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Correction DM n°4 

 

Exercice 1 : Variation de la constante en dimension 2 

On cherche à résoudre l’équation différentielle à valeurs dans ℝ suivante sur ]−
π

2
;
π

2
[ : (E): y′′ + 4y = tan(t) 

1) Résoudre l’équation homogène. On ne donnera que les solutions à valeurs dans ℝ. On pose dans toute la suite :  

y1: {
]−
π

2
;
π

2
[ → ℝ

t ↦ cos(2t)
 et y2: {

]−
π

2
;
π

2
[ → ℝ

t ↦ sin(2t)
 

2)  a) Soit (λ1, λ2) ∈ (𝒞
1 (]−

π

2
;
π

2
[))

2

. On cherche à trouver une solution particulière à (E) qui vérifie la 

relation : 

{
y = λ1y1 + λ2y2
y′ = λ1y1

′ + λ2y2
′  

Montrer si y est solution de (E) et vérifie la relation précédente, on a alors :  

{
λ1
′ y1 + λ2

′ y2 = 0

λ1
′ y1
′ + λ2

′ y2
′ = tan(t)

 

 b) En déduire que :  

∀t ∈ ]−
π

2
;
π

2
[ , {

λ1
′ (t) = −sin2(t)

λ2
′ (t) =

1

2
cos(2t) tan(t)

  

 c) En déduire toutes les solutions de (E). 
3) Résoudre le problème de Cauchy :  

{

y′′ + 4y = tan(t)

y(0) = 0

y′(0) = 1

 

 

1) On sait que :  

𝐲′′ + 𝟒𝐲 = 𝟎⟺ ∃(𝐀, 𝐁) ∈ ℝ𝟐, ∀𝐭 ∈ ℝ, 𝐲(𝐭) = 𝐀𝐜𝐨𝐬(𝟐𝐭) + 𝐁𝐬𝐢𝐧(𝟐𝐭) 
2) a) On sait que :  

y = λ1y1 + λ2y2⟹ y′ = λ1y1
′ + λ2y2

′ + λ1
′ y1 + λ2

′ y2 

On en déduit donc que :  

{
y = λ1y1 + λ2y2
y′ = λ1y1

′ + λ2y2
′ ⟹ λ1

′ y1 + λ2
′ y2 = 0 

De plus si y est solution de (E) on a alors : 

y′′ + 4y = tan(t) 
De plus on a :  

y′ = λ1y1
′ + λ2y2

′ ⟹ y′′ = λ1
′ y1
′ + λ2

′ y2
′ + λ1y1

′′ + λ2y2
′′ 

On en déduit donc que :  

y′′ + 4y = tan(t) ⟹ λ1
′ y1
′ + λ2

′ y2
′ + λ1y1

′′ + λ2y2
′′ + 4(λ1y1 + λ2y2) = tan(t) 

⟹ λ1
′ y1
′ + λ2

′ y2
′ + λ1(y1

′′ + 4y1) + λ2 (y2
′′ + 4y2) = tan(t) 

De plus on sait que y1 et y2 sont solutions de l’équation homogène donc :  

y1
′′ + 4y1 = 0 = y2

′′ + 4y2 

On en déduit donc que :  

λ1
′ y1
′ + λ2

′ y2
′ = tan(t) 

On en déduit donc que y est solution de (E) et vérifie la relation précédente, on a alors :  

{
𝛌𝟏
′ 𝐲𝟏 + 𝛌𝟐

′ 𝐲𝟐 = 𝟎

𝛌𝟏
′ 𝐲𝟏
′ + 𝛌𝟐

′ 𝐲𝟐
′ = 𝐭𝐚𝐧(𝐭)

 

b) On sait d’après la question précédente que :  

∀t ∈ ]−
π

2
;
π

2
[ , {

λ1
′ (t) cos(2t) + λ2

′ (t) sin(2t) = 0

−2λ1
′ (t) sin(2t) + 2λ2

′ (t) cos(2t) = tan(t)
 

On sait que ce système admet une unique solution si et seulement si :  

2 cos2(2𝑡) + 2 sin2(2𝑡) ≠ 0 

Or on sait que :  
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∀𝑡 ∈ ℝ, 2 cos2(2𝑡) + 2 sin2(2𝑡) = 1 

On en déduit donc que le système admet une unique solution, donné par :  

∀t ∈ ]−
π

2
;
π

2
[ , {

λ1
′ (t) = −

sin(2t) tan(t)

2

λ2
′ (t) =

cos(2t) tan(t)

2

  

Or on sait que :  

