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Correction Fiche TD 12 

Rudiment d’arithmétique 
 

Partie A : Diviseurs et multiples 

 

Exercice A1 : Démontrer que :  

√3 ∉ ℚ 

 

On va faire cette démonstration par l’absurde de deux façons ! 

 

M1 : Sans les congruences 

On suppose que √3 ∈ ℚ. On a alors :  

√3 ∈ ℚ⟹ ∃(a, b) ∈ ℕ × ℕ∗, √3 =
a

b
 et a ∧ b = 1 

⟹ a2 = 3b2 

⟹ ∃k ∈ ℕ, a2 = 3k2 

On va montrer le lemme suivant :  

 

Lemme : Soit 𝑎 ∈ ℕ. On a alors :  

3|𝑎2 ⟹ 3|𝑎 

 

Démo : On va prouver ce lemme par contraposée. 

Soit a ∈ ℕ tel que 3 ∤ a. 

1er cas : ∃𝐤 ∈ ℕ, 𝐚 = 𝟑𝐤 + 𝟏 

On a alors :  

a2 = 3(3k2 + 2k) + 1 = 3k′ + 1 

Donc 3 ∤ a2 

2ième cas : ∃𝐤 ∈ ℕ, 𝐚 = 𝟑𝐤 + 𝟐 

On a alors :  

a2 = 3(3k2 + 4k + 1) + 1 = 3k′ + 1 

Donc 3 ∤ a2 

Par contraposée on en déduit que :  

3|a2 ⟹ 3|a 
On en déduit donc que :  

∃k ∈ ℕ, a = 3k ⟹ a2 = 9k2 ⟹ 3b2 = 9k2 ⟹ 3|b2 ⟹ 3|b 

On a donc :  

{
a ∧ b = 1
3|a, 3|b

 

C’est impossible. 

Donc √3 ∉ ℚ. 

 

M2 : Avec les congruences 

On suppose que √3 ∈ ℚ. On a alors :  

√3 ∈ ℚ⟹ ∃(a, b) ∈ ℕ × ℕ∗, √3 =
a

b
 et a ∧ b = 1 

⟹ a2 = 3b2 

⟹ a2 ≡ 0[3] 
Or on sait que :  

a ≡ 1[3] ⟹ a2 ≡ 1[3] et a ≡ (−1)[3] ⟹ a2 ≡ 1[3] 
On en déduit donc par contraposée que :  

a2 ≡ 0[3] ⟹ a ≡ 0[3] 
On en déduit donc que :  

∃k ∈  ℕ, a = 3k 
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On a donc :  

∃k ∈ ℕ, a2 = 9k2 

On a donc :  

9k2 = 3b2 ⟹ b2 = 3k2 ⟹ b2 ≡ 0[3] ⟹ b ≡ 0[3] ⟹ 3|b 

On a donc :  

√3 ∈ ℚ⟹ ∃(a, b) ∈ ℕ × ℕ∗, √3 =
a

b
 et a ∧ b = 1 et 3|a, 3|b 

⟹ ∃(a, b) ∈ ℕ × ℕ∗, √3 =
a

b
 et a ∧ b = 1 et a ∧ b ≥ 3 

Contradiction. 

Donc √3 ∉ ℚ. 

 

Exercice A2 : Soit (a, b) ∈ ℚ2 tels que √a ∉ ℚ ou √b ∉ ℚ . Montrer que √a + √b ∉ ℚ 

 

On raisonne par contraposée. On suppose que :  

√a + √b ∈ ℚ 

⟹ ∃(p, q) ∈ ℤ∗ × ℕ∗, √a + √b =
p

q
> 0 

⟹
q

p
(a − b) = (√a − √b) 

⟹√a − √b ∈ ℚ (car (a, b) ∈ ℚ2) 
On en déduit donc que :  

