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Correction DS n°4 

PCSI 2024-2025 

 

Exercice 1 : Suite et arithmétique 

 

 Dans tout cet exercice on considère la suite définie par :  

{

𝑢0 = 2
𝑢1 = 20

∀𝑛 ∈ ℕ, 𝑢𝑛+2 = 8𝑢𝑛+1 − 4𝑢𝑛

 

1) Montrer que :  

∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ ℤ 𝑒𝑡 2
𝑛+1|𝑢𝑛 

2) Déterminer l’expression de 𝑢𝑛 en fonction de n.  

Pour tout 𝑛 ∈ ℕ, on pose :  

{
𝑥𝑛 = (2 + √3)

𝑛
× (1 + √3)

𝑦𝑛 = (2 − √3)
𝑛
× (1 − √3)

 

3) Vérifier que :  

∀𝑛 ∈ ℕ, 𝑢𝑛 = 2
𝑛 × (𝑥𝑛+𝑦𝑛) 

4) Montrer que :  

∀𝑛 ∈ ℕ, ∃(𝛼𝑛, 𝛽𝑛) ∈ ℤ
2 𝑡𝑒𝑙 𝑞𝑢𝑒 {

𝑥𝑛 = 𝛼𝑛 + √3𝛽𝑛

𝑦𝑛 = 𝛼𝑛 − √3𝛽𝑛
 

5) Montrer que :  

∀𝑛 ∈ ℕ, 𝛼𝑛
2 − 3𝛽𝑛

2 = −2  
6) Soit 𝑛 ∈ ℕ et 𝑑 ∈ ℕ∗ diviseur commun positif de 𝛼𝑛 𝑒𝑡 𝛽𝑛. Montrer que 𝑑 = 1 𝑜𝑢 𝑑 = 2. 

7) Déterminer 𝛼𝑛 ∧ 𝛽𝑛. 

 

1) On raisonne par récurrence double. On pose :  

∀𝒏 ∈ ℕ,𝓟(𝒏) =  𝟐𝒏+𝟏|𝒖𝒏 

Initialisation :  

 𝑛 = 0 

𝑢0 = 2 𝑒𝑡 2
0+1 = 2|𝑢0 

Donc 𝒫(0) est vraie.  

 𝑛 = 1 

𝑢1 = 20 = 4 × 5 𝑒𝑡 2
1+1 = 4|𝑢1 

Donc 𝒫(1) est vraie.  

Hérédité : Soit 𝑛 une entier naturel fixé. On suppose 𝒫(𝑛) 𝑒𝑡 𝒫(𝑛 + 1) vraies. On a alors :  

∃(𝑘𝑛, 𝑘𝑛+1) ∈ ℤ
2, 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑢𝑛 = 2

𝑛+1𝑘𝑛 𝑒𝑡 𝑢𝑛+1 = 2
𝑛+2𝑘𝑛+1 

On a alors :  

𝑢𝑛+2 = 8𝑢𝑛+1 − 4𝑢𝑛 = 4(2 × 2
𝑛+1𝑘𝑛+1 − 2

𝑛+1𝑘𝑛) = 2
𝑛+3(2𝑘𝑛+1 − 𝑘𝑛) 

Or on a :  

(𝑘𝑛, 𝑘𝑛+1) ∈ ℤ
2 ⟹ 2𝑘𝑛+1 − 𝑘𝑛 ∈ ℤ 

On en déduit donc que 2𝑛+3|𝑢𝑛+2 
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Conclusion : On conclut d’après le principe de récurrence double.  

 

2) On a :  

𝑟 − 8𝑟 + 4 = 𝑟 ∈ {4 − 2√3; 4 + 2√3} 

On a donc :  

{

𝑢0 = 2
𝑢1 = 20

∀𝑛 ∈ ℕ, 𝑢𝑛+2 = 8𝑢𝑛+1 − 4𝑢𝑛

⟹ ∃(𝐴, 𝐵) ∈ ℝ2 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ∈ ℕ, 𝑢𝑛

= 𝐴(4 + 2√3)
𝑛
+ 𝐵(4 − 2√3)

𝑛
 

De plus on a :  

𝑢0 = 2 = 𝐴 + 𝐵 𝑒𝑡 𝑢1 = 20 = 𝐴(4 + 2√3) + 𝐵(4 − 2√3) 

On résout le système :  

{
𝐴 + 𝐵 = 2

𝐴(4 + 2√3) + 𝐵(4 − 2√3) = 20
 

⟺ {
𝐴 = 2 − 𝐵

(2 − 𝐵)(4 + 2√3) + 𝐵(4 − 2√3) = 20
 

Or on a :  

(2 − 𝐵)(4 + 2√3) + 𝐵(4 − 2√3) = 20 ⟺ 𝐵(−4√3) = 20 − 8 − 4√3 ⟺ 𝐵 = 1 −
12

4√3

= 1 − √3 

Ainsi on a :  

{
𝐴 + 𝐵 = 2

𝐴(4 + 2√3) + 𝐵(4 − 2√3) = 20
 

⟺ {
𝐴 = 1 + √3

𝐵 = 1 − √3
 

On en déduit donc que :  

{

𝒖𝟎 = 𝟐
𝒖𝟏 = 𝟐𝟎

∀𝒏 ∈ ℕ,𝒖𝒏+𝟐 = 𝟖𝒖𝒏+𝟏 − 𝟒𝒖𝒏

⟺ ∀𝒏 ∈ ℕ,𝒖𝒏

= (𝟏 + √𝟑)(𝟒 + 𝟐√𝟑)
𝒏
+ (𝟏 − √𝟑)(𝟒 − 𝟐√𝟑)

𝒏
 

3) On a :  

∀𝒏 ∈ ℕ, 𝟐𝒏(𝒙𝒏 + 𝒚𝒏) = 𝟐
𝒏 ((𝟐 + √𝟑)

𝒏
× (𝟏 + √𝟑) + (𝟐 − √𝟑)

𝒏
× (𝟏 − √𝟑)) 

= (𝟏 + √𝟑)(𝟒 + 𝟐√𝟑)
𝒏
+ (𝟏 − √𝟑)(𝟒 − 𝟐√𝟑)

𝒏
= 𝒖𝒏  

4) On peut le faire de deux façons.  

