vecteur.	On identifie $\mathbb C$ au plan usuel muni d'un repère orthonormé direct (« plan complexe »).
b) Conjugaison et module	
Conjugaison, compatibilité avec les opérations. Module. Relation $ z ^2=z\overline{z}$, module d'un produit, d'un quotient. Inégalité triangulaire, cas d'égalité.	Image du conjugué dans le plan complexe. Interprétation géométrique de $ z-z' $, cercles et disques.
c) Nombres complexes de module 1 et trigonométrie	
Identification du cercle trigonométrique et de l'ensemble des nombres complexes de module 1. Définition de e^{1t} pour $t \in \mathbb{R}$. Exponentielle d'une somme.	Notation \mathbb{U} .
Exponentielle d'une somme. Formules d'Euler. Technique de l'angle moitié : factorisation de $1 \pm e^{1l}$, de $e^{1p} \pm e^{1q}$.	Les étudiants doivent savoir retrouver les formules don- nant $\cos(p) \pm \cos(q)$, $\sin(p) \pm \sin(q)$.
	Linéarisation, calcul de $\sum_{k=0}^{n} \cos(kt)$ et de $\sum_{k=0}^{n} \sin(kt)$.
Formule de Moivre.	Les étudiants doivent savoir retrouver les expressions de $\cos(nt)$ et $\sin(nt)$ en fonction de $\cos t$ et $\sin t$.
d) Forme trigonométrique	
Forme trigonométrique $re^{i\theta}$ $(r > 0)$ d'un nombre complexe non nul. Arguments. Arguments d'un produit, d'un quotient. Transformation de $a\cos t + b\sin t$ en $A\cos(t - \varphi)$.	
e) Équations algébriques	
Pour P fonction polynomiale à coefficients complexes	
admettant a pour racine, factorisation de $P(z)$ par $z-a$. Résolution des équations du second degré dans \mathbb{C} . Somme et produit des racines.	Calcul des racines carrées d'un nombre complexe donné sous forme algébrique.

f) Racines n-ièmes

Description des racines n-ièmes de l'unité, d'un nombre complexe non nul donné sous forme trigonométrique.

Notation U_n .

Représentation géométrique.

g) Exponentielle complexe

Définition de e^z pour z complexe : $e^z = e^{\operatorname{Re}(z)}e^{\operatorname{1Im}(z)}$. Exponentielle d'une somme.

Pour tous z et z' dans \mathbb{C} , $\exp(z) = \exp(z')$ si et seulement si $z - z' \in 2i\pi\mathbb{Z}$.

Notations $\exp(z)$, e^z . Module et arguments de e^z .

h) Interprétation géométrique des nombres complexes

Interprétation géométrique des module et arguments de $\frac{c-a}{b-a}$.

Interprétation géométrique des applications $z\mapsto az$ et $z\mapsto z+b$ pour $(a,b)\in\mathbb{C}^*\times\mathbb{C}$.

Interprétation géométrique de la conjugaison.

Traduction de l'alignement, de l'orthogonalité.

Il s'agit d'introduire certaines transformations du plan : translations, homothéties, rotations.

L'étude générale des similitudes est hors programme.

Questions de cours :

Propriété I.d.2 (Inégalité triangulaire avec cas d'égalité à la fin de la démonstration) :

$$\forall (z,z') \in \mathbb{C}^2, |z+z'| \leq |z| + |z'|$$

Application II.d.4 : Simplifier : $\forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}$,

$$S_n(\theta) = 1 + \cos(\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \sum_{k=0}^n \cos(k\theta)$$
$$W_n(\theta) = \sin(\theta) + \sin(2\theta) + \dots + \sin(n\theta) = \sum_{k=0}^n \sin(k\theta)$$

Application II.e.3: Déterminer une primitive de $f: x \mapsto \sin^n(x)$ ou $\cos^n(x)$ en linéarisant.

Propriété I.b.1 : On a :

$$az^2 + bz + c = 0 \Leftrightarrow z \in \left\{ \frac{-b - \delta}{2a}; \frac{-b + \delta}{2a}, avec \delta^2 = b^2 - 4ac \right\}$$

Propriété I.b.3 (Relation coefficient racine) : Soit (a; b; c) $\in \mathbb{C}^3$, a $\neq 0$. On a alors :

$$z_1, z_2$$
 sont les solutions de $az^2 + bz + c = 0 \Leftrightarrow \begin{cases} z_1 z_2 = \frac{c}{a} \\ z_1 + z_2 = -\frac{b}{a} \end{cases}$

Exercices du type:

Forme algébrique de :

$$z = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)^{2025}$$

Application II.c.9: Déterminer l'ensemble des nombres complexes tel que :

$$\frac{z-1}{z+2i} \in \mathbb{R}, i\mathbb{R}$$

Application II.e.6 : Application Linéarisation de $\cos^n(x)$ et $\sin^n(x)$ avec la formule d'Euler ou de Moivre.

Exercice G.5 (chap 6): On pose l'équation (E):

$$(E): 2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = 0$$

- 1) Montrer que (E) admet une solution réel.
- 2) En déduire toutes les solutions de (E).

Exercice E.6: Soient A(2;-3), B(5;-1) et $C(1+2\sqrt{3};2-3\sqrt{3})$. Déterminer une mesure de l'angle $(\overrightarrow{AB};\overrightarrow{AC})$.

Exercice E.3: Pour quelles valeurs de n, le nombre complexe:

$$\left(\frac{\left(1-i\sqrt{3}\right)^5}{(1-i)^3}\right)^n$$

Est-il un réel positif?