Programme de Colle nº7 PCSI 2025-2026

(10 novembre au 14 novembre)

Nombres complexes

L'objectif de cette section, que l'on illustrera par de nombreuses figures, est de donner une solide pratique des nombres complexes, à travers les aspects suivants :

- l'étude algébrique de l'ensemble € et la notion d'équation algébrique;
- l'interprétation géométrique des nombres complexes et l'utilisation des nombres complexes en géométrie plane;
- l'exponentielle complexe et ses applications à la trigonométrie.

Contenus	Capacités & commentaires
a) Nombres complexes	
Parties réelle et imaginaire. Opérations sur les nombres complexes.	La construction de $\ensuremath{\mathbb{C}}$ est hors programme.
Brève extension du calcul de $\sum_{k=0}^{n} x^k$, de la factorisation	
de $a^n - b^n$, de la formule du binôme. Point du plan associé à un nombre complexe, affixe d'un point, affixe d'un vecteur.	On identifie $\mathbb C$ au plan usuel muni d'un repère orthonormé direct (« plan complexe »).
b) Conjugaison et module	
Conjugaison, compatibilité avec les opérations. Module. Relation $ z ^2=z\overline{z}$, module d'un produit, d'un quotient. Inégalité triangulaire, cas d'égalité.	Image du conjugué dans le plan complexe. Interprétation géométrique de $ z-z' $, cercles et disques.
c) Nombres complexes de module 1 et trigonométrie	
Identification du cercle trigonométrique et de l'ensemble des nombres complexes de module 1. Définition de e^{1t} pour $t \in \mathbb{R}$.	Notation \mathbb{U} .
Exponentielle d'une somme. Formules d'Euler. Technique de l'angle moitié : factorisation de $1 \pm e^{1t}$, de $e^{1p} \pm e^{1q}$.	Les étudiants doivent savoir retrouver les formules don- nant $cos(p) \pm cos(q)$, $sin(p) \pm sin(q)$.
	Linéarisation, calcul de $\sum_{k=0}^{n} \cos(kt)$ et de $\sum_{k=0}^{n} \sin(kt)$.
Formule de Moivre.	Les étudiants doivent savoir retrouver les expressions de $\cos(nt)$ et $\sin(nt)$ en fonction de $\cos t$ et $\sin t$.
d) Forme trigonométrique	
Forme trigonométrique $r\mathrm{e}^{\mathrm{i}\theta}$ $(r>0)$ d'un nombre complexe non nul. Arguments. Arguments d'un produit, d'un quotient. Transformation de $a\cos t + b\sin t$ en $A\cos(t-\varphi)$.	
e) Équations algébriques	
Pour P fonction polynomiale à coefficients complexes admettant a pour racine, factorisation de $P(z)$ par $z-a$. Résolution des équations du second degré dans $\mathbb C$. Somme et produit des racines.	Calcul des racines carrées d'un nombre complexe donné sous forme algébrique.

Somme et produit des racines. f) Racines *n*-ièmes

Description des racines n-ièmes de l'unité, d'un nombre complexe non nul donné sous forme trigonométrique.

Notation U_n .

Représentation géométrique.

g) Exponentielle complexe

Définition de e^z pour z complexe : $e^z = e^{Re(z)}e^{1 \operatorname{Im}(z)}$.

Exponentielle d'une somme.

si $z - z' \in 2i\pi \mathbb{Z}$.

Pour tous z et z' dans \mathbb{C} , $\exp(z) = \exp(z')$ si et seulement

h) Interprétation géométrique des nombres complexes

Interprétation géométrique des module et arguments

Interprétation géométrique des applications $z \mapsto az$ et $z \mapsto z + b \text{ pour } (a, b) \in \mathbb{C}^* \times \mathbb{C}.$

Interprétation géométrique de la conjugaison.

Traduction de l'alignement, de l'orthogonalité.

Notations $\exp(z)$, e^z . Module et arguments de e^z .

Il s'agit d'introduire certaines transformations du plan : translations, homothéties, rotations.

L'étude générale des similitudes est hors programme.

Chapitre VII: Ensemble et application

b) Ensembles

Ensemble, appartenance. Ensemble vide.

Inclusion. Partie (ou sous-ensemble).

Opérations sur les parties d'un ensemble : réunion, inter-

section, différence, complémentaire.

Produit cartésien d'un nombre fini d'ensembles.

Ensemble des parties d'un ensemble.

Recouvrement disjoint, partition.

Notation $A \setminus B$ pour la différence et $E \setminus A$, \overline{A} et A^c pour le complémentaire.