Méthode 1 : Par récurrence 

On pose :  

∀𝑛 ∈ ℕ,𝒬(𝑛) =  ∃(𝛼𝑛, 𝛽𝑛) ∈ ℤ
2 𝑡𝑒𝑙 𝑞𝑢𝑒 {

𝑥𝑛 = 𝛼𝑛 + √3𝛽𝑛

𝑦𝑛 = 𝛼𝑛 − √3𝛽𝑛
 

Initialisation : 𝑛 = 0 

On a :  
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𝑥𝑛 = 1 + √3, 𝑦𝑛 = 1 − √3 

Ainsi 𝒬(0) est vraie avec 𝛼0 = 1 = 𝛽0 

Hérédité : Soit n un entier naturel fixé. On suppose vraie 𝒬(𝑛).  
On a alors :  

𝑥𝑛+1 = (2 + √3)
𝑛+1

× (1 + √3) = (2 + √3)𝑥𝑛 = (2 + √3)(𝛼𝑛 + √3𝛽𝑛) 

= 2𝛼𝑛 + 3𝛽𝑛 + √3(𝛼𝑛 + 2𝛽𝑛) 

𝑦𝑛+1 = (2 − √3)
𝑛+1

× (1 − √3) = (2 − √3)𝑥𝑛 = (2 − √3)(𝛼𝑛 − √3𝛽𝑛) 

= 2𝛼𝑛 + 3𝛽𝑛 − √3(𝛼𝑛 + 2𝛽𝑛) 
On pose :  

𝛼𝑛+1 = 2𝛼𝑛 + 3𝛽𝑛 𝑒𝑡 𝛽𝑛+1 = 𝛼𝑛 + 2𝛽𝑛 

On a alors d’après l’hypothèse de récurrence que :  

(𝛼𝑛+1, 𝛽𝑛+1) ∈ ℤ
2 

De plus on a :  

{
𝑥𝑛+1 = 𝛼𝑛+1 + √3𝛽𝑛+1

𝑦𝑛+1 = 𝛼𝑛+1 − √3𝛽𝑛+1
 

On en déduit donc que 𝒬(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

 

Remarque : On peut ainsi déterminer précisément les valeurs de 𝛼𝑛 et 𝛽𝑛 puisque l’on a :  

{
𝛼𝑛+1 = 2𝛼𝑛 + 3𝛽𝑛
𝛽𝑛+1 = 𝛼𝑛 + 2𝛽𝑛

 

On a alors :  

𝛼𝑛+2 = 2𝛼𝑛+1 + 3𝛽𝑛+1 = 2𝛼𝑛+1 + 3(𝛼𝑛 + 2𝛽𝑛) = 2𝛼𝑛+1 + 3𝛼𝑛 + 2(𝛼𝑛+1 − 2𝛼𝑛)

= 4𝛼𝑛+1 − 𝛼𝑛 

Cela revient à déterminer les solutions d’une suite récurrente d’ordre 2 à coefficients 

constants. Ce que l’on sait faire !  

Méthode 2 : A l’aide du binôme de Newton 

On a :  

∀𝑛 ∈ ℕ, 𝑥𝑛 = (2 + √3)
𝑛
× (1 + √3) 

= (∑(
𝑛
𝑘
)2𝑛−𝑘(√3)

𝑘
𝑛

𝑘=0

) (1 + √3) 

=

(

 ∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

+ ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−1(√3)

2𝑘+1

⌊
𝑛−1
2
⌋

𝑘=0
)

 (1 + √3) 
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=∑(
𝑛
2𝑘
) 2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

+ √3

(

 ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−1(√3)

2𝑘

⌊
𝑛−1
2
⌋

𝑘=0
)

 + √3(∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

)

+ 3

(

 ∑ (
𝑛

2𝑘 + 1
) 2𝑛−2𝑘−1(√3)

2𝑘

⌊
𝑛−1
2
⌋

𝑘=0
)

  

=

(

 ∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

+ ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−13𝑘+1

⌊
𝑛−1
2
⌋

𝑘=0
)

 

+ √3

(

 ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−13𝑘

⌊
𝑛−1
2
⌋

𝑘=0

+∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0
)

  

Or on a :  

∀𝑘 ∈ ℕ, (
𝑛
𝑘
) ∈ ℕ, 2𝑛−2𝑘 ∈ ℕ, 3𝑘 ∈ ℕ  

On en déduit donc que :  

∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

+ ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−13𝑘+1

⌊
𝑛−1
2
⌋

𝑘=0

∈ ℕ 

∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−13𝑘

⌊
𝑛−1
2
⌋

𝑘=0

+∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

∈ ℕ 

De même on a :  

𝑦𝑛 = (2 − √3)
𝑛
× (1 − √3) 

= (∑(
𝑛
𝑘
)2𝑛−𝑘(−√3)

𝑘
𝑛

𝑘=0

) (1 + √3) 

=

(

 ∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

− ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−1(√3)

2𝑘+1

⌊
𝑛−1
2
⌋

𝑘=0
)

 (1 − √3) 
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=∑(
𝑛
2𝑘
) 2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

− √3

(

 ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−1(√3)

2𝑘

⌊
𝑛−1
2
⌋

𝑘=0
)

 − √3(∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

)

+ 3

(

 ∑ (
𝑛

2𝑘 + 1
) 2𝑛−2𝑘−1(√3)

2𝑘

⌊
𝑛−1
2
⌋

𝑘=0
)