∃(p, p′, q, q′) ∈ ℤ2 × (ℕ∗)2,

{
 

 √a + √b =
p

q

√a − √b =
p′

q′

 

⟹ ∃(p, p′, q, q′) ∈ ℤ2 × (ℕ∗)2, √a =
1

2
(
p

q
+
p′

q′
) =

pq′ + p′q

2qq′
 

⟹ ∃(p′′, q′′) ∈ ℤ2 × (ℕ∗)2, √a =
p′′

q′′
 

⟹ √a ∈ ℚ 

Par contraposée on en déduit donc que :  

√a ∉ ℚ et √b ∉ ℚ ⟹ √a + √b ∉ ℚ 

 

 

Exercice A.3 : Soit n un entier naturel non nul. Déterminer la division euclidienne de 7n+16 par 2n+3.  

 

On sait que :  

∀n ∈ ℕ∗, 7n + 16 = 3(2n + 3) + n + 7 

On sait que n + 7 est le reste de la division euclidienne de 7n+16 par 2n+3 si et seulement si 0 ≤ n + 7 <

2n + 3. On résout :  

n + 7 < 2n + 3 ⟺ n > 4 

On en déduit donc que :  

∀n ≥ 5, le reste de la division euclidienne de 7n+16 par 2n+3 est n+7 et le quotient est 3.  

Pour 𝑛 ≤ 4 on a :  

7n + 16 = 4(2n + 3) − n + 4 

∀n ∈ ⟦1; 4⟧, le reste de la division euclidienne de 7n+16 par 2n+3 est 4 − 𝑛 et le quotient est 4.  

 

Exercice A.4 : La différence de deux entiers naturels est 538. Si l´on divise l´un par l´autre, le quotient est 13 

est le reste est 34. Déterminer ces deux nombres.  
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On pose a et b les deux nombres recherchés. On suppose que a > b. On en déduit donc que a et b vérifient le système 

suivant :  

{
a − b = 538
a = 13b + 34

 

On a alors :  

{
a − b = 538
a = 13b + 34

⟺ a = 498 et b = 42 

 

Exercice A.5 : Soit (a0; a1;… ; an) ∈ ⟦0; 9⟧
n+1. On pose :  

anan−1…a0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = an × 10
n + an−1 × 10

n−1 +⋯+ a1 × 10 + a0 

Démontrer que :  

3|anan−1…a0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⟺ 3|∑ak

n

k=0

 

 

On raisonne par récurrence. On pose :  

∀n ∈ ℕ,𝒫(n) = " 3|(10n − 1)"  
Initialisation : n=0 

On sait que 100 − 1 = 0 et 3|0 donc 𝒫(0) est vraie. 

Hérédité : Soit n un entier naturel n fixé. On suppose vraie 𝒫(n). On a alors :  

∃kn ∈ ℤ, 10
n = 3kn + 1 

On en déduit donc que :  

10n+1 = 10n × 10 = (3kn + 1) × 10 = 3(10kn + 3) + 1 

On en déduit donc que :  

10n+1 = 3kn+1 + 1⟹ 3|(10n+1 − 1) 
On en déduit donc que 𝒫(n) est héréditaire. 

Conclusion : On conclut d’après le principe de récurrence. 

De plus on sait que :  

anan−1…a0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = an × 10
n + an−1 × 10

n−1 +⋯+ a1 × 10 + a0 

=∑ai × 10
i

n

i=0

=∑ak × (3ki + 1)

n

k=0

= 3∑ak × ki

n

k=0

+∑ak

n

k=0

 

On en déduit donc que :  

∑ak

n

k=0

= anan−1…a0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 3∑ak × ki

n

k=0

 

Comme 3|3∑ ak × ki
n
k=0  on en déduit donc que :  

3|anan−1…a0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⟺ 3|∑ak

n

k=0

 

 

Exercice A.6 : Montrer que :  

an =
21n − 3

4
 et bn =

15n − 2

4
 

Ne sont pas simultanément dans ℤ 

 

On raisonne par l’absurde. On suppose que :  

∃n ∈ ℕ, (
21n − 3

4
,
15n − 2

4
) ∈ ℤ2 

On en déduit donc que 4|(21n − 3) et 4|(15n − 2). On en déduit donc que 4 divise toutes combinaisons linéaire de 

21n − 3 et 15n − 2. 

