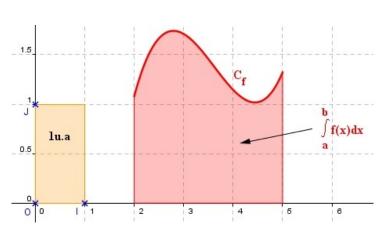
Chapitre 8 Calcul de primitives

Dans tout ce cours K, désigne C ou R et I un intervalle de R.

I) Intégrale d'une fonction sur un intervalle [a,b]

a) Intégrale d'une fonction positive

Définition: Soit f une fonction continue et positive sur un intervalle [a; b] et C_f sa courbe représentative dans un repère (O; A; B). L'unité d'aire est l'aire du rectangle OACB où C(1; 1) dans le repère (O; A; B), noté u.a. L'aire du domaine D, délimité par C_f , l'axe des abscisses et les droites d'équation x = a et x = b est appelé aire sous la courbe C_f pour $x \in [a; b]$. On note $: \int_a^b f(x) dx$ Et se lit : « intégrale de a à b de f(x) dx ».



Exemple I.a.1: On pose $f(x) = \frac{1}{2}x + 2$

Déterminer :

$$\int_{1}^{4} f(x)dx$$

Remarque : Le choix de la variable dans la notation de l'intégrale est libre, du moment que cela est cohérent :

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(u)du$$

Définition: Par convention on a :

$$\int_{a}^{a} f(x)dx = 0$$

b) Calcul de l'intégrale

Propriété I.b.1: Si f est continue et positive sur un intervalle [a; b], la fonction F définie sur [a; b] par

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

est dérivable sur [a; b] et a pour dérivée : $\forall x \in [a; b], F'(x) = f(x)$

Exemple I.b.2 : Déterminer la dérivée de :

$$\forall x \in [1; 4], F(x) = \int_{a}^{x} (0.5t + 2)dt$$

II) Définition des primitives d'une fonction continue

a) Généralités

Définition (fonction de classe $\mathcal{C}^{\mathbf{k}}$ **)** : On dit que $f: I \to \mathbb{K}$ est de classe $\mathcal{C}^{\mathbf{k}}$ sur I si et seulement si :

- f est k fois dérivable sur $I(f \in \mathcal{D}^k(I))$
- $f^{(k)}$ est continue sur I

De plus on dit que f est de classe \mathcal{C}^{∞} sur I si et seulement si f est de classe \mathcal{C}^k sur I pour tout k entier naturel. Si f est continue sur I mais pas dérivable sur I on dit que f est de classe \mathcal{C}^0 sur I

Remarque: Les fonctions exponentielles, logarithmes, polynômes sont \mathcal{C}^{∞} sur leur ensemble de définition.

Exemple II.a.1: Déterminer une fonction de classe \mathcal{C}^0 sur \mathbb{R} mais pas de classe \mathcal{C}^1 sur \mathbb{R} .

Définition (Primitive): Soit $f: I \to \mathbb{K}$ est de classe \mathcal{C}^0 sur I (ie que f est continue sur I). On appelle primitive de f, noté F, toute fonction de classe \mathcal{C}^1 sur I dont la dérivée est f :

$$F \in \mathcal{C}^1(I, \mathbb{K})$$
$$F' = f$$

Exemple II.a.2: Déterminer une primitive des fonctions suivantes sur leur ensemble de définition :

$$f: \left\{ \begin{matrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^3 \end{matrix} \right. g: \left\{ \begin{matrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto \cos(x) \end{matrix} \right. h: \left\{ \begin{matrix} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{x}{1 + x^4} \end{matrix} \right. :$$

ATTENTION: Une primitive n'est jamais unique. Seulement à une constante près. On a la propriété suivante :

Propriété II.a.3: Deux primitives d'une même fonction sur I diffèrent d'une constante.

Exemple II.a.4 : Déterminer toutes les primitives des fonctions suivantes sur leur ensemble de définition :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{2x}{1+x^2} \end{cases} \quad g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \cos^5(x)\sin(x) \end{cases} \quad h: \begin{cases}]-1;1[\to]-1;1[\\ x \mapsto \frac{1}{\sqrt{1-x^2}} \end{cases}$$

Application II.a.5: On pose:

$$F: \begin{cases} \mathbb{R}^{*+} \to \mathbb{R} \\ x \mapsto x \ln(x) - x \end{cases}$$

1) Montrer que F est une primitive de :

$$f: \begin{cases} \mathbb{R}^{*+} \to \mathbb{R} \\ x \mapsto \ln(x) \end{cases}$$

 $f: \begin{cases} \mathbb{R}^{*+} \to \mathbb{R} \\ x \mapsto ln(x) \end{cases}$ 2) En déduire l'unique primitive de f telle que f(l)=7.

b) Existence des primitives.