  

=

(

 ∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0

+ ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−13𝑘+1

⌊
𝑛−1
2
⌋

𝑘=0
)

 

− √3

(

 ∑ (
𝑛

2𝑘 + 1
)2𝑛−2𝑘−13𝑘

⌊
𝑛−1
2
⌋

𝑘=0

+∑(
𝑛
2𝑘
)2𝑛−2𝑘3𝑘

⌊
𝑛
2
⌋

𝑘=0
)

  

En posant :  

𝜶𝒏 =∑(
𝒏
𝟐𝒌
)𝟐𝒏−𝟐𝒌𝟑𝒌

⌊
𝒏
𝟐
⌋

𝒌=𝟎

+ ∑ (
𝒏

𝟐𝒌 + 𝟏
)𝟐𝒏−𝟐𝒌−𝟏𝟑𝒌+𝟏

⌊
𝒏−𝟏
𝟐
⌋

𝒌=𝟎

 𝑒𝑡  

𝜷𝒏 = ∑ (
𝒏

𝟐𝒌 + 𝟏
)𝟐𝒏−𝟐𝒌−𝟏𝟑𝒌

⌊
𝒏−𝟏
𝟐
⌋

𝒌=𝟎

+∑(
𝒏
𝟐𝒌
)𝟐𝒏−𝟐𝒌𝟑𝒌

⌊
𝒏
𝟐
⌋

𝒌=𝟎

 

On a bien :  

∀𝒏 ∈ ℕ, ∃(𝜶𝒏, 𝜷𝒏) ∈ ℤ
𝟐 𝒕𝒆𝒍 𝒒𝒖𝒆 {

𝒙𝒏 = 𝜶𝒏 + √𝟑𝜷𝒏

𝒚𝒏 = 𝜶𝒏 − √𝟑𝜷𝒏
 

5) On a :  

∀𝑛 ∈ ℕ, (𝛼𝑛)
2 − 3(𝛽𝑛)

2 = (𝛼𝑛 + √3𝛽𝑛)(𝛼𝑛 − √3𝛽𝑛) 

= 𝑥𝑛 × 𝑦𝑛 

= (2 + √3)
𝑛
× (1 + √3) × (2 − √3)

𝑛
× (1 − √3) = (4 − 3)𝑛 × (1 − 3) = −2 

∀𝒏 ∈ ℕ, (𝜶𝒏)
𝟐 − 𝟑(𝜷𝒏)

𝟐 = −𝟐 

6) Soit 𝑑 un diviseur commun de 𝛼𝑛 𝑒𝑡 𝛽𝑛. Ainsi 𝑑 divise (𝛼𝑛)
2 𝑒𝑡 (𝛽𝑛)

2 donc 𝑑 divise 

(𝛼𝑛)
2 − 3(𝛽𝑛)

2 donc 𝑑 divise 2. Donc 𝒅 ∈ {𝟏; 𝟐}. 

7) Si 𝑑 divise 𝛼𝑛 𝑒𝑡 𝛽𝑛 alors 𝑑2 divise (𝛼𝑛)
2 𝑒𝑡 (𝛽𝑛)

2 donc 𝑑2 divise (𝛼𝑛)
2 − 3(𝛽𝑛)

2 donc 

𝑑2 divise 2.  

Ainsi 𝑑2 ≤ 2 donc 𝑑 = 1. On a donc :  

𝜶𝒏 ∧ 𝜷𝒏 = 𝟏 
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Exercice 2 : Une suite d’intégrale 

 Dans cet exercice on pose :  

∀ 𝑛 ∈ ℕ, 𝐼𝑛 = ∫
sin𝑛(𝑡)

cos(𝑡)

𝜋
3

0

𝑑𝑡 

Le but de cet exercice est de déterminer :  

lim
𝑛
∑𝐼𝑘

𝑛

𝑘=0

 

1) Montrer que 𝐼𝑛 est bien définie pour tout 𝑛 ∈ ℕ. 

2)  a) Démontrer qu’il existe 𝐾 > 0 tel que :  

∀𝑥 ∈ [0;
𝜋

3
] , sin(𝑥) ≤ 𝐾 

 b) Démontrer que :  

∀𝑛 ∈ ℕ, 0 ≤ 𝐼𝑛 ≤
2𝜋

3
𝐾𝑛 

 c) En déduire la limite de 𝐼𝑛 en +∞.Dans toute la suite on pose :  

∀𝑛 ∈ ℕ, 𝑆𝑛 =∑𝐼𝑘

𝑛

𝑘=0

 

3) Démontrer que :  

∀𝑛 ∈ ℕ, 𝑆𝑛 = ∫
1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

−∫
sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

 

4) En déduire que :  

lim
𝑛
𝑆𝑛 = ∫

1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

= 𝑆 

5) Montrer que :  

𝑆 = ∫
𝑑𝑢

(1 − 𝑢)2(1 + 𝑢)

√3
2

0

 

6) Démontrer un triplet (𝑎, 𝑏, 𝑐) ∈ ℝ3 tel que :  

∀𝑢 ∈ [0; 1[,
𝑑𝑢

(1 − 𝑢2)(1 + 𝑢)
=

𝑎

1 + 𝑢
+

𝑏

1 − 𝑢
+

𝑐

(1 − 𝑢)2
  

7) En déduire la valeur de S.  

 

1) On a :  

∀𝑡 ∈ [0;
𝜋

3
] , cos(𝑡) ∈ [

1

2
; 1] ⟹ ∀𝑡 ∈ [0;

𝜋

3
] , cos(𝑡) ≠ 0 

Ainsi pour tout 𝑛 ∈ ℕ, la fonction :  
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𝒇𝒏: 𝒕 ↦
𝐬𝐢𝐧𝒏(𝒕)

𝐜𝐨𝐬(𝒕)
∈ 𝓒𝟎 ([𝟎;

𝝅

𝟑
]) 

Donc 𝐼𝑛 est bien définie.  

