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Correction DS n°4
PCSI 2024-2025

Exercice 1 : Suite et arithmétique

Dans tout cet exercice on considere la suite définie par :
Uy = 2
{ u; = 20
vn € N,u,,, = 8u,p1 —4u,
1) Montrer que :
vn € N,u, € Z et 2"*|u,

2) Déterminer 1’expression de u,, en fonction de n.
Pour tout n € N, on pose :

{xn=(2+\/§)nx(1+\/§)
Yu = (2-V3)" x (1-v3)

3) Vérifier que :
vn € N,u, = 2™ X (x,+y,)
4) Montrer que :
vn € N,3(a,, B,,) € Z? tel que {xn =t + V3B,
Yn = 0n — \/gﬁn
5) Montrer que :

vn €N, a2 —3p% = -2
6) Soitn € N et d € N* diviseur commun positif de a,, et ,,. Montrer que d = 1 oud = 2.
7) Déterminer a,, A 5,.

1) On raisonne par récurrence double. On pose :
vn €N, P(n) = 2"y,
Initialisation :

e n=0
Uy = 2 et 2971 = 2|u,

Donc P(0) est vraie.

e n=1

u; =20 =4 x5et 211 = 4|y,
Donc P (1) est vraie.
Hérédité : Soit n une entier naturel fixé. On suppose P(n) et P(n + 1) vraies. On a alors :
3(k,, k1) € 7%, tel que u, = 2"k, et uy g = 2%k, 4
On a alors :
Unpz = BUpypq — 4Up = 4(2 X 2™ Ky — 2™ ey) = 273 (2K 0q — ki)
Orona:
(kn; kn+1) €1’ = 2kpq —ky €L

On en déduit donc que 2™*3|u,,
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Conclusion : On conclut d’aprées le principe de récurrence double.

2)Ona:
r—8r+4=r€{4—2\/§;4+2\/§}
On a donc :

Uy =2
{ u; =20 = 3(4,B) € R? tel que Vn € N,u,,
vn € N, u, ., = 8u,yq —4u,
= A(4+2V3)" + B(4—2V3)"
De plusona:
Uy =2=A+Betu, =20=A(4+2V3) +B(4-2V3)
On résout le systeme :

A+B=2
{A(4 +2v3) + B(4 —2v3) = 20
A=2-B
= {(2 ~B)(4+2V3) +B(4-2v3) =20
Orona:
(2-B)(4+2V3)+B(4—-2V3)=20=B(-4V3)=20-8-4/3 = B = 1—%
=1-+3
Ainsion a :
A+B=2
{A(4 +2v3) +B(4—2V3) =20
- {A =143
B=1-+3
On en déduit donc que :
Uy =2
{ u; =20 & vn e N u,
vn € N,u,,,, = 8u, .1 —4u,

= (1+v3)(4+2V3) +(1-+3)(4—2v3)"

3)Ona:

vn e N,2"(x, + ¥,) = zn((z +v3) x (1+V3)+(2-v3)" x (1 —\/§)>
= (1+V3)(4+2V3)" + (1 -V3)(4—-2v3)" =u,
4) On peut le faire de deux fagons.

Méthode 1 : Par récurrence
On pose :

Xn = Oy +\/§,6’n

vn € N,Q(n) = 3(ay, Bn) € Z° tel que {Yn =a, — \/§.Bn

Initialisation : n = 0
Ona:
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n=1+V3,y,=1-+3
Ainsi Q(0) est vraie avec g = 1 = 3
Hérédité : Soit n un entier naturel fixé. On suppose vraie Q(n).
On a alors :

Xppr = (24 V3)" x (14+vV3)=(2+V3)x, = (2+V3)(a, +V3B,)
= 2a, + 3fn + V3(an + 2B,)
Vs = (2=V3)"" x (1=V3) = (2= V3)x, = (2 = V3)(an — V3By)
= 2a, + 3B, — V3(an + 26,)
On pose :
Apy1 = 20, + 3B et By = an + 2P,
On a alors d’apres I’hypothese de récurrence que :

(@n+1) Brs1) € Z°
De plusona:

{xn+1 = 0p41 T \/§ﬂn+1

Yn+1 = Ony1 — \/§ﬂn+1
On en déduit donc que Q(n) est héréditaire.