Notation $\mathscr{P}(E)$.

d) Applications

Application d'un ensemble dans un ensemble.

Graphe d'une application.

Le point de vue est intuitif : une application de E dans F associe à tout élément de E un unique élément de F.

Le programme ne distingue pas les notions de fonction

et d'application.

Notations $\mathscr{F}(E, F)$ et F^E .

Famille d'éléments d'un ensemble.

Fonction indicatrice d'une partie d'un ensemble.

Restriction et prolongement.

Image directe.

Image réciproque.

Notation 1_A . Notation $f|_A$

Notation f(A).

Notation $f^{-1}(B)$. Cette notation pouvant prêter à confusion, on peut provisoirement en utiliser une autre.

Composition.

Injection, surjection. Composée de deux injections, de

deux surjections.

Bijection, réciproque. Composée de deux bijections, réci-

proque de la composée.

Notation f^{-1} . Compatibilité de cette notation avec celle de l'image réciproque.

Questions de cours:

Propriété I.b.1 : On a :

$$az^2 + bz + c = 0 \Leftrightarrow z \in \left\{ \frac{-b - \delta}{2a}; \frac{-b + \delta}{2a}, avec \delta^2 = b^2 - 4ac \right\}$$

Application II.e.3: Déterminer une primitive de $f: x \mapsto \sin^n(x)$ ou $\cos^n(x)$ en linéarisant.

Application II.d.4: Simplifier: $\forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}$,

$$S_n(\theta) = 1 + \cos(\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \sum_{k=0}^{n} \cos(k\theta)$$
$$W_n(\theta) = \sin(\theta) + \sin(2\theta) + \dots + \sin(n\theta) = \sum_{k=0}^{n} \sin(k\theta)$$

Application II.a.4: Démontrer l'équivalence suivante :

$$f$$
 est injective sur $E \iff \forall (A,B) \in \mathcal{P}(E), f(A \cap B) = f(A) \cap f(B)$

Propriété III.b.2 : Soient E, F deux ensembles tels que $f \in \mathcal{F}(E; F)$ et $g \in \mathcal{F}(F; G)$. On a :

 \triangleright f et g injectives \Rightarrow g o f injective

g o f injective \Rightarrow f injective

 \triangleright f et g surjectives \Rightarrow g o f surjective

g o f surjective \Rightarrow g surjective

 \triangleright f et g bijectives \Rightarrow g o f bijective

 $g \circ f$ bijective $\Rightarrow f$ injective et g surjective

Exercices du type:

Application II.c.9: Déterminer l'ensemble des nombres complexes tel que :

$$\frac{z-1}{z+2i} \in \mathbb{R}, i\mathbb{R}$$

Application II.e.6 : Application Linéarisation de $\cos^n(x)$ et $\sin^n(x)$ avec la formule d'Euler ou de Moivre.

Exercice G.5: On pose l'équation (E):

(E):
$$2z^3 - (3 + 4i)z^2 - (4 - 7i)z + 4 + 2i = 0$$

- 1) Montrer que (E) admet une solution réel.
- 2) En déduire toutes les solutions de (E).

Exercice G.11: On pose $z = e^{\frac{2i\pi}{7}}$, $u = z + z^2 + z^4$ et $v = z^3 + z^5 + z^6$.

- 1) Calculer u+v puis u² en fonction de u et de v.
- 2) En déduire la valeur de :

$$S = \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$$

Exercice A.2 : Démontrer que :

$$A \cup B = A \cap C \iff B \subset A \subset C$$

Exercice B.4 : On pose :

$$f : \left\{ \begin{matrix} \mathbb{C} \to \mathbb{C} \\ z \mapsto z^2 + z \end{matrix} \right.$$

On pose l'ensemble:

$$A = \left\{ z \in \mathbb{C}; \left| z + \frac{1}{2} \right| = 2 \right\}$$

Déterminer f(A) et $f^{-1}(\mathbb{R})$

Exercice B.5: Déterminer si les applications suivantes sont injectives, surjectives et bijectives :

f:
$$\begin{cases} |0; +\infty[\to [0; +\infty[\\ x \mapsto x + \frac{1}{x}] \end{cases} & g: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x; y) \mapsto (x + y; xy) \end{cases} & h: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x; y) \mapsto x - y^2 \end{cases} \\ f: \begin{cases} \frac{n}{2} \sin pair \\ -\frac{n+1}{2} \sin n \text{ impair} \end{cases} & g: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x; y) \mapsto (x - y; -2x + 3y) \end{cases} & h: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x; y) \mapsto (max(x; y); min(x; y)) \end{cases} \end{cases}$$