2)  a) On sait que :  

∀𝑡 ∈ [0;
𝜋

3
] , 0 ≤ sin(𝑡) ≤

√3

2
< 1 

Ainsi en posant  

𝑲 =
√𝟑

𝟐
 

On a :  

∀𝑥 ∈ [0;
𝜋

3
] , sin(𝑥) ≤ 𝐾 

 b) On donc :  

∀𝑛 ∈ ℕ, ∀𝑡 ∈ [0;
𝜋

3
] , 𝑓𝑛(𝑡) =

sin𝑛(𝑡)

cos(𝑡)
≤

𝐾𝑛

cos(𝑡)
≤ 2𝐾𝑛 

De plus on a :  

∀𝑛 ∈ ℕ, ∀𝑡 ∈ [0;
𝜋

3
] , 𝑓𝑛(𝑡) =

sin𝑛(𝑡)

cos(𝑡)
≥ 0 

Par croissance de l’intégrale on a :  

∀𝑛 ∈ ℕ, 0 ≤ 𝑓𝑛(𝑡) ≤ 2(
√3

2
)

𝑛

 

⟹ ∀𝑛 ∈ ℕ,∫ 0

𝜋
3

0

𝑑𝑡 ≤ ∫𝑓𝑛(𝑡)

𝜋
3

0

𝑑𝑡 ≤ ∫2(
√3

2
)

𝑛

𝜋
3

0

𝑑𝑡 

⟹ ∀𝒏 ∈ ℕ, 𝟎 ≤ 𝑰𝒏 ≤
𝟐𝝅

𝟑
× (

√𝟑

𝟐
)

𝒏

 

 c) On sait que :  

√3

2
∈ [0; 1[⟹ lim

𝑛
(
√3

2
)

𝑛

= 0 ⟹ lim
𝑛

2𝜋

3
× (

√3

2
)

𝑛

= 0 

D’après le théorème des gendarmes, on en déduit donc que :  

𝐥𝐢𝐦
𝒏
𝑰𝒏 = 𝟎 

3) On a par linéarité de l’intégrale :  

∀𝑛 ∈ ℕ, 𝑆𝑛 =∑𝐼𝑘

𝑛

𝑘=0

=∑∫𝑓𝑘(𝑡)

𝜋
3

0

𝑑𝑡

𝑛

𝑘=0

= ∫∑𝑓𝑘(𝑡)

𝑛

𝑘=0

𝜋
3

0

𝑑𝑡 

Or on sait que :  

∑𝑓𝑘(𝑡)

𝑛

𝑘=0

=∑
sin𝑘(𝑡)

cos(𝑡)

𝑛

𝑘=0

=
1

cos(𝑡)
∑ sin𝑘(𝑡)

𝑛

𝑘=0

 

Or on sait que :  
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∀𝑡 ∈ [0;
𝜋

3
] , sin(𝑡) ≠ 1 

On a donc :  

1

cos(𝑡)
∑ sin𝑘(𝑡)

𝑛

𝑘=0

=
1 − sin𝑛+1(𝑡)

cos(𝑡) (1 − sin(𝑡))
 

On en déduit donc que :  

∀𝑛 ∈ ℕ, 𝑆𝑛 = ∫∑𝑓𝑘(𝑡)

𝑛

𝑘=0

𝜋
3

0

𝑑𝑡 = ∫
1 − sin𝑛+1(𝑡)

cos(𝑡) (1 − sin(𝑡))

𝜋
3

0

𝑑𝑡 

= ∫
𝟏

𝐜𝐨𝐬(𝒕) (𝟏 − 𝐬𝐢𝐧(𝒕))
𝒅𝒕

𝝅
𝟑

𝟎

−∫
𝐬𝐢𝐧(𝒕)𝒏+𝟏

𝐜𝐨𝐬(𝒕) (𝟏 − 𝐬𝐢𝐧(𝒕))
𝒅𝒕

𝝅
𝟑

𝟎

 

4) On sait que :  

∀𝑛 ∈ ℕ, ∀𝑡 ∈ [0;
𝜋

3
] ,

sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
≥ 0 ⟹ ∫

sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

≥ 0 

De plus on a :  

∀𝑛 ∈ ℕ, ∀𝑡 ∈ [0;
𝜋

3
] ,

sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
≤

𝐾𝑛+1

cos(𝑡) (1 − sin(𝑡))
 

De plus on a :  

∀𝑡 ∈ [0;
𝜋

3
] ,

1

cos(𝑡)
≤ 2 𝑒𝑡 1 − sin(𝑡) ≥ 1 −

√3

2
⟹

1

1 − sin(𝑡)
≤

1

1 −
√3
2

 

On en déduit donc que :  

∀𝑛 ∈ ℕ, ∀𝑡 ∈ [0;
𝜋

3
] ,

sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
≤

2

1 −
√3
2

× 𝐾𝑛+1 

Par croissance de l’intégrale :  

 ∫
sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

≤ ∫
2

1 −
√3
2

× 𝐾𝑛+1𝑑𝑡

𝜋
3

0

 

⟹ 0 ≤ ∫
sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

≤
2𝜋

3(1 −
√3
2 )

𝐾𝑛+1 

De même que précédemment on a :  

lim
𝑛

2𝜋

3(1 −
√3
2 )

𝐾𝑛+1 = 0 
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Ainsi d’après le théorème des gendarmes :  

lim
𝑛
∫

sin(𝑡)𝑛+1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

= 0 

On a donc :  

𝐥𝐢𝐦
𝒏
𝑺𝒏 = ∫

𝟏

𝐜𝐨𝐬(𝒕) (𝟏 − 𝐬𝐢𝐧(𝒕))
𝒅𝒕

𝝅
𝟑

𝟎

= 𝑺 

5) On pose le changement de variable suivant :  