Conclusion : On conclut d’aprés le principe de récurrence.

Remarque : On peut ainsi déterminer précisément les valeurs de «,, et 3,, puisque ’on a :
{an+1 = 2a, + 3B,
Bn+1 = an + 2By
On a alors :
Un+2 = 2aln+1 + 3ﬁn+1 - 20*’n+1 + 3(an + Zﬁn) - 20~'n+1 + ?’an + 2(an+1 - zan)
= 4an — ay
Cela revient a déterminer les solutions d’une suite récurrente d’ordre 2 a coefficients
constants. Ce que I’on sait faire !

Méthode 2 : A ’aide du binome de Newton
Ona:

VnEN,xn=(2+\/§)n><(1+\/§)

_ (z ™ zn—k(@)")(l )

k=0

2 N
(Z 2k Zn 3t Z 2k+1) A 1(\/_)2k+1> (1++/3)

k=
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2
(21) 273" +V3 \ ; (2 + 1) 2"2k1(\/§)2k> +V3 (kzo (21) 2" 2k3k>
"zl
+3<Z (24 1)2" % 1(V3)’ )

l"J 7
\Z o Zn 2kgk 4 z (Zk i 1) 2n2k13k+1>
= 2] \
A \ RZ.) (s 1) 2713+ ) ()2 2k3k/

k=0

k=0
Orona:
vk € N, (Z) €N,2" %2 e N,3*k e N
On en déduit donc que :
n n-1
2] 2|
n —2kqk n —2k-17k
Z(Zk)zn 3+ 2 (2h 1) 27713 €N
k=0 k=0 .
N 2]
Z (ghy 1) 227135+ 2 (1) 23" €N
k=0 k=0

De mémeona :

.= (2-v3)" x (1-+3)

_ (z ") zn—k(—ﬁ)k> (1+3)
3 ]
- (kzo (a10) 2773k - RZ) (21 + )27 1(‘/_)2k+1> (1=3)



2] l" =N 2]
_Z(Zk Zn 2k3k _ \Z 2k+1 271 2k— 1(\/_) > kZO(Zk) on-2k 3k
"zl
3 Z (o 1) 2 ()"

=

- \Z 2k) 2+ z (2 + 1) 2““7;“)

e
_ \/§ Zk N 1 n-— 2k— 13k ok on 2k3k
\Z + 2, (i) |

En posant :
7] "2
B n —2kok n -2k-1gk+1
a”_Z(Zk)Zn 3 +Z(2k+1)2" 357 et
k=0 k=0
= 2]
Bu= ) (s 1) 277354 ) () 272"
k=0 k=0
On a bien :
= V3B
vn € N, 3(a,, e 72 tel que "™ U + n
(an Br) q {yn=an—\/§ﬁn
5)Ona:

vn €N, (an)z - 3(ﬁn)2 (an + \/_Bn)(an \/§,8n)
- xn X yn
= (2+V3) x (1+V3)x(2-V3) x(1-V3)=(4-3)"x (1-3) = —
\Vn €N, (an)z - B(Bn)z = _2‘
6) Soit d un diviseur commun de a,, et B,,. Ainsi d divise (a,,)? et (8,)? donc d divise

()% — 3(B,,)? donc d divise 2. Donc|d € {1; 2}

7) Si d divise a,, et B,, alors d? divise (a,)? et (B,,)* donc d? divise (a,)? — 3(B,)? donc
d? divise 2.