∀t ∈ ]−
π

2
;
π

2
[ , sin(2t) = 2 cos(t) sin(t) ⟹ −

sin(2t) tan(t)

2
= −sin2(t) 

On en déduit donc que :  

∀t ∈ ]−
π

2
;
π

2
[ , {

λ1
′ (t) = −

sin(2t) tan(t)

2

λ2
′ (t) =

cos(2t) tan(t)

2

⟺ ∀t ∈ ]−
π

2
;
π

2
[ , {

λ1
′ (t) = − sin2(t)

λ2
′ (t) =

1

2
cos(2t) tan(t)

 

On sait que :  

∀t ∈ ]−
π

2
;
π

2
[ , λ1

′ (t) = − sin2(t) = −(
eit − e−it

2i
)

2

=
1

2
(cos(2t) − 1) 

⟹ ∃𝐜 ∈ ℝ,∀𝐭 ∈ ]−
𝛑

𝟐
;
𝛑

𝟐
[ , 𝛌𝟏(𝐭) =

𝟏

𝟐
(
𝐬𝐢𝐧(𝟐𝐭)

𝟐
− 𝐭) + 𝐜 

De plus on a :  

λ2
′ (t) =

1

2
cos(2t) tan(t) =

1

2
(2 cos2(t) − 1) tan(t) = cos(t) sin(t) −

1
2 sin

(t)

cos(t)
=
1

2
sin(2t) −

1

2

sin(t)

cos(t)
 

On en déduit donc que :  

∃𝐝 ∈ ℝ,∀𝐭 ∈ ]−
𝛑

𝟐
;
𝛑

𝟐
[ , 𝛌𝟐(𝐭) = −

𝟏

𝟒
𝐜𝐨𝐬(𝟐𝐭) +

𝟏

𝟐
𝐥𝐧(𝐜𝐨𝐬(𝐭)) + 𝐝 

On pose :  

f:

{
 

 ]−
π

2
;
π

2
[ → ℝ

t ↦ (
1

2
(
sin(2t)

2
− t) cos(2t)) + (−

1

4
cos(2t) +

1

2
ln(cos(t))) sin(2t)

 

On vérifie alors facilement que :  

∀𝑡 ∈ ]−
𝜋

2
;
𝜋

2
[ , 𝑓′′(𝑡) + 4𝑓(𝑡) = 𝑡𝑎𝑛(𝑡) 

Donc 𝑓 est une solution particulière de (E). 
On en déduit donc que :  

{
y′′ + 4y = tan(t)

t ∈ ]−
π

2
;
π

2
[

 

⟺ ∃(𝐀,𝐁) ∈ ℝ𝟐, ∀𝐭 ∈ ]−
𝛑

𝟐
;
𝛑

𝟐
[ , 𝐲(𝐭)

= (
𝟏

𝟐
(
𝐬𝐢𝐧(𝟐𝐭)

𝟐
− 𝐭 + 𝐀) 𝐜𝐨𝐬(𝟐𝐭)) + (−

𝟏

𝟒
𝐜𝐨𝐬(𝟐𝐭) +

𝟏

𝟐
𝐥𝐧(𝐜𝐨𝐬(𝐭)) + 𝐁) 𝐬𝐢𝐧(𝟐𝐭) 

3) En reprenant les notations de la question précédente on a :  

y(0) = A = 0 

De plus on a :  

y′(0) = (−
1

4
+ B) 2 = 1 ⟹ B =

3

4
 

On en déduit donc que :  

{

𝐲′′ + 𝟒𝐲 = 𝐭𝐚𝐧(𝐭)

𝐲(𝟎) = 𝟎

𝐲′(𝟎) = 𝟏

 

⟺ ∀𝐭 ∈ ]−
𝛑

𝟐
;
𝛑

𝟐
[ , 𝐲(𝐭) =

𝟏

𝟐
(
𝐬𝐢𝐧(𝟐𝐭)

𝟐
− 𝐭) 𝐜𝐨𝐬(𝟐𝐭) + (−

𝟏

𝟒
𝐜𝐨𝐬(𝟐𝐭) +

𝟏

𝟐
𝐥𝐧(𝐜𝐨𝐬(𝐭)) +

𝟑

𝟒
) 𝐬𝐢𝐧(𝟐𝐭) 
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= −
𝟏

𝟐
𝒕𝒄𝒐𝒔(𝟐𝒕) + (

𝟏

𝟐
𝐥𝐧(𝐜𝐨𝐬(𝐭)) +

𝟑

𝟒
) 𝐬𝐢𝐧(𝟐𝐭) 

 

Exercice facultatif : Problème 1 : Irrationnalité de 𝐥𝐧(𝟐) 
 