𝑢 = sin(𝑡) 
_ On change les bornes :  

𝑡 = 0 ⟹ 𝑢 = 0 

𝑡 =
𝜋

3
⟹ 𝑢 =

√3

2
 

_ On calcule le 𝑑𝑡 ou  le 𝑑𝑢 :  

𝑢 = sin(𝑡) ⟹ 𝑑𝑢 = cos(𝑡) 𝑑𝑡 
_ On transforme l’intégrale :  

∫
1

cos(𝑡) (1 − sin(𝑡))
𝑑𝑡

𝜋
3

0

= ∫
cos(𝑡) 𝑑𝑡

cos2(𝑡) (1 − sin(𝑡))

𝜋
3

0

= ∫
cos(𝑡) 𝑑𝑡

(1 − sin2(𝑡))(1 − sin(𝑡))

𝜋
3

0

 

= ∫
𝒅𝒖

(𝟏 − 𝒖𝟐)(𝟏 − 𝒖)

√𝟑
𝟐

𝟎

= ∫
𝒅𝒖

(𝟏 − 𝒖)𝟐(𝟏 + 𝒖)

√𝟑
𝟐

𝟎

 

6) On cherche (𝑎, 𝑏, 𝑐) ∈ ℝ3 tel que :  

∀𝑢 ∈ [0; 1[,
𝑑𝑢

(1 − 𝑢)2(1 + 𝑢)
=

𝑎

1 + 𝑢
+

𝑏

1 − 𝑢
+

𝑐

(1 − 𝑢)2
 

On peut le faire de beaucoup de façons différentes. 

Méthode 1 : Mise au même dénominateur 

∀𝑢 ∈ [0; 1[,
𝑎

1 + 𝑢
+

𝑏

1 − 𝑢
+

𝑐

(1 − 𝑢)2
=
𝑎(1 − 𝑢)2 + 𝑏(1 − 𝑢2) + 𝑐(1 + 𝑢)

(1 − 𝑢)2(1 + 𝑢)
 

=
𝑢2(𝑎 − 𝑏) + 𝑢(−2𝑎 + 𝑐) + 𝑎 + 𝑏 + 𝑐

(1 − 𝑢)2(1 + 𝑢)
 

On identifie et on résout alors :  

{
𝒂 − 𝒃 = 𝟎
−𝟐𝒂 + 𝒄 = 𝟎
𝒂 + 𝒃 + 𝒄 = 𝟏

⟺

{
 
 

 
 𝒂 =

𝟏

𝟒

𝒃 =
𝟏

𝟒

𝒄 =
𝟏

𝟐

 

7) On a :  
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𝑆 = ∫
𝑑𝑢

(1 − 𝑢2)(1 − 𝑢)

√3
2

0

=
1

4
∫

𝑑𝑢

1 + 𝑢

√3
2

0

+
1

4
∫

𝑑𝑢

1 − 𝑢

√3
2

0

+
1

2
∫

𝑑𝑢

(1 − 𝑢)2

√3
2

0

 

=
1

4
ln (1 +

√3

2
) −

1

4
ln (1 −

√3

2
) +

1

2
(

1

1 −
√3
2

− 1) 

=
1

4
ln(

1 +
√3
2

1 −
√3
2

) +
1

2
(4(1 +

√3

2
) − 1) 

=
3

2
+ √3 +

1

2
ln(2 + √3) 

On en déduit donc que :  

∑∫
𝐬𝐢𝐧𝒏(𝒕)

𝐜𝐨𝐬(𝒕)

𝝅
𝟑

𝟎

𝒅𝒕

+∞

𝒌=𝟎

=
𝟑

𝟐
+ √𝟑 +

𝟏

𝟐
𝐥𝐧(𝟐 + √𝟑) 

 

Problème 1 : Une équation différentielle un peu particulière (Oral centrale PSI 2016) 

 

Dans ce problème on cherche déterminer l’ensemble (E) suivant :  

E = {y ∈ 𝒞1(ℝ,ℝ), ∀x ∈ ℝ, 2xy′(x) − 2y(−x) =
x

x2 + 1
 } 

 

Partie A : Une première équation différentielle 

 

 Dans cette partie on cherche à déterminer :  

E1 = {y ∈ 𝒞
1(ℝ,ℝ), ∀x ∈ ℝ, 2xy′(x) − 2y(x) = 0 } 

1) Résoudre l’équation différentielle 2xy′(x) − 2y(x) = 0 sur ]0 ;+∞[. 

2) De même résoudre l’équation différentielle 2xy′(x) − 2y(x) = 0 sur ]−∞;0[. 
3) Démontrer que :  

E1 = {f: {
ℝ → ℝ
x ↦ λx

, λ ∈ ℝ} 

Partie B :   

Dans cette partie on cherche à déterminer :  

E2 = {y ∈ 𝒞
1(ℝ,ℝ), ∀x ∈ ℝ, 2xy′(x) + 2y(x) =

x

x2 + 1
 } 

1)  a) Résoudre l’équation différentielle 2xy′(x) + 2y(x) = 0 sur ]0 ; +∞[. 

 b) Déterminer une solution particulière de 2xy′(x) + 2y(x) =
x

x2+1
. 

(Indication : On pourra utiliser une variation de la constante). 

 c) En déduire toutes les solutions de 2xy′(x) + 2y(x) =
x

x2+1
 sur ]0 ;+∞[. 
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2) En déduire toutes les solutions de 2xy′(x) + 2y(x) =
x

x2+1
 sur ]−∞ ; 0[. On donnera 

directement le résultat sans refaire toutes les étapes. 

3)  a) Démontrer que :  

lim
x→0

ln(x2 + 1)

x
= 0 

 b) En déduire les solutions de 2xy′(x) + 2y(x) =
x

x2+1
 sur ℝ. 