Ainsi d? < 2 doncd = 1. On a donc :

an ABn =1
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Exercice 2 : Une suite d’intégrale
Dans cet exercice on pose :

Wl

sin™(t)
cos(t)

VnEN,Inzf

Le but de cet exercice est de déterminer :

1) Montrer que I,, est bien définie pour tout n € N.
2)  a) Démontrer qu’il existe K > 0 tel que :

Vx € [O;z],sin(x) <K
3
b) Démontrer que :
2T
vneN,0<I, S?K"

c) En déduire la limite de [, en +00.Dans toute la suite on pose :

n
vn € N,Sn = Z Ik
k=0

3) Démontrer que :

L3 L3
3 3
VneN,s, = ] ! dt f sin@"™
ENon = | o) (1 = sin(o)) cos(t) (1 — sin(t))
0 0
4) En déduire que :

VA
3

S

li _ 1 dt =
m Sn = oj cos(t) (1 — sin(t)) ‘=

5) Montrer que :

&

S_T du
_of 1-w?(1+uw)

6) Démontrer un triplet (a, b, ¢) € R3 tel que :
du a b c
, = + +
1-u>)(1+u) 14+u 1-u (1-—u)?
7) En déduire la valeur de S.

Vu € [0; 1]

’ 3 ’ 2' ’ 3 ’

Ainsi pour tout n € N, la fonction :




in"(t)
fn:tH s;:l:s(tt) e co ([0,%])

Donc I, est bien définie.
2) a)Onsaitque:

T _ V3
VvVt € [0;5],0 < sin(t) S7< 1

Ainsi en posant

V3

K=

Ona:
Vx € [Oz] sin(x) < K
’3 ) —
b) On donc :
vn € N, vt € [0; ] =S Ko
" It cos(t) ~ cos(t)

De plusona:
sin™(t)
cos(t) —

vn € N,Vt € [O;g] Ju () =

Par croissance de I’intégrale on a :

vneN,0 < f,(t) < <\/_>

n

T T 3
3 3 3
\/§n
=>VnEN,JOdt J (t)dt<f27 dt
0 0
n
21 \/§
=>VneN,OSIn£?x >

¢) On sait que :

Ee [0;1[= lim(\?) =0= limz?nx <£) =0

2 n n 2

D’apres le théoréme des gendarmes, on en déduit donc que :
liml,, =0
n
3) On a par linéarité de I’intégrale :
s A
n n § § n
vneN,S, = Zlk = fok(t)dt = f Efk(t) dt
k=0 k=090 o k=0

Or on sait que :

< B = sink(¢) 1 <
kzzofk(t) B kZO cos(t)  cos(t) RZO sin® (1)

Or on sait que :
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vVt € [O;g],sin(t) * 1

On a donc :

B 1 — n+1(t)
z sin®(t) = -

cos(t) s(t) (1 sin(t))

On en déduit donc que :

WX

vneN,S

n 1 — n+1(t)
Z fie(©) dt = J os(t) (1 — sm(t))

k=0

0\0&':‘

E
3

Wiy

B 1 p sin(¢t)"*1 4
= J cos(D) (1 —sin(D) t_of cos(D (1 —sin(0)

4) On sait que :
sin(t)"*1 - H sin(¢)"*?!
"cos(t) (1 —sin(t)) — j cos(t) (1 — sm(t))

VnENVtE[O n]

De plusona:
Sln(t)n+1 Kn+1

cos(t) (1 —sin(t)) — cos(t) (1 —sin(t))

vn € N,Vt € [o;g]

De plusona:
1 1

3
2 1—sin(t) V3
1=

s
vVt € [0;5] <2etl-sin(t)>1-

s(t) ~

On en déduit donc que :

vn € N, vt € [o-n] SInO™ 2 gne
mEw 3l cos@ @ —sin(@) = | _ V3
2
Par croissance de I’intégrale :
T s
3 3
sin(t)"*1 2
j ) _ dtsj x K"t1dt
cos(t) (1 — sin(t)) V3
0 o 1— T
s
3 n+1
0 < f sin(t) [ < 2T ot
cos(t) (1 — sm(t)) V3
S\1==2
De méme que précédemment on a :
21
lim————K"*"1 =0
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Ainsi d’apres le théoréme des gendarmes :