Propriété II.b.1 : Soit $f: I \to \mathbb{K}$ continue et $a \in I$. On a alors :

- f admet des primitives sur I
- f admet une unique primitive qui s'annule en a

$$F: \begin{cases} I \to \mathbb{R} \\ x \mapsto \int_{a}^{x} f(t)dt \end{cases}$$

Pour toute primitive G de f, on a:

$$\forall x \in I, G(x) = G(a) + \int_{a}^{x} f(t)dt$$

Application II.b.2: On pose:

$$f: \begin{cases}]1; +\infty[\to \mathbb{R} \\ x \mapsto \frac{1}{x \ln(x)} \end{cases}$$

Déterminer l'unique primitive de f qui s'annule en e

Notation de Leibniz : Soit $f: I \to \mathbb{K}$ continue. Alors une primitive générique de f se note :

$$\int_{0}^{x} f(t)dt$$

Elle est donc définie à une constante près. Ce n'est donc pas une fonction!

Exemple II.b.3 : Déterminer :

$$\int_{0}^{x} e^{u} du$$

c) Utilisation des fonctions à valeurs dans C

Définition : Soit $f: I \to \mathbb{C}$ continue. On a alors :

$$\int_{a}^{x} f(t)dt = \int_{a}^{x} Re(f(t))dt + i \int_{a}^{x} Im(f(t))dt$$

Exemple II.c.1: Soit λ un réel non nul. Déterminer :

$$\int_{0}^{x} e^{\lambda it} dt$$

Application II.c.2 : Déterminer une primitive de :

$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \cos(3x) e^{5x} \end{cases}$$

Remarque: Pour déterminer une primitive de fonctions de la forme : $x \mapsto \cos^p(x) \sin^q(x)$ où p et q sont des entiers naturels il convient mieux de linéariser.

Exemple II.c.3: Déterminer:

$$\int_{0}^{t} \cos^{2}(x) dx$$

d) Primitives usuelles

(Voir formulaire)

ATTENTION: Soit $f: I \to \mathbb{R}$ telle que : $\forall x \in I, f(x) \neq 0$.

On a alors:

$$\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + C$$

Exemple II.d.1: Calculer:

$$I = \int_{2}^{-1} \frac{1}{x} dx$$

e) Lien entre primitive et intégrale

Propriété II.e.1: Soit f une fonction continue et positive sur un intervalle [a; b]. Soit F une primitive de f sur [a; b]. Alors:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Application II.e.2: On pose:

$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \cos^2(x) \end{cases}$$

Déterminer l'aire délimitée par la courbe, l'axe des abscisses et les droites d'équation x = 0 et $x = 4\pi$

Définition (extension de la définition) : Soit f est continue sur un intervalle [a; b], de signe quelconque. Soit F une primitive de f sur [a; b]. On définit alors :

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Exemple II.e.3: Déterminer:

$$I = \int_{-\pi}^{\pi} \sin(x) \, dx$$

Propriété II.e.4: Soit f est continue sur un intervalle [a; b]. On a :

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

III) Nouvelles techniques pour déterminer une primitive ou une intégrale

a) Intégration par partie

Propriété III.a.1: Soit $(f,g) \in (\mathcal{C}^1([a,b],\mathbb{K}))^2$. On a alors:

$$\int_{a}^{b} f'(t)g(t)dt = [f(t)g(t)]_{a}^{b} - \int_{a}^{b} f(t)g'(t)dt$$

Application III.a.2: Déterminer:

$$\int_{0}^{\pi} x \sin(5x) dx$$

Remarque : On peut utiliser l'intégration par partie pour calculer des primitives :

Application III.a.3: Déterminer:

$$\int_{0}^{t} \arctan(x) dx \ et \int_{0}^{u} \ln(t) dt$$

b) Changement de variable

Propriété III.b.1 (changement de variable) : Soit $f \in C^0(I, \mathbb{K})$. Soient $\phi \in C^1([a; b], I)$. Alors :

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt$$

On dit que l'on a effectué le changement de variable $x = \varphi(t)$.

Remarque : En pratique on n'utilise pas la formule sous cette forme, mais on décompose le changement de variable en 3 étapes !

A retenir : On cherche à calculer :

$$\int_{a}^{b} f(x)dx$$

On pose $x = \varphi(t)$.

1) On trouve de nouvelles bornes en cherchant une solution aux équations :

$$\begin{cases}
a = \varphi(t) \\
b = \varphi(t)
\end{cases}$$

2) On vérifie que ϕ est de classe \mathcal{C}^1 sur un intervalle I à valeur dans [a ;b] et on calcule la valeur du dx

$$dx = \varphi'(t)dt$$

3) On change les valeurs de x par $\varphi(t)$ dans l'intégrale, ainsi que le dx et les bornes.