 

Partie C : A la recherche de E. 

1)  Démontrer que toute fonction y définie sur ℝ, se décompose de manière unique en une 

fonction paire et une fonction impaire. 

Dans toute la suite de cette partie on note :  

∀y ∈ ℝℝ, ∃! (yp, yi) ∈ (ℝ
ℝ)2 tel que y = yp + yi et yp, yi respectivement paire et impaire 

2)  a) Démontrer que si f ∈ 𝒞1(ℝ) et paire, alors sa dérivée 𝑓′ est impaire. La réciproque 

est-elle vraie ? 

 b) Démontrer que si f ∈ 𝒞1(ℝ) et impaire, alors sa dérivée 𝑓′ est paire. La réciproque 

est-elle vraie ? 

3) Démontrer que :  

y ∈ E ⟺ {
yp ∈ E1
yi ∈ E2

 

4) En déduire l’ensemble E.  

 

Partie A : Une première équation différentielle 

1) On sait que :  

{
2xy′(x) − 2y(x) = 0

x > 0
⟺ ∃λ1 ∈ ℝ, ∀x > 0, y(x) = λ1e

∫
1
x
dx = λ1e

ln(x) = λ1x 

2) Avec le même procédé que la question 1) on obtient :  

{
2xy′(x) − 2y(x) = 0

x < 0
⟺ ∃λ2 ∈ ℝ, ∀x < 0, y(x) = λ2e

∫
1
x
dx = λ2e

ln(|x|) = −λ2x 

3) L’ensemble (E1) est l’ensemble des solutions de 2xy′(x) − 2y(x) = 0 sur ℝ tout entier. 

On sait que l’on doit avoir d’après les questions précédentes :  

y solution de 2xy′(x) − 2y(x) = 0 sur ]0;+∞[ ⟹ ∃λ1 ∈ ℝ, ∀x > 0, y(x) = λ1x 

De même :  

y solution de 2xy′(x) − 2y(x) = 0 sur ]−∞; 0[ ⟹ ∃λ2 ∈ ℝ, ∀x < 0, y(x) = −λ2x 
On pose :  

𝑓: {

ℝ → ℝ

𝑥 ↦ {
𝜆1𝑥 𝑠𝑖 𝑥 > 0
−𝜆2𝑥 𝑠𝑖 𝑥 < 0
0 𝑠𝑖 𝑥 = 0

 

Cette fonction est continue mais doit être dérivable. Or on a :  

𝑙𝑖𝑚
𝑥→0+ 

𝑓(𝑥) − 𝑓(0)

𝑥
= 𝜆1 𝑒𝑡 𝑙𝑖𝑚

𝑥→0− 

𝑓(𝑥) − 𝑓(0)

𝑥
= −𝜆2  
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Ainsi on doit avoir λ1 = −λ2 pour que f soit solution sur ℝ. On en déduit donc que :  

y solution de 2xy′(x) − 2y(x) = 0 sur ℝ ⟹ ∃λ1 ∈ ℝ, ∀x ∈ ℝ, y(x) = λ1x 
La réciproque est juste ! On pose :  

𝑓: {
ℝ → ℝ
𝑥 ↦ 𝜆𝑥

⟹ ∀𝑥 ∈ ℝ, 2𝑥𝑓′(𝑥) − 2𝑓(𝑥) = 0 

On en déduit donc que :  

𝐸1 = {𝑓: {
ℝ → ℝ
𝑥 ↦ 𝜆𝑥

, 𝜆 ∈ ℝ} 

 

 

Partie B : Une seconde équation différentielle 

1)  a) On sait que :  

{
2𝑥𝑦′(𝑥) + 2𝑦(𝑥) = 0

𝑥 > 0
⟺ ∃𝜆1 ∈ ℝ, ∀𝑥 > 0, 𝑦(𝑥) = 𝜆1𝑒

−∫
1
𝑥
𝑑𝑥 =

𝜆1
𝑥

 

 b) On cherche une solution particulière sur ]0;+∞[ de :  

2𝑥𝑦′(𝑥) + 2𝑦(𝑥) =
𝑥

𝑥2 + 1
 

On pose :  

𝑓: {

]0;+∞[ → ℝ

𝑥 ↦
𝜆1(𝑥)

𝑥

, 𝑎𝑣𝑒𝑐 𝜆1 ∈ 𝒞
1(]0;+∞[) 

On a alors :  

∀x > 0, f ′(x) =
λ1
′ (x)

x
−
λ1(x)

x2
 

On en déduit donc que f est solution particulière de 2𝑥𝑦′(𝑥) + 2𝑦(𝑥) =
𝑥

𝑥2+1
 si et seulement 

si :  

2𝑥 (
𝜆1
′ (𝑥)

𝑥
−
𝜆1(𝑥)

𝑥2
) + 2

𝜆1(𝑥)

𝑥
=

𝑥

𝑥2 + 1
 

⟺ 𝜆1
′ (𝑥) =

1

2
×

𝑥

𝑥2 + 1
 

⟺ ∃c ∈ ℝ, ∀x > 0, λ1(x) =
1

4
ln(x2 + 1) + c  

On en déduit donc qu’une solution particulière de 2xy′(x) + 2y(x) = 0 est 𝑥 ↦
1

4

𝑙𝑛(𝑥2+1)

𝑥
. 
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 c) On en déduit donc que :  

{
2𝑥𝑦′(𝑥) + 2𝑦(𝑥) =

𝑥

𝑥2 + 1
𝑥 > 0

⟺ ∃𝜆1 ∈ ℝ, ∀𝑥 > 0, 𝑦(𝑥) =
𝜆1 +

1
4
𝑙𝑛(1 + 𝑥2)

𝑥
 

2) De même on a :  