3
_ sin(¢)"t?! 3
ll‘rl;nof cos(t) (1 — sin(t)) ar=0

On a donc :
s
3
lims§, = f ! dt =S
T on = cos(t) (1 —sin(t))
0
5) On pose le changement de variable suivant :
u = sin(t)
_ On change les bornes :
t=0=>u=0
T V3
= —_— = —
3472
_ On calcule le dt ou le du :
u = sin(t) = du = cos(t) dt
_On transforme I’intégrale :
A Vi s
3 3 3
j 1 g - .[ cos(t) dt B cos(t) dt
cos(t) (1 —sin(t)) ) cos2(t) (1 —sin(t)) J (1 —sin2(t))(1 — sin(t))
0 0 0
V3 V3

_T du _T du
_J (1—u2)(1—u)_l (1—-—u)?(1+u)

6) On cherche (a, b, ¢) € R3 tel que :
vu e |0;1 du — + b + ¢
welll g =z T 1ra T 1ou T aC e

On peut le faire de beaucoup de fagons différentes.

Méthode 1 : Mise au méme dénominateur
a b C al—w?+bhb(1—-u)+c(1+u
Yu € [0; 1], + + = ( ) ( ) ( )
1+4u 1—-u (1-u)? 1-w?(1+w
_u(a—-b)+u(-2a+c)+a+b+c

1-w?(1+u)

On 1dentifie et on résout alors :

( 1
a = —
a—b=0 411
—2a+c=0 S {b=-
a+b+c=1 ‘11
S

7)On a:
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V3

v

1j du +1

(1—u2)(1—u) 4) 14+u 4
0

1 V3) 1 V3 1 1
=—ln<1+—>—zln<1— >+§ -1

05
Il
S — g

4 2 2 J3
==
V3
1 I+ 1 V3
=—In +-(4|1+—= -1
4 N 2
1—7

On en déduit donc que :

3

sin™(t 3 1
‘[ (:)dt =3§”+‘J§1+Ezln(2 +‘Vﬁ§)
0

Probleme 1 : Une équation différentielle un peu particuliére (Oral centrale PSI 2016)

Dans ce probléme on cherche déterminer I’ensemble (E) suivant :

X
_ 1 "(x) — 2v(—x) =
E= {y € C'(R,R),Vx € R, 2xy'(x) — 2y(—x) N 1}

Partie A : Une premiére équation différentielle

Dans cette partie on cherche a déterminer :
E, ={y € C}(R,R),Vx € R, 2xy’'(x) — 2y(x) = 0 }
1) Résoudre I’équation différentielle 2xy’ (x) — 2y(x) = 0 sur ]O ; +oo[.
2) De méme résoudre I’équation différentielle 2xy’(x) — 2y(x) = 0 sur |—o0; 0.

3) Démontrer que :
R-R
E, = {f{XH)\X AER}
Partie B :

Dans cette partie on cherche a déterminer :

E, = {y € C1(R,R),Vx € R, 2xy’' (x) + 2y(x) =

X
x2+1 }
1)  a) Résoudre I’équation différentielle 2xy’ (x) + 2y(x) = 0 sur ]O ; +00[.

b) Déterminer une solution particuliére de 2xy’(x) + 2y(x) =

x2+1°
(Indication : On pourra utiliser une variation de la constante).

¢) En déduire toutes les solutions de 2xy’(x) + 2y(x) = X;il ]O ; +00[.




Page 11 sur 19

X
x2+1

2) En déduire toutes les solutions de 2xy’(x) + 2y(x) = sur ]—oo ; 0[. On donnera

directement le résultat sans refaire toutes les étapes.
3) a) Démontrer que :
In(x* +1
lim ¥ =0
x—0 X
b) En déduire les solutions de 2xy’(x) + 2y(x) =

X
xX%2+1

sur R.