On en déduit donc que :  

4|7(15n − 2) − 5(21n − 3) ⟹ 4|1 

Cela est bien sur absurde. On en déduit donc que 4 ne divise pas simultanément 
21n−3

4
 et 

15n−2

4
.  
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Exercice A.7 : Montrer que :  

∀𝑛 ≥ 2, 10|(22
𝑛
− 6) 

 

On raisonne par récurrence.  

Initialisation : 𝑛 = 2 

On a :  

22
2
− 6 = 10 

Hérédité : Soit 𝑛 un entier naturel supérieur ou égale à 2. On suppose que 10|(22
𝑛
− 6) 

Ainsi :  

∃𝑘𝑛 ∈ ℕ 𝑡𝑒𝑙 𝑞𝑢𝑒 2
2𝑛 − 6 = 10𝑘𝑛  

On a donc :   

22
𝑛+1

− 6 = (22
𝑛
)
2
− 6 = (10𝑘𝑛 + 6)

2 − 6 = 

 

Partie B : PPCM et PGCD 

 

Exercice B.1 : Calculer 9100 ∧ 1848 et 9100 ∨ 1848 

 

On peut utiliser la décomposition en nombre premier de 9100 et de 1848. 

On sait que :  

9100 = 100 × 91 = 22 × 52 × 91 

Or on sait que 91 ∈ 𝒫. On peut le prouver. 

Lemme : 91 ∈ 𝒫. 

Démo :  

𝒫 ∩ ⟦2;√91⟧ = {2; 3; 5; 7}  

Or on a :  

91 = 2 × 45 + 1, 91 = 3 × 30 + 1, 91 = 5 × 18 + 1, 91 = 7 × 13 

On en déduit donc que :  

9100 = 22 × 52 × 7 × 13 

De même on a :  

1848 = 23 × 3 × 7 × 11 

On en déduit donc que :  

9100 ∧ 1848 = 22 × 7 = 28 

De même on a :  

9100 ∨ 1848 = 23 × 3 × 52 × 7 × 11 × 13 = 600600 

 

Exercice B.2 : Soit n ∈ ℕ∗. Calculer (n3 + 2n) ∧ (n4 + 3n2 + 1) et (n3 + 2n) ∨ (n4 + 3n2 + 1) 

 

On effectue la division euclidienne de n4 + 3n2 + 1 par n3 + 2n :  

n4 + 3n2 + 1 = n(n3 + 2n) + n2 + 1 

n3 + 2n = n(n2 + 1) + n 

n2 + 1 = n × n + 1 

On en déduit donc que :  

∀n ∈ ℕ∗, (n3 + 2n) ∧ (n4 + 3n2 + 1) = 1 

Or on sait que :  

[(n3 + 2n) ∧ (n4 + 3n2 + 1)] × [(n3 + 2n) ∨ (n4 + 3n2 + 1)] = (n3 + 2n) × (n4 + 3n2 + 1) 
On en déduit donc que :  

(n3 + 2n) ∨ (n4 + 3n2 + 1) = (n3 + 2n) × (n4 + 3n2 + 1) 
 

Exercice B.3 : a) Déterminer les entiers n ∈ ℕ∗ tels que s on divise 4373 et 826 par n, on obtient respectivement 8 et 7 

pour restes.  

b) Déterminer les entiers n ∈ ℕ∗ tels que s on divise 6381 et 3954 par n, on obtient respectivement 9 et 6 pour restes.  
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a) Il suffit de poser le système obtenu :  

{
4373 = q1 × n + 8
826 = q2 × n + 7

 

On en déduit donc que :  

(q1 − q2)n + 1 = 3547 ⟹ n|3546 

Or on sait que :  

3546 = 2 × 32 × 197 

On en déduit que 3546 admet 12 diviseurs :  

𝒟3546
+ = {1,2,3,6,9,18,197,394,591,1182,1773,3546} 

On sait de plus que n ≥ 9 car le reste de la division euclidienne de 4373 par n est 8. 