{
2𝑥𝑦′(𝑥) + 2𝑦(𝑥) =

𝑥

𝑥2 + 1
𝑥 < 0

⟺ ∃𝜆2 ∈ ℝ, ∀𝑥 < 0, 𝑦(𝑥) =
𝜆2 +

1
4
𝑙𝑛(1 + 𝑥2)

𝑥
 

3)  a) On sait que :  

𝑙𝑖𝑚
𝑥→0

𝑙𝑛(1 + 𝑥2)

𝑥
= 𝑙𝑖𝑚

𝑥→0

𝑓(𝑥) − 𝑓(0)

𝑥
= 𝑓′(0) =

2 × 0

1 + 02
= 0 

Avec 𝑓(𝑥) = 𝑙𝑛(𝑥2 + 1) qui est dérivable sur ℝ donc en 0 ! 

 b) On sait que :  

y est solution de 2xy′(x) + 2y(x) =
x

x2 + 1
 sur ℝ 

⟹ ∃(λ1, λ2) ∈ ℝ
2

{
 
 

 
 
𝑦(𝑥) =

𝜆1 +
1
4
𝑙𝑛(1 + 𝑥2)

𝑥
 𝑠𝑖 𝑥 > 0

𝑦(𝑥) =
𝜆2 +

1
4
𝑙𝑛(1 + 𝑥2)

𝑥
 𝑠𝑖 𝑥 < 0

 

De plus y doit être définie et continue en 0. Si λ1 ≠ 0 on a :  

𝑙𝑖𝑚
𝑥→0+

|𝑦(𝑥)| = +∞  

De même si λ2 ≠ 0 ona :  

𝑙𝑖𝑚
𝑥→0−

|𝑦(𝑥)| = +∞  

Pour avoir une solution sur ℝ, on doit donc avoir (λ1, λ2) = (0,0) 
On en déduit donc que :  

𝑦 𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑒 2𝑥𝑦′(𝑥) + 2𝑦(𝑥) =
𝑥

𝑥2 + 1
 𝑠𝑢𝑟 ℝ ⟹ ∀𝑥 ≠ 0, 𝑦(𝑥) =

1

4

𝑙𝑛(1 + 𝑥2)

𝑥
 

On pose à présent :  

𝑓: {

ℝ → ℝ 

𝑥 ↦ {
1

4

𝑙𝑛(1 + 𝑥2)

𝑥
 𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖𝑛𝑜𝑛

 

On peut voir que 𝑓 est continue d’après 3) a). Montrons que 𝑓 est dérivable en 0 

On sait que :  

𝑙𝑖𝑚
𝑥→0

𝑙𝑛(1 + 𝑥2)
𝑥

− 0

𝑥
= 𝑙𝑖𝑚

𝑥→0

𝑙𝑛(1 + 𝑥2)

𝑥2
= 𝑙𝑖𝑚

𝑋→0

𝑙𝑛(1 + 𝑋)

𝑋
= 1 

On en déduit donc que 𝑓 est dérivable en 0 et 𝑓′(0) =
1

4
. 

On en déduit donc que :  
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2𝑥𝑦′(𝑥) + 2𝑦(𝑥) =
𝑥

𝑥2 + 1
 𝑠𝑢𝑟 ℝ ⟺ 𝑦:{

ℝ → ℝ 

𝑥 ↦ {
1

4

𝑙𝑛(1 + 𝑥2)

𝑥
 𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖𝑛𝑜𝑛

 

Partie C : A la recherche de E 

1) Soit f ∈ ℝℝ. On a alors :  

∀𝑥 ∈ ℝ, 𝑓(𝑥) =
𝑓(𝑥) + 𝑓(−𝑥)

2
+
𝑓(𝑥) − 𝑓(−𝑥)

2
= 𝑓𝑝(𝑥) + 𝑓𝑖(𝑥) 

On vérifie facilement que fp est paire et fi impaire. 

Il reste à présent à démontrer que cette décomposition est unique !  

On suppose que ∃(fp, gp) ∈ (ℝ
ℝ)2, paires, et (fi, gi) ∈ (ℝ

ℝ)2 impaires telles que :  

𝑓 = 𝑓𝑝 + 𝑓𝑖 = 𝑔𝑝 + 𝑔𝑖 

On a alors :  

∀𝑥 ∈ ℝ, (𝑓𝑝 − 𝑔𝑝) = (𝑔𝑖 − 𝑓𝑖)  

Or 𝑓𝑝 − 𝑔𝑝 est paire :  

∀𝑥 ∈ ℝ, (𝑓𝑝 − 𝑔𝑝)(−𝑥) = 𝑓𝑝(−𝑥) − 𝑔𝑝(−𝑥) = 𝑓𝑝(𝑥) − 𝑔𝑝(𝑥) = (𝑓𝑝 − 𝑔𝑝)(𝑥) 

Et 𝑔𝑖 − 𝑓𝑖 est impaire :  

∀𝑥 ∈ ℝ, (𝑓𝑖 − 𝑔𝑖)(−𝑥) = 𝑓𝑖(−𝑥) − 𝑔𝑖(−𝑥) = −𝑓𝑖(𝑥) + 𝑔𝑖(𝑥) = −(𝑓𝑖 − 𝑔𝑖)(𝑥) 

Donc 𝑓𝑝 − 𝑔𝑝 est à la fois paire et impaire, donc 𝑓𝑝 − 𝑔𝑝 = 0ℝℝ donc 𝑓𝑝 = 𝑔𝑝 et 𝑓𝑖 = 𝑔𝑖. 

Ainsi la décomposition est unique. 

2)  a) Soit 𝑓 ∈ 𝒞1(ℝ) paire. On a alors :  

∀𝑥 ∈ ℝ, 𝑓(−𝑥) = 𝑓(𝑥) ⟹ ∀𝑥 ∈ ℝ,−𝑓′(−𝑥) = 𝑓′(𝑥) ⟹ 𝑓′𝑒𝑠𝑡 𝑖𝑚𝑝𝑎𝑖𝑟𝑒  
La réciproque est vraie.  