Partie C : A la recherche de E.
1)  Démontrer que toute fonction y définie sur R, se décompose de maniere unique en une
fonction paire et une fonction impaire.
Dans toute la suite de cette partie on note :
vy € RR, 3! (yp, yi) € (R®? tel quey = Yp T Vi etyp, yi respectivement paire et impaire
2)  a) Démontrer que si f € C1(R) et paire, alors sa dérivée f' est impaire. La réciproque
est-elle vraie ?
b) Démontrer que si f € C1(R) et impaire, alors sa dérivée f' est paire. La réciproque
est-elle vraie ?
3) Démontrer que :
yEE S {y‘) €k
yi € E;

4) En déduire I’ensemble E.

Partie A : Une premiére équation différentielle
1) On sait que :

/ _ — 1
{ny (X) >22),(X) =0 (== 3}\1 € R, Vx > 0, Y(X) = KleIQdX = Xleln(x) = 7&1X
X

2) Avec le méme procédé¢ que la question 1) on obtient :

() — _ 1
{ny (x) <2%)/(x) =0 A, ER,Vx < 0,y(x) = Azefidx = Aen(xD = 3 x
X

3) L’ensemble (E,) est I’ensemble des solutions de 2xy’(x) — 2y(x) = 0 sur R tout entier.
On sait que ’on doit avoir d’apres les questions précédentes :
y solution de 2xy’(x) — 2y(x) = O sur |0; +oo[ = IA; € R, Vx> 0,y(X) = A;X
De méme :
y solution de 2xy’(x) — 2y(x) = 0 sur |—o0; 0 = 3A, € R, Vx < 0,y(x) = —A,X
On pose :

R-R
_ AMxsix>0
f: X i—=A,xsix <0
Osix=20
Cette fonction est continue mais doit étre dérivable. Or on a :
tim LSO 5 i (RSO

x—-0t X x—0~ X
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fixe— —Ax ; frax— Nz

Il'y a un probléme de dérivabilité en 0, tout comme Ia valeur absolue !

Ainsi on doit avoir A; = —A, pour que f soit solution sur R. On en déduit donc que :
y solution de 2xy’(x) — 2y(x) = 0sur R = 3A; € R, Vx € R, y(x) = A;X

La réciproque est juste ! On pose :
(R->R y B _

f.{x = VX ER2xf'(x) = 2f(x) = 0

On en déduit donc que :

b= (B R e

Partie B : Une seconde équation différentielle
1) a)Onsaitque:

/ — 1 A
{ny (x)x+>2%)/(x) =04 dA, ER VX > 0,y(x) = Ale_ffdx = ;1

b) On cherche une solution particuliére sur |0; +oo[ de :

X
2xy’ 2 =
On pose :
10; +oo[ > R
f A (x) ,avec A; € C1(]0; +0])
X =
X
On a alors :
M) A&
v 0,560 = 0D M0
X X

x
x2+1

On en déduit donc que f est solution particuliére de 2xy'(x) + 2y(x) = si et seulement

Si:

A(x) A(x A (x X
2x<1()_]g))+21<)= 2
X X X x-+1
o 200 = = x —
1X_Z x%2+1

1
S 3IceR Vx> 0,0 (x) = Zln(x2 +1)+c

2
On en déduit donc qu’une solution particuliére de 2xy’ (x) + 2y(x) = O est x + im(x .

X
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¢) On en déduit donc que :

A+ %ln(l + x?)

X
{ny ) +2y() =777 o 34, ER,Vx > 0,y(x) = .

x>0
2) De méme on a :

A, + %ln(l + x?)