De plus on sait que n < 826. 

Il nous reste alors 5 choix. 

On vérifie l’un après l’autre et on trouve que 𝑛 = 9. 

Remarque : On peut faire un programme Python pour résoudre cet exercice :  

 
b) On utilise le même principe et on trouve n = 12.  

Remarque : On peut faire un programme Python pour résoudre cet exercice :  

 
 

Exercice B.4 : On considère trois entiers naturels n,p ,q avec n ≥ 2 et q > 0. 
1) On écrit la division euclidienne de p par q sous la forme p = aq + r. Montrer que la division euclidienne de np − 1 

par nq − 1 est :  

np − 1 = (∑nkq+r
a−1

k=0

)(nq − 1) + (nr − 1) 

2) En déduire (np − 1)⋀(nq − 1) en fonction de n et p ∧ q. 

 

1) On sait que : 
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∑nkq+r
a−1

k=0

= nr∑(nq)k
a−1

k=0

= nr ×
(nq)a − 1

nq − 1
 car nq ≠ 1 

On en déduit donc que : 

(∑nkq+r
a−1

k=0

)(nq − 1) + (nr − 1) = nr(nq)a − nr + nr − 1 = naq+r − 1 = np − 1 

De plus on sait que :  

0 ≤ r < q ⟹ 1 ≤ nr ≤ nq ⟹ 0 ≤ nr − 1 ≤ nq − 1 

On en déduit donc que la division euclidienne de np − 1 par nq − 1 est :  

np − 1 = (∑nkq+r
a−1

k=0

)(nq − 1) + (nr − 1) 

b) On pose la succession de division euclidienne suivante, en exécutant l’algorithme d’Euclide :  

{
 
 

 
 

p = a1q + r1
q = a2r1 + r2
r1 = a3r2 + r3

⋮
rn−2 = anrn−1 + rn
rn−1 = an+1rn + 0

 

D’après ce que l’on sait de l’algorithme d’Euclide on a : 

p ∧ q = rn 

De plus on sait que :  

{
 
 

 
 

np − 1 = b1(n
q − 1) + nr1 − 1

nq − 1 = b2(n
r1 − 1) + nr2 − 1

nr1 − 1 = b3(n
r2 − 1) + nr3 − 1
⋮

nrn−2 − 1 = bn(n
rn−1 − 1) + nrn − 1

nrn−1 − 1 = bn+1(n
rn − 1) + 0

 

On en déduit donc que :  

(np − 1)⋀(nq − 1) = nrn − 1 = np∧q − 1 

 

Exercice B.5 : 1) Montrer que pour tout (a, b) ∈ ℕ2, pour tout λ ∈ ℕ, (λa) ∧ (λb) = λ(a ∧ b). 

2) En déduire que pour tout (a, b) ∈ ℕ2, pour tout λ ∈ ℕ, (λa) ∨ (λb) = λ(a ∨ b) 

 

1) On peut le voir de deux façons. Soit par l’algorithme d’Euclide, soit par la décomposition en nombre premier de a 

et b. La deuxième façon est plus rapide car cela nous donne aussi le PPCM :  

On pose :  

a =∏pαp

p∈𝒫

    et    b =∏pβp

p∈𝒫

 

On a alors :  

a ∧ b =∏pmin(αp;βp)

p∈𝒫

 

De plus on sait que :  