Application III.b.2: Déterminer :

$$I = \int\limits_0^1 \sqrt{1 - t^2} \, dt$$

Application III.b.3: Déterminer :

$$I = \int\limits_0^1 \frac{e^{2t}}{1 + e^t} dt$$

Remarque : On peut utiliser le changement de variable pour déterminer une primitive d'une fonction : Soient $\varphi \in \mathcal{C}^1(J,I)$ et $f \in \mathcal{C}^0(I,\mathbb{K})$. On a alors:

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + C \ avec \ C \in \mathbb{K}$$

Application III.b.4: Déterminer:

$$\int^{x} \frac{dt}{ch(t)}$$

Application III.b.5: Déterminer:

$$\int \frac{dx}{\sqrt{b^2 - x^2}}$$

IV) Primitives de fractions rationnelles

a) Décomposition en éléments simples

Définition: On appelle fraction rationnelle le quotient de deux fonctions polynômes

Exemple: Les fonctions suivantes sont des fractions rationnelles:

$$x \mapsto \frac{2x+1}{x+3}$$
; $x \mapsto \frac{x^3-3x^2+1}{x^4+5x^2+3}$

Propriété IV.a.1 (Décomposition en éléments simples) : Soient $(P,Q) \in \mathbb{R}[X]^2$ tel que :

 $\exists (m_1, ... m_n) \in (\mathbb{N}^*)^n, \exists (a_1, ..., a_n) \in \mathbb{N}^n \text{ (deux à deux distincts)},$ $Q(x) = \prod_{i=1}^n (x - a_i)^{m_i}$

$$Q(x) = \prod_{i=1}^{n} (x - a_i)^{m_i}$$

Alors il existe
$$\lambda_{1,1}, \lambda_{1,2}, \dots, \lambda_{1,m_1}, \lambda_{2,1}, \dots \lambda_{2,m_2}, \lambda_{3,1}, \dots, \lambda_{n,m_n}$$
 scalaires de \mathbb{K} tels que :
$$F(x) = \frac{P(x)}{Q(x)} = \frac{\lambda_{1,1}}{x - a_1} + \frac{\lambda_{1,2}}{(x - a_1)^2} + \dots + \frac{\lambda_{1,m_1}}{(x - a_1)^{m_1}} + \dots + \frac{\lambda_{n,1}}{x - a_n} + \dots + \frac{\lambda_{n,m_n}}{(x - a_n)^{m_n}}$$

Exemple IV.a.2: Décomposer en élément simple les fractions rationnelles suivantes :

$$f: x \mapsto \frac{1}{1-x^2}; g: x \mapsto \frac{2x+1}{x(1+x)^2}$$

Remarque : Si le degré de P est supérieur au degré de Q, il faut transformer la fraction rationnelle, nous verrons cela dans le cours sur les polynômes

Application IV.a.3: Calculer:

$$\int_{1}^{3} \frac{dt}{t(t+1)(t+2)}$$

Application IV.a.4: Déterminer une primitive sur $]0; +\infty[$ de la fonction g suivante :

$$g: x \mapsto \frac{2x+1}{x(1+x)^2}$$

Remarque : On peut utiliser des complexes pour factoriser un polynôme sur \mathbb{R} .

Exemple IV.a.5: Factoriser: $P(t) = 1 + t^4$

b) Cas des fonctions de degré 2

Soit $(a, b, c) \in \mathbb{R}^3$, $a \neq 0$. On pose dans cette partie :

$$f: x \mapsto \frac{dx + e}{ax^2 + bx + c}$$

Propriété IV.b.1: En fonction de la valeur du discriminant, un polynôme de degré 2 peut se factoriser ou non sur les réels. On a donc 3 cas.

• $\Delta = b^2 - 4ac > 0$. On a deux racines distinctes x_1 et x_2 réelles : $f: x \mapsto \frac{dx + e}{a(x - x_1)(x - x_2)}$

$$f: x \mapsto \frac{dx + e}{a(x - x_1)(x - x_2)}$$

On décompose alors en éléments simples.

• $\Delta = b^2 - 4ac = 0$. On a alors une racine double :

$$\int \frac{dx + e}{ax^2 + bx + c} dx = \int \frac{dx + e}{(x - x_1)^2} dx = \frac{d'}{x - x_1} + C$$

• $\Delta = b^2 - 4ac < 0$. Il n'y a pas de racine réelle. On se ramène à une forme canonique

$$\int \frac{dx + e}{ax^2 + bx + c} dx = \int \frac{dx + e}{a\left(x - \frac{b}{2a}\right)^2 + \frac{-\Delta}{4a^2}} dx$$

Application IV.b.2: Déterminer:

$$F_1(x) = \int \frac{x+1}{x^2 - 5x + 6} dx \quad F_2(x) = \int \frac{x+3}{x^2 + 4x + 4} dx \; ; F_3(x) = \int \frac{x-3}{x^2 + x + 1} dx$$

Application IV.b.3 : Déterminer une primitive de :

$$f(x) = \frac{2x+1}{x^3-1}$$

Application IV.b.4: Déterminer:

$$I = \int_{-3}^{3} \frac{1}{1 + t^4} dt$$