X
{290’ () +2y(x) = x2+1©3ILERVX<0,y(x) = x

x<0
3) a)Onsaitque:

In(1 + x? —f(0 2x0
g PO _ 1 SO IO _ gy 2XO

Avec f(x) = In(x? + 1) qui est dérivable sur R donc en 0 !
b) On sait que :

y est solution de 2xy’ (x) + 2y(x) = sur R

x?2+1
( A+ %ln(l + x2)
y(x) =
= 3I(Ay, A,) € R2Y . x

Ay +zIn(1+ x?)

six>0

six <O

4 (x) = x
De plus y doit étre définie et continue en 0. SiA; # Oona:
Lim [y(x)| = 4o
De méme si A, # 0 ona:
Lim |y ()| = +o0
X—
Pour avoir une solution sur R, on doit donc avoir (A4,A,) = (0,0)
On en déduit donc que :
1In(1+ x?)

surR:Vx;tO,y(x)=Z .

X
t solution de 2xy' 2y(x) =
y est solution de 2xy’' (x) + 2y(x) 21
On pose a présent :
R->R
_ 1In(1+x2)
JER PN ZTs;zxiO

0 sinon
On peut voir que f est continue d’aprés 3) a). Montrons que f est dérivable en 0

On sait que :

In(1+ x?) ,
, T_O  In(1 4+ x9) 1+ X)
lim =llm—2=llm—=1
x—0 X x—0 X X-0

On en déduit donc que f est dérivable en O et f'(0) = i.

On en déduit donc que :
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R->R
) _ _ 1n(1+x2)
2xy (x)+2y(x) T X211 sur R & y: X ZT six #0
0 sinon
Partie C : A la recherche de E
1) Soit f € RR. On a alors :
f)+f(=x) f(x)—f(—x)
Vx ER, f(x) = + = fp(x) + fi(x)

2 2
On vérifie facilement que f;, est paire et f; impaire.

Il reste a présent a démontrer que cette décomposition est unique !
On suppose que 3(f,, g,) € (R®)?, paires, et (f;, g;) € (R®)? impaires telles que :
f:fp"l'fi =09p T 9i
On a alors :
Vx € R, (fp _.gp) = (gi _fl)

Or f, — gy, est paire :

Vx € R, (fp - gp)(_x) = fp(_x) - gp(_x) = fp(x) - gp(x) = (fp - gp)(x)
Et g; — f; est impaire :

Vx €R, (fi = 9)(=x) = fi(=x) — gi(=x) = —=fi(x) + 9:(x) = =(f; = g) (%)
Donc f, — g, est a la fois paire et impaire, donc f, — g, = Ogr donc f,, = g, et f; = g;.
Ainsi la décomposition est unique.
2)  a)Soit f € C1(R) paire. On a alors :

VX ER f(—x) = f(x) > Vx R, —f'(—x) = f'(x) = f'est impaire

La réciproque est vraie.
Soit f € C1(R) telle que f’est impaire. On a alors :

PR+ £ =0= [ (£ + £/ @)dx = [ 0dx

= 3AceRVXER —f(—x)+f(x)=c
On en déduit donc que :
dJceRVXER,f(—x)=f(x)—c
Orona:
fO=f0)+c=c=0
On en déduit donc que :
Vx €R, f(=x) = f(x)
Donc la réciproque est vraie.
b) On fait de méme. Soit f € C1(R) impaire. On a alors :
VX ER f(—x) =—f(x) > Vx ER,—f'(—x) = —f'(x) = f'est paire
La réciproque est fausse.
On pose f:x + sin(x) + 1. On a alors f (g) =2etf (— g) = 0. Cependant f": x —
cos(x) et donc f' est paire.
3) C’est une équivalence. Commengons par le plus facile. Soity € C1(R) telle que u = Yp T
y; sa décomposition en une fonction paire et impaire. Montrons que :
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:Vp € El
EE & {
Y yi € E;
On sait que :
Vx € R, 2xy, (x) — 2y, (x) = 0,2xy; (x) + 2y;(x) = 2+ 1
De plus on sait que y' =y, + y;. On a alors :
2xy,(x) — 2y,(x) = 0
Vx € R, ,
2xyi(x) + 2y;(x) = 57
= 20y, () = 29 (%) + 2y () + 2y,(0) = 57
= 22 (300 + /' @) = 2 (3 (=0 + 7:(-0)) = 5
2xy’ —2v(—x) =
= 2xy'(x) = 2(—%) = =5
On a donc :
Yp € Eq
= y€eEE
{Yi € E; Y
Montrons la réciproque.
Ona:
X
EE =>Vx€ER,2xy' —2y(—x) =
y x € R 2xy’ () = 2y(—%) = ——
= 2x (y(0) +¥/@) = 2 (3, (=) + y(-0)) = =
P l P ' x2+1
= 2xy, (%) — 2y, (x) + 2xy; (x) + 2y;(x) = e
On pose f:x = 2xy,(x) — 2y, (x) + 2xy{(x) + 2y;(x). On sait que f: x ~ x;fl-l’ donc f est