λa =∏pλp

p∈𝒫

∏pαp

p∈𝒫

=∏p(αp+λp)

p∈𝒫

    et    λb =∏pλp

p∈𝒫

∏pβp

p∈𝒫

=∏p(βp+λp)

p∈𝒫

 

On en déduit donc que :  

(λa) ∧ (λb) =∏pmin(αp+λp;βp+λp)

p∈𝒫

=∏pmin(αp;βp)pλp

p∈𝒫

=∏pλp

p∈𝒫

∏pmin(αp;βp)

p∈𝒫

= λ(a ∧ b) 

2) On sait de plus que :  

((λa) ∨ (λb)) × ((λa) ∧ (λb)) = λ2ab 

⟹ ((λa) ∨ (λb)) × λ(a ∧ b) = λ2(a ∨ b) × (a ∧ b) 

⟹ (λa) ∨ (λb) = λ(a ∨ b) 
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Exercice B.6 : Chercher les couples d’entiers (a, b) tels que :  

{
a ∧ b = 42
a ∨ b = 1680

 

 

On sait que 42 = 2 × 3 × 7  et 1680 = 24 × 3 × 5 × 7. 

De plus on sait que :  

a ∧ b = 42 ⟺ ∃(a′, b′) ∈ ℤ2 {
a = 42a′

b = 42b′

a′ ∧ b′ = 1
 

On en déduit donc que :  

{
a ∧ b = 42
a ∨ b = 1680

⟺

{
 
 
 
 

 
 
 
 {

a = 2 × 3 × 7 = 42
b = 2 × 3 × 7 × 𝟐𝟑 × 𝟓 = 1680

ou

{
a = 2 × 3 × 7 × 𝟓 = 210
b = 2 × 3 × 7 × 𝟐𝟑 = 336

ou

{a = 2 × 3 × 7 × 𝟐
𝟑 = 336

b = 2 × 3 × 7 × 𝟓 = 210
ou

{a = 2 × 3 × 7 × 𝟐
𝟑 × 𝟓 = 1680

b = a = 2 × 3 × 7 = 42

 

 

Exercice B.7 : Déterminer les entiers b naturels non nuls tels que 28 ∨ b = 140 

 

On sait que 140 = 28 × 5. 

On sait de plus que 28 = 22 × 7. 

On en déduit donc que :  

b = 5 ou b = 2 × 5 = 10 ou b = 22 × 5 = 20 ou b = 7 × 5 = 35 ou b = 2 × 7 × 5 = 70 ou b = 22 × 5 × 7 = 140 

On a donc :  

{b ∈ ℕ, 28 ∨ b = 140} = {5; 10; 20; 35; 70; 140} 
 

Partie C : Nombres premiers 

 

Exercice C.1 : Soit (a, n) ∈ (ℕ∗)2, soit p un nombre premier. Montrer que :  

p|an ⟹ pn|an 

 

Pour tout a ∈ ℕ∗, a ≥ 2 on a :  

a =∏pap

p∈𝒫

, ap ∈ ℕ, ∀p ∈ 𝒫 

On peut aussi écrire :  

a = p1
α1 …pk

αk , avec αi ∈ ℕ
∗ 

On a alors:  

∀n ∈ ℕ∗, an = (p1
α1 …pk

αk)
n
= p1

nα1 …pk
nαk = (p1

n)α1 …(pk
n)αk 

On a donc :  

p|an ⟹ ∃i ∈ ⟦1; k⟧, pi = p ⟹ pn|an 

 

Exercice C.2 : Soit (a, b, c, k) ∈ (ℕ∗)4. Montrer que :  

{ ab = c
k

a ∧ b = 1
⟹ ∃(α, β) ∈ (ℕ∗)2, tels que {

a = αk

b = βk
 

 

On pose :  

a =∏pαp

p∈𝒫

, b =∏pβp

p∈𝒫

, c =∏pγp

p∈𝒫
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On en déduit donc que :  

ab = ck = (∏pγp

p∈𝒫

)

k

=∏pkγp

p∈𝒫

 