Partie A : Une suite qui converge vers 𝒍𝒏(𝟐) 
 

Dans toute cette partie on pose :  

In = ∫
tn

1 + t
dt

1

0

 

1) Démontrer que :  

∀n ∈ ℕ,∑
(−1)k

k + 1

n

k=0

= ln(2) − (−1)n+1In+1 

2) a) Démontrer que :  

∀n ∈ ℕ, 0 ≤ In+1 ≤
1

n + 2
 

 b) En déduire la valeur de :  

S = lim
𝑛→+∞

∑
(−1)k

k + 1

n

k=0

=∑
(−1)k

k + 1

+∞

k=0

 

 

Partie B : Critère de d’Alembert 

 

On veut montrer le théorème suivant :  

Soit  (un)n∈ℕ ∈ (ℝ+
∗ )ℕ. On a :  

𝑢𝑛+1
𝑢𝑛

→ ℓ 𝑎𝑣𝑒𝑐 ℓ < 1 ⟹ 𝑢𝑛 → 0 

Dans toute cette partie on pose :  

∀𝑛 ∈ ℕ, 𝑣𝑛 =
𝑢𝑛+1
𝑢𝑛

 

On suppose de plus que :  

lim
𝑛→+∞

𝑣𝑛 = ℓ 𝑎𝑣𝑒𝑐 0 ≤ ℓ < 1 

1) Démontrer que :  

∃𝑛0 ∈ ℕ, 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑛0, 0 < 𝑣𝑛 < 1 

2) En déduire que la suite (𝑢𝑛) est décroissante à partir d’un certain rang. 

3) Démontrer que la suite (𝑢𝑛) converge, puis que sa limite est 0. 

4) La réciproque du théorème est-elle vraie ? 

 

Partie C : Irrationalité de 𝐥𝐧(𝟐) 
 

 On va prouver l’irrationalité de ln(2) en raisonnant par l’absurde. On suppose que :  

∃(p, q) ∈ (ℕ∗)2, ln(2) =
p

q
 et p ∧ q = 1 

On pose de même :  

∀n ∈ ℕ, Jn =
1

n!
∫(1 − t2)netln(2)dt

1

−1

 

1) Calculer J0 et J1. 

2) Montrer que :  

∀n ∈ ℕ, Jn > 0 
3) Démontrer que :  

∀D ∈ ℝ,DnJn → 0 
4) Démontrer que :  

∀n ∈ ℕ, Jn+2 =
4q2

p2
Jn −

(4n + 6)q2

p2
Jn+1 
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5) Montrer que pour tout entier naturel n, il existe une fonction polynomiale à coefficients entiers An tel que :  

Jn = (
q

p
)
2n+1

[2An (
p

q
) −

1

2
An (−

p

q
)] 

6) Montrer que si D = 2p3, alors :  

∀n ∈ ℕ∗, DnJn ∈ ℕ
∗ 

7) En déduire l’irrationalité de ln(2). 
 

 

Partie A : Etude d’une intégrale 

Dans toute cette partie on pose :  

In = ∫
tn

1 + t
dt

1

0

 

1) On sait que :  

∀n ∈ ℕ, fn: t ↦
tn

1 + t
∈ 𝒞0([0; 1]) 

Donc fn admet une primitive donc In est bien définie. 

2) On a :  

I0 = ∫
t0

1 + t
dt

1

0

= ∫
1

1 + t
dt

1

0

= ln(2) 

De plus on a :  

I1 = ∫
t

1 + t
dt

1

0

= ∫1 −
1

1 + t
dt

1

0

= 1 − ln(2) 

3)  a) On sait que :  

I2 = ∫
t2

1 + t
dt

1

0

= ∫
(1 + t)2 − 2(t + 1) + 2

1 + t
dt

1

0

= ∫(1 + t) − 2 +
2

1 + t
dt

1

0

 

On pose y = 1 + t 

a) Les bornes  

t = 0 ⟹ y = 1 et t = 1 ⟹ y = 2 

b) Calcul de 𝐝𝐭 

On sait que t: y ↦ y − 1 ∈ 𝒞1([1,2]) et :  

dt

dy
= 1 

c) On remplace :  

∫(1 + t) − 2 +
2

1 + t
dt

1

0

= ∫(y − 2 +
1

y
)dy

2

1

 

 b) On a :  

∫(y − 2 +
1

y
)dy

2

1

= [y2 − 2y + ln(y)]1
2 = ln(2) − 1 

4) On a :  

∑
(−1)k

k + 1

n

k=0

=∑∫(−t)k
1

0

dt

n

k=0

= ∫∑(−t)k
n

k=0

dt

1

0

= ∫
1 − (−1)n+1tn+1

1 + t
dt

1

0

= ln(2) − (−1)n+1In+1 

 

Partie B : Convergence d’une série 

1)  a) Enoncer le critère spécial des séries alternées. 

 b) Démontrer le critère spécial des séries alternées. 