impaire.

De plus on sait que f se décompose de manicre unique comme somme d’une fonction paire et
X

xZ2+1

Or on a vu précédemment que yy, était impaire, et y; était paire. On pose g: X = 2xyp,(x) —

d’une fonction impaire. On en déduit donc que f = f, + f; avec f, = O etf;

2y, (x). On a alors :
Vx € R,g(—x) = 2(-X)yp(~x) = 2y,(~%) = 2xyp () — 2y,() = g(x)
Donc g est paire. De méme si on pose h: x = 2xy;(x) + 2y;(x). On a alors :
Vx € R, h(—x) = 2(—x)y; (—x) + 2y;(—x) = —(2xy{ (x) + 2y;(x)) = —h(x)
Donc h est impaire. Par unicité de la décomposition, on en déduit donc que :

2xyy(x) — 2y,(x) =0
2xy,(x) — 2 2xy] 2y;(x) = = Vx ER,
xyp(x) yp(x) + xyl (x) + yl(x) xz + 1 X nyll(x) + Zyl(x) — xz + 1
On en déduit donc que :
:Vp € El
EE = {
Y Yi € E;

4) On sait que :
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Yp € E;
EE(:){
Y yi € E;

R->R

De plus on sait que E; = {f: {X o AE R}. Ainsi la seule fonction paire de E; est la

fonction nulle Ogr: x = 0.
De plus on sait que :

R—->R
1In(1 + x?
A
0 sinon
On vérifie que f est impaire. On en déduit donc que :
E= {y € C1(R,R),Vx € R, 2xy’'(x) — 2y(—x) = o 1}
R->R
) . 1In(1+x2)
=1/ xH{ZTSqutO
0 sinon

Probléme 2 : une équation différentielle

Le but de ce probléme est de résoudre I’équation différentielle suivante :
—3X

VxZ +1

(E):y" + 6y +9y =

Partie A : Des résultats préliminaires

1) Démontrer que la fonction sh définie par :
R-R
sh : e’ —e™™
X — 2
réalise une bijection de R dans R.
2) Déterminer sa bijection réciproque, notée sh™! ou argsh.

3) Démontrer que :

1
vx € R, argsh’(x) Neeane
Partie B : Résolution de I’équation différentielle
1) Résoudre I’équation homogene suivante :
(Eg):y"+6y"+9y =0
2) Soit z € C2(R). On pose :
_ R->R
'{x — z(x)e X
a) Montrer que f est solution de 1’équation différentielle (E) si et seulement si z vérifie la

relation :
1

Vx2 +1

ZII(X) —




Page 17 sur 19

b) En remarquant que :

vx € R, argsh(x) = 1 X argsh(x)
Et a I’aide d’une intégration par partie, déterminer une primitive de argsh.
¢) Déterminer 1’ensemble des solutions de (E).