De plus on sait que :  

ab =∏p(αp+βp)

p∈𝒫

 

Par unicité de la décomposition en nombre premier, on en déduit donc que :  

∀p ∈ 𝒫, αp + βp = kγp   

De plus on sait que a ∧ b = 1 ⟹ min(αp, βp) = 0 

On en déduit donc que :  

∀p ∈ 𝒫, αp + βp = {

αp
ou
βp

 

On pose :  

𝒫1 = {p ∈ 𝒫, αp > 0} et 𝒫2 = {p ∈ 𝒫, βp > 0} 

On a alors :  

a = ∏ pαp

p∈𝒫1

 et b = ∏ pβp

p∈𝒫2

 

De plus comme a ∧ b = 1, on a 𝒫1 ∩ 𝒫2 = ∅. 

De plus on sait que :  

αp + βp = {

αp si p ∈ 𝒫1
βp si p ∈ 𝒫2
0 sinon

 

On en déduit donc que :  

∀p ∈ 𝒫1, αp = kγp 

∀p ∈ 𝒫2, βp = kγp 

On en déduit donc que :  

a = ∏ pkγp

p∈𝒫1

= (∏ pγp

p∈𝒫1

)

k

= αk 

De même on a :  

b = ∏ pkγp

p∈𝒫2

= (∏ pγp

p∈𝒫2

)

k

= βk 

On a bien :  

{ ab = c
k

a ∧ b = 1
⟹ ∃(α, β) ∈ (ℕ∗)2, tels que {

a = αk

b = βk
 

 

 

 

 

Exercice C.3 (petit théorème de Fermat) : Soit p un nombre premier. 

1) Montrer que :  

∀ p ∈ 𝒫, ∀k ∈ ⟦1; p − 1⟧, p| (
p

k
) 

2) En déduire que :  

∀ n ∈ ℤ, p|(np − n)  
3) a) Montrer que :  

∀ n ∈ ℤ, 42|(n7 − n)  
b) Montrer que :  
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∀ n ∈ ℤ,
n7

7
+
n5

5
+
23n

35
∈ ℤ 

 

1) On sait que :  

∀ p ∈ 𝒫, ∀k ∈ ⟦1; p − 1⟧, (
p
k
) =

p!

k! (p − k)!
 

⟹ k! × (
p
k
) = p × (p − 1) × …× (p − k + 1) 

⟹ ∃kp ∈ ℤ, k! × (
p
k
) = p × kp 

⟹ p| k! × (
p
k
)  

De plus on écrit la décomposition en facteur premier de k ∈ ⟦1; p − 1⟧ :  

∀k ∈ ⟦1; p − 1⟧, k =∏qkq

q∈𝒫
q<p

 

On en déduit donc que :  

∀k ∈ ⟦1; p − 1⟧, k! =∏i

k

i=1

=∏∏qiq

q∈𝒫
q<p

k

i=1

 

On en déduit que p n’apparait pas dans la décomposition en facteur premier de k!,  car cette décomposition est unique. 

Or p apparait dans la décomposition en facteur premier de k! × (
p
k
). 

On en déduit donc que p apparait dans la décomposition en facteur premier de (
p
k
).  

On en déduit donc que p| (
p
k
). 

2) 1er cas : 𝐧 ∈ ℕ 

On va démontrer cette propriété par récurrence. On pose :  

∀n ∈ ℕ,𝒫(n): "p|(np − n)"  
Initialisation : n=0 

On sait que 0p − 0 = 0 et p|0 

Donc 𝒫(0) est vraie. 