C’est du cours !  

2) Démontrer, sans utiliser ce qui a été fait dans la partie A, que la série suivante converge : 
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(∑
(−1)n

n + 1
n≥0

) 

On pose :  

∀n ∈ ℕ, un =
(−1)n

n + 1
 

On sait que :  

∀n ∈ ℕ, |un| =
1

n + 1
 

Ainsi (|un|) est décroissante et tend vers 0. De plus comme (un) est alternée, on en déduit donc que (un) vérifie le 

critère spécial des séries alternées ! Donc (∑
(−1)n

n+1n≥0 ) converge. 

3)  a) Démontrer que :  

On sait que :  

∀t ∈ [0; 1], 1 ≤ 1 + t ≤ 2 ⟹ 0 ≤
1

2
≤

1

1 + t
≤ 1 ⟹ ∀t ∈ [0; 1], 0 ≤  

tn+1

1 + t
≤ tn+1 

⟹∫0 dt

1

0

≤ ∫
tn+1

1 + t
dt

1

0

≤ ∫tn+1 dt

1

0

 

⟹ ∀n ∈ ℕ, 0 ≤ In+1 ≤
1

n + 2
  

 b) D’après la question précédente, on en déduit donc que :  

lim
n
In+1 = 0 ⟹ lim

n
∑

(−1)k

k + 1

n

k=0

= ln(2) 

On en déduit donc que :  

∑
(−1)n

n + 1

+∞

n=0

= ln(2) 

 

Partie C : Irrationalité de 𝐥𝐧(𝟐) 
 

 On va prouver l’irrationalité de ln(2) en raisonnant par l’absurde. On suppose que :  

∃(p, q) ∈ (ℕ∗)2, ln(2) =
p

q
 et p ∧ q = 1 

On pose de même :  

∀n ∈ ℕ, Jn =
1

n!
∫(1 − t2)netln(2)dt

1

−1

 

1) On a :  

J0 =
1

0!
∫(1 − t2)0etln(2)dt

1

−1

= ∫etln(2)dt

1

−1

=
1

ln(2)
(2 −

1

2
) =

3

2 ln(2)
 

J1 =
1

1!
∫(1 − t2)1etln(2)dt

1

−1

= ∫etln(2)dt

1

−1

− ∫ t2etln(2)dt

1

−1

 

=
3

2 ln(2)
− ([

t2

ln(2)
2t]

−1

1

−
2

ln(2)
∫ tetln(2)dt

1

−1

) 

=
3

2 ln(2)
− (

3

2 ln(2)
−

2

ln(2)
([

t

ln(2)
2t]

−1

1

−
2

ln(2)
∫ etln(2)dt

1

−1

)) 

=
2

ln(2)
(

5

2 ln(2)
−

2

ln2(2)
×
3

2
) 
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⟹ J1 =
5

ln2(2)
−

3

ln3(2)
 

 

2) On sait que :  

∀t ∈ ]−1; 1[, (1 − t2)netln(2) > 0⟹ ∫(1 − t2)netln(2)dt

1

−1

> 0⟹ Jn > 0  

3) On sait que :  

∀t ∈ [−1; 1], DnJn =
Dn

n!
∫(1 − t2)netln(2)dt

1

−1

 

On pose :  

un =
|D|n

n!
⟹
un+1
un

=
|D|n+1

(n + 1)!
×
n!

|D|n
=

|D|

n + 1
→ 0 

On en déduit donc d’après le critère de d’Alembert que :  

lim
n

|D|n

n!
= 0 

De plus on sait que :  

∀t ∈ [−1; 1], 1 − t2 ≤ 1⟹ ∫(1 − t2)netln(2)dt

1

−1

≤ ∫etln(2)dt

1

−1

=
3

2 ln(2)
 

On en déduit donc que :  

|DnJn| ≤
3

2 ln(2)
|un| 

De plus on sait que :  

lim
n

3

2 ln(2)
|un| = 0 

On en déduit donc que :  

lim
n
DnJn = 0 

4) On sait que :  

∀n ∈ ℕ, Jn+2 =
1

(n + 2)!
∫(1 − t2)n+2etln(2)dt

1

−1

 

=
1

(n + 2)!