Partie A :
1) On sait que :
R—->R
sh : e* —e™
X — >
On en déduit donc que sh est de classe Coo sur R et que :
e*+e™*
vx € R,sh’'(x) = T >0

Comme sh est continue sur R et sstrictement croissante, d’apres le théoreme des valeurs
intermédiaires, sh réalise une bijection de R dans son image.

Orona:
X
lim sh(x) = lim — = 4o
X—+00 x—+0 2
Par imparité de shon a :
lim sh(x) = —oo
X—>—00

Donc sh réalise une bijection de R dans R.

2) Soit y € R. Pour déterminer sh™! il suffit de résoudre sur R 1’équation d’inconnu x :

sh(x) =y
eX — =X
=S — =
> y

Sef—e =2y
S eX—2yeX—1=0(careX #0Vx €R)
& X2 —2yX—1=0carX = e¥
Ona:
A=4y?> +4=4(y*+1)>0
On a donc deux solutions réelles 8 X2 —2yX—1=0:

2y — 2/y2 + 1
X2=y+'\ly2+1

Vy€eRy?+1>y?
= VyeERJy?+1>|y| (carx — /X est croissante sur R+)

On en déduit donc que :
VYyERy—+y?+1<0

VyERy+y2+1>0

1

Or on sait que :
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ef=y—y’+1=x€P
eX=y— y2+1<=>x=ln(y+\/y2+1)

sh(x)=y(:>x:1n(y+\/y2+1)

argsh

Doncona:

On a donc :

. R—-R
= sh™ :{X|—>ln(x+ x2+1)

3) On peut utiliser deux méthodes.

M1 : On a réussi la question précédente !!
Ona:

argsh € D(R) et :

14—2X
2Vx%2 + 1
X+ Vx2+1
V2 +1+x 1
= X
x+Vx2+1 Vx2+1
1
B vxZ +1
M2 : On utilise la forme d’une fonction composée :
Vx € R, sh(argsh(x)) =X
1

ch(argsh(x))
1

vx € R,argsh’(x) =

= argsh’'(x) =

\/1 + shz(argsh(x))
1
VxZ+1
Partie B : Résolution de I’équation différentielle
(Eg):y"+6y"+9y =0
On résout 1’équation caractéristique :
r’+er+9=0= (r+3)?’=0=r=-3
On en déduit donc que :
y"'4+6y"+9y=0< 3(4,B) € R?,y,(x) = (Ax + B)e™3*
2) a)z€C?(R)doncf€eC?(R)etona:
vx ER, f'(x) = (z'(x) — 3z(x))e™3*
f"(x) = (z”(x) —-3z'(x) —3z"(x) + 9z(x))e‘3x

On a donc :
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= (2" (x) — 62'(x) + 9z(x) + 62’ (x) — 18z(x) + 9z(x))e~>*

=z"(x)e™3*
Ainsi f est solution de (E) si et seulement si :
—-3x
Vx eER,, f(x)"+6f"(x)+9f(x) = Nroari
1
o=z (x) =
Vx% +1
b) On effectue une intégration par partie :
On pose :
u(x) = argsh(x) u'(x) =
{ VI (X) =1 = X2 + 1
v(x) = x
On a donc :
X
j argsh(x)dx = xargsh(x) — f dx
N

= xargsh(x) —vx%2 +1

c¢) On cherche une solution particuliére de

e—3x
(E):y" +6y' +9y =
Y Vx?+1
On a vu précédemment que cela revient a déterminer :
1
z"'(x) =
Vx? +1
Or on sait que :
1
z"'(x) = = z'(x) = argsh(x) + cste
Vx?+1 &

On peut poser cste = 0 puisque 1’on cherche une solution particulicre.
On a donc :

z'(x) = argsh(x) = z(x) = xargsh(x) —/x? + 1 + cste

De la méme fagon on peut poser cste = 0.

On obtient donc :
—3X

VxZ+1

y' + 6y +9y =

& 3(A,B) € R, y(x)

:(Ax + B + xargsh(x) — /x2 + 1) e 3X