Hérédité : Soit n un entier naturel n fixé. On suppose que p|np − n 

On sait que :  

(n + 1)p − (n + 1) = ∑(
p
k
)nk

p

k=0

− n − 1 = np − n +∑(
p
k
)nk

p−1

k=1

 

Or d’après ce que l’on a démontré au 1), on sait que p| (
p
k
), pour tout k ∈ ⟦1, p − 1⟧.De plus d’après l’hypothèse de 

récurrence, on sait que p|(np − n). On en déduit donc que p|((n + 1)p − (n + 1)). 

Conclusion : 𝒫(0) est vraie et 𝒫(n) est héréditaire donc d’après le principe de récurrence, 𝒫(n) est vraie pour tout 

entier naturel n. 

2ième cas : 𝐧 ∈ ℤ− 

On sait que −n ∈ ℤ. Si p > 2. 

On a alors :  

p|(−n)p − (−n) ⟹ p| − np + n ⟹ p|np − n 

Si p = 2. On a alors :  

n2 − n = n(n − 1) 
Or n et n-1 sont deux entiers consécutifs donc l’un des deux est pair. Donc 2 divise n(n − 1) 

3) a) Comme 7 ∈ 𝒫, on sait d’après la proposition précédente que : 

∀ n ∈ ℤ, 7|(n7 − n) 
De plus on sait : 

n7 − n = n(n6 − 1) = n(n3 − 1)(n3 + 1) = n(n − 1)(n2 + n + 1)(n + 1)(n2 − n + 1) 
Or on sait que n(n − 1)(n + 1) est divise par 2 et par 3 car n et n-1 sont deux entiers consécutifs donc l’un des deux 

est pair, et n, n-1 et n+1 sont trois entiers consécutifs donc l’un des trois est divisible par 3. 



Page 10 sur 11 
 
On en déduit donc que 2, 3 et 7 apparaissent dans la décomposition en facteur premier de n7 − n. Comme cette 

décomposition est unique, on en déduit donc que :  

2 ×  3 × 7 = 42|n7 − n 

b) On sait que 5 et 7 sont premiers, donc d’parès le petit théorème de fermat, on a :  

7|n7 − n et 5|n5 − n 

On en déduit donc que :  

7|5(n7 − n) et 5|5(n7 − n) 

Donc 7 et 5 apparaissent dans la décomposition en facteur premier de n7 − n. Donc 35|5(n7 − n).  

De même on a 35|7(n5 − n). 

Ainsi 35 divise toute combinaison linéaire de 7(n5 − n) et 5(n7 − n). On en déduit donc que :  

35|7(n5 − n) + 5(n7 − n) + 35n 

On en déduit donc que 35|7n5 + 5n7 + 23n. 

On en déduit donc que :  

∀ n ∈ ℤ,
n7

7
+
n5

5
+
23n

35
∈ ℤ 

 

Exercice C.4 : On suppose qu’il existe un nombre fini d’entiers premiers de la forme 4n − 1 où n ≥ 1. On les note 

p1, … , pN et on forme le nombre 4p1 × …× pN − 1. Montrer que ce nombre admet nécessairement un diviseur 

premier de la forme 4n − 1, et en déduire une contradiction. Conclure. 

 

Le nombre A = 4p1 × …× pN − 1 est impair. Ainsi ses diviseurs premiers sont tous impairs, donc de la forme 4n − 1 

ou 4n + 1.  

On va raisonner par l’absurde. On suppose que tous les diviseurs premiers de A sont de la forme 4n + 1 :  

∀p ∈ 𝒫 ∩ 𝒟A, ∃np ∈ ℕ, p = 4np + 1 

On a alors :  

A =∏pαp

p|A

=∏(4np + 1)
αp

p|A

 

On va ensuite montrer par récurrence que :  

∀(k1, … , kn) ∈ ℤ
n,∏(4ki + 1)

n

i=1

= 4k + 1, k ∈ ℤ 

Initialisation : n = 1. C’est trivial. 