(

 [
(1 − t2)n+2etln(2)

ln(2)
]
−1

1

⏟              
=0

−
2(n + 2)

ln(2)
∫ t(1 − t2)n+1etln(2)dt

1

−1
)

  

=
2

(n + 1)! ln(2)

(

 [
t(1 − t2)n+1

ln(2)
]
−1

1

⏟          
=0

−
1

ln(2)
∫(1 − t2)n+1etln(2)dt

1

−1

+
2(n + 1)

ln(2)
∫ t2(1 − t2)netln(2)dt

1

−1
)

  

= −
2

ln2(2)
Jn+1 −

4

n! ln2(2)
∫(1 − t2)(1 − t2)netln(2)dt

1

−1

+
4

n! ln2(2)
∫(1 − t2)netln(2)dt

1

−1

 

=
−2 − 4(n + 1)

ln2(2)
Jn+1 +

4

ln2(2)
Jn 

⟹ ∀n ∈ ℕ, Jn+2 =
4q2

p2
Jn −

(4n + 6)q2

p2
Jn+1 

5) On fait une récurrence double. On pose :  

𝒫(n): "Jn = (
q

p
)
2n+1

[2An (
p

q
) −

1

2
An (−

p

q
)] " 
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Initialisation : n = 0 : J0 =
3

2 ln(2)
= (

q

p
)
1
[2 × 1 −

1

2
× 1] ⟹ 𝒫(0) est vraie avec A0(X) = 1 

n = 1 : J1 =
5

ln2(2)
−

3

ln3(2)
=
5 ln(2)−3

ln3(2)
= (

q

p
)
3
[2 × (2 ln(2) − 2) −

1

2
(−2 ln(2) − 2)] ⟹ 𝒫(1) est vraie avec 

A1(X) = 2X − 2. 

𝐇é𝐫é𝐝𝐢𝐭é ∶ Soit n ∈ ℕ, On suppose vraie 𝒫(k) pour tout k ∈ ⟦0; n + 1⟧. Montrons que 𝒫(n + 2) est vraie.   

On sait que :  

Jn+2 =
4q2

p2
Jn −

(4n + 6)q2

p2
Jn+1 

=
4q2

p2
(
q

p
)
2n+1

[2An (
p

q
) −

1

2
An (−

p

q
)] −

(4n + 6)q2

p2
(
q

p
)
2n+3

[2An+1 (
p

q
) −

1

2
An+1 (−

p

q
)] 

=
q2

p2
[−(4n + 6) (

q

p
)
2n+3

(2An+1 (
p

q
) −

1

2
An+1 (−

p

q
)) + 4(

q

p
)
2n+1

(2An (
p

q
) −

1

2
An (−

p

q
))] 

= (
q

p
)
2n+5

[2 (4 (
p

q
)
2

An (
p

q
) − (4n + 6)An+1 (

p

q
)) −

1

2
(4 (

p

q
)
2

An (−
p

q
) − (4n + 6)An+1 (−

p

q
))] 

= (
q

p
)
2n+5

[2An+2 (
p

q
) −

1

2
An+2 (−

p

q
)] 

On pose :  

An+2(X) = 4X
2An(X) − (4n + 6)An+1(X) 

On en déduit donc que 𝒫(n + 2) est vraie. 

Conclusion : On conclut d’après le principe de la récurrence double !  

6) On pose :  

∀n ∈ ℕ, An(X) = a0 + a1X +⋯+ anX
n avec (a0, a1, … , an) ∈ ℤ

n+1 

On a alors :  

q2n+1An (
p

q
) = a0q

2n+1 + a1pq
2n +⋯+ anp

nqn+1 ∈ ℤ 

De même on a : q2n+1An (−
p

q
) ∈ ℤ. 

On en déduit donc que :  

DnJn = 2
np3nJn = 2

np3n (
q

p
)
2n+1

[2An (
p

q
) −

1

2
An (−

p

q
)] 

= 2npn−1 (2q2n+1An (
p

q
) −

1

2
q2n+1An (−

p

q
)) 

= pn−1(2n+1 q2n+1An (
p

q
)

⏟        
∈ℤ

− 2n−1 q2n+1An (−
p

q
)

⏟        
∈ℤ

) 

On en déduit donc que :  

∀n ≥ 1, (2p3)nJn ∈ ℕ
∗ 
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7) On sait que :  

∀n ≥ 1, (2p3)nJn ∈ ℕ
∗⟹ ∀n ≥ 1, (2p3)nJn ≥ 1  

De plus on sait que : 

lim
n
(2p3)nJn = 0 

Cela est impossible. Donc ln(2) est un irrationnel !  

 