Soit 𝑓 ∈ 𝒞1(ℝ) telle que 𝑓′est impaire. On a alors :  

𝑓′(−𝑥) + 𝑓′(𝑥) = 0 ⟹ ∫(𝑓′(−𝑥) + 𝑓′(𝑥))𝑑𝑥 = ∫0𝑑𝑥 

⟹ ∃𝑐 ∈ ℝ, ∀𝑥 ∈ ℝ,−𝑓(−𝑥) + 𝑓(𝑥) = 𝑐 

On en déduit donc que :  

∃𝑐 ∈ ℝ, ∀𝑥 ∈ ℝ, 𝑓(−𝑥) = 𝑓(𝑥) − 𝑐 

Or on a :  

𝑓(0) = 𝑓(0) + 𝑐 ⟹ 𝑐 = 0 

On en déduit donc que :  

∀𝑥 ∈ ℝ, 𝑓(−𝑥) = 𝑓(𝑥) 
Donc la réciproque est vraie. 

 b) On fait de même. Soit f ∈ 𝒞1(ℝ) impaire. On a alors :  

∀𝑥 ∈ ℝ, 𝑓(−𝑥) = −𝑓(𝑥) ⟹ ∀𝑥 ∈ ℝ,−𝑓′(−𝑥) = −𝑓′(𝑥) ⟹ 𝑓′𝑒𝑠𝑡 𝑝𝑎𝑖𝑟𝑒  
La réciproque est fausse.  

On pose 𝑓: 𝑥 ↦ 𝑠𝑖𝑛(𝑥) + 1. On a alors 𝑓 (
𝜋

2
) = 2 𝑒𝑡 𝑓 (−

𝜋

2
) = 0. Cependant 𝑓′: 𝑥 ↦

𝑐𝑜𝑠(𝑥) et donc 𝑓′ est paire. 

3) C’est une équivalence. Commençons par le plus facile. Soit y ∈ 𝒞1(ℝ) telle que u = yp +

yi sa décomposition en une fonction paire et impaire. Montrons que : 
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𝑦 ∈ 𝐸 ⟸ {
𝑦𝑝 ∈ 𝐸1
𝑦𝑖 ∈ 𝐸2

 

On sait que :  

∀𝑥 ∈ ℝ, 2𝑥𝑦𝑝
′(𝑥) − 2𝑦𝑝(𝑥) = 0,2𝑥𝑦𝑖

′(𝑥) + 2𝑦𝑖(𝑥) =
𝑥

𝑥2 + 1
  

De plus on sait que y′ = yp
′ + yi

′. On a alors :  

∀𝑥 ∈ ℝ, {
2𝑥𝑦𝑝

′(𝑥) − 2𝑦𝑝(𝑥) = 0

2𝑥𝑦𝑖
′(𝑥) + 2𝑦𝑖(𝑥) =

𝑥

𝑥2 + 1

   

⟹ 2𝑥𝑦𝑝
′(𝑥) − 2𝑦𝑝(𝑥) + 2𝑥𝑦𝑖

′′(𝑥) + 2𝑦𝑖(𝑥) =
𝑥

𝑥2 + 1
 

⟹ 2𝑥 (𝑦𝑝
′(𝑥) + 𝑦𝑖

′′(𝑥)) − 2 (𝑦𝑝(−𝑥) + 𝑦𝑖(−𝑥)) =
𝑥

𝑥2 + 1
 

⟹ 2𝑥𝑦′(𝑥) − 2𝑦(−𝑥) =
𝑥

𝑥2 + 1
  

On a donc :  

{
𝑦𝑝 ∈ 𝐸1
𝑦𝑖 ∈ 𝐸2

⟹ 𝑦 ∈ 𝐸 

Montrons la réciproque. 

On a :  

𝑦 ∈ 𝐸 ⟹ ∀𝑥 ∈ ℝ, 2𝑥𝑦′(𝑥) − 2𝑦(−𝑥) =
𝑥

𝑥2 + 1
 

⟹ 2𝑥 (𝑦𝑝
′(𝑥) + 𝑦𝑖

′(𝑥)) − 2 (𝑦𝑝(−𝑥) + 𝑦𝑖(−𝑥)) =
𝑥

𝑥2 + 1
 

⟹ 2𝑥𝑦𝑝
′(𝑥) − 2𝑦𝑝(𝑥) + 2𝑥𝑦𝑖

′(𝑥) + 2𝑦𝑖(𝑥) =
𝑥

𝑥2 + 1
 

On pose 𝑓: 𝑥 ↦ 2𝑥𝑦𝑝
′(𝑥) − 2𝑦𝑝(𝑥) + 2𝑥𝑦𝑖

′(𝑥) + 2𝑦𝑖(𝑥). On sait que 𝑓: 𝑥 ↦
𝑥

𝑥2+1
, donc f est 

impaire. 

De plus on sait que f se décompose de manière unique comme somme d’une fonction paire et 

d’une fonction impaire. On en déduit donc que f = fp + fi avec fp = 0 et fi ↦
x

x2+1
. 

Or on a vu précédemment que yp
′  était impaire, et yi

′ était paire. On pose g: x ↦ 2xyp
′ (x) −

2yp(x). On a alors :  

∀x ∈ ℝ, g(−x) = 2(−x)yp
′ (−x) − 2yp(−x) = 2xyp

′ (x) − 2yp(x) = g(x) 

Donc g est paire. De même si on pose h: x ↦ 2xyi
′(x) + 2yi(x). On a alors :  

∀x ∈ ℝ, h(−x) = 2(−x)yi
′(−x) + 2yi(−x) = −(2xyi

′(x) + 2yi(x)) = −h(x) 

Donc h est impaire. Par unