Formulaire de primitives

a) Les formules (Il faut les connaître)

Dans chaque ligne du tableau, F est une primitive de la fonction f sur l'intervalle I. Ces primitives sont uniques à une constante près qui est notée C.

uniques a une constante pres qui est no		
f(x)	I	F(x)
x^{α} , $\alpha \neq -1$	\mathbb{R} si $\alpha \geq 0$	$x^{\alpha+1}$
	$]0; +\infty[$ $si \alpha < 0$	$\frac{F(x)}{\frac{x^{\alpha+1}}{\alpha+1} + C}$ $ln(x) + C$
1	$]-\infty;0[\cup]0;+\infty[$	ln(x) + C
$\frac{\overline{x}}{x}$		
e^{x}	R	$e^x + C$
sin(x)	R	-cos(x) + C
cos(x)	R	sin(x)
$1 + tan^2(x) = \frac{1}{cos^2(x)}$	$\bigcup_{k\in\mathbb{Z}}\left]-\frac{\pi}{2}+k\pi;\frac{\pi}{2}+k\pi\right[$	tan(x) + C
$\frac{1}{\sin^2(x)}$	$\bigcup_{k\in\mathbb{Z}}]k\pi;(k+1)\pi[$	$-\frac{1}{\tan(x)} + C$
$a^x(a \in]0; +\infty[\setminus\{1\})$	IR.	$\frac{1}{\ln(a)}a^x + C$
ch(x)	R	sh(x) + C
<i>sh(x)</i> 1	R	ch(x) + C
1]-1;1[arcsin(x) + C
$\sqrt{1-x^2}$		ou
VI 2		-arcccos(x) + C
1	R	arctan(x) + C
$1+x^2$		

b) Les fonctions composées (il faut y penser)

Soit u une fonction de classe $\mathcal{C}^1(I)$ où I est un intervalle de \mathbb{R} . Pour déterminer certaines primitives, on peut penser aux fonctions composées :

Une primitive de $u'u^{\alpha}$, $(\alpha \neq -1)$:

$$\int u'(x)u^{\alpha}(x) = \frac{u^{\alpha+1}(x)}{\alpha+1}$$

Une primitive de u'u avec u non nul sur I:

$$\int \frac{u'(x)}{u(x)} = \ln(|u(x)|)$$

Une primitive de $u'e^u$:

$$\int u'(x)e^{u(x)}dx = e^{u(x)}$$

Une primitive de $u' \cos(u)$ ou $u' \sin(u)$

$$\int u'(x)\cos\bigl(u(x)\bigr)\,dx=\sin\bigl(u(x)\bigr)\ et\ \int u'(x)\sin\bigl(u(x)\bigr)\,dx=-\cos\bigl(u(x)\bigr)$$

Une primitive avec les réciproques des fonctions trigonométriques
$$\int \frac{u'(x)}{1+u^2(x)} dx = \arctan(u(x)) \quad et \quad \int \frac{u'(x)}{\sqrt{1-u^2(x)}} dx = \arcsin(u(x)) = -\arccos(u(x))$$

Remarque : Si vous ne reconnaissez pas une primitive usuelle, ou une composée de primitives usuelles, il faut alors penser à utiliser une intégration par partie (IPP) ou un changement de variable (CDV).