Hérédité : Soit n un entier naturel n fixé non nul. On suppose que  

∀(k1, … , kn) ∈ ℤ
n,∏(4ki + 1)

n

i=1

= 4k + 1, k ∈ ℤ 

On a alors :  

∀(k1, … , kn, kn+1) ∈ ℤ
n+1,∏(4ki + 1)

n+1

i=1

= (4kn+1 + 1)∏(4ki + 1)

n

i=1

 

= (4kn+1 + 1)(4k + 1) 

= 4(4k × kn+1 + kn+1 + k) + 1 

= 4k′ + 1, k′ ∈ ℤ 

Donc la proposition est héréditaire. 

Conclusion : On conclut avec le principe de récurrence. 

On en déduit donc que si on a :  

∀p ∈ 𝒫 ∩ 𝒟A, ∃np ∈ ℕ, p = 4np + 1 

Alors A est de la forme 4k + 1. Or on sait que A = 4p1 × …× pN − 1.  

On a alors :  

4p1 × …× pN − 1 = 4k + 1 ⟹ 4(p1 × …× pN − k) = 2 

ce qui conduit à une contradiction. 

On en déduit donc que A admet un diviseur premier de la forme 4n − 1. 

On en déduit donc que :  
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∃i ∈ ⟦1; N⟧, pi|A 

On en déduit donc que :  

pi|p1 × …× pN et pi|A 

Donc pi|1. Ce qui est absurde. Ainsi il existe une infinité de diviseurs premiers de la forme 4n − 1. 

 

Remarque : Il existe aussi une infinité de diviseurs premiers de la forme 4n + 1. 

 

Exercice C.5 : Soit n ∈ ℕ∗, n = p1
α1 × …× pr

αr  sa décomposition en produit de facteurs premiers. 

1) Calculer le nombre de diviseurs positifs de n. 

2) Calculer la somme S(n) des diviseurs positifs de n. 

3) Montrer que si m et n sont premiers entre eux, alors S(mn) = S(m)S(n). 

 

1) On a vu dans le cours que :  

#𝒟n
+ = (α1 + 1) × (α2 + 1) × …× (αr + 1) =∏(αi + 1)

r

i=1

 

2) Cette question est compliquée si on essaie de la faire directement. On va la fragmenter.  

1er cas : Si 𝐧 = 𝐩𝛂 

On a alors :  

S(n) =∑d

d|n

=∑pk
α

k=0

=
pα+1 − 1

p − 1
 

2ième cas : Si 𝐧 = 𝐩𝟏
𝛂 × 𝐩𝟐

𝛃
 

On sait que :  

𝒟n
+ = {d = p1

k1 × p2
k2 , (k1, k2) × ⟦0, α⟧ × ⟦0; β⟧} 

On en déduit donc que :  

S(n) =∑d

d|n

=∑∑p1
k × p2

i

α

k=0

β

i=0

=∑p2
i ∑p1

k

α

k=0

β

i=0

=∑p2
i (
p1
α+1 − 1

p − 1
)

β

i=0

= (
p1
α+1 − 1

p1 − 1
) × (

p2
β+1

− 1

p2 − 1
) 

En généralisant le procédé ou en utilisant une récurrence, on obtient que : 

n = p1
α1 × …× pr

αr ⟹ S(n) =∑d

d|n

=∏(
pi
αi+1 − 1

pi − 1
)

r

i=1

 

3) Si m et n sont premiers entre eux alors on a :  

m = p1
α1 × …× pr

αr  et n = q1
α′1 × …× q

r′
α′r  avec qi ≠ pj, ∀(i, j) ∈ ⟦1, r′⟧ × ⟦1, r⟧ 

On en déduit donc la décomposition en facteur premier de m× n :  

mn = p1
α1 ×…× pr

αr × q1
α′1 × …× q

r′
α′r 

⟹ S(mn) =∏(
pi
αi+1 − 1

pi − 1
)

r

i=1

×∏(
qi
α′i+1 − 1

qi − 1
)

r′

i=1

= S(m) × S(n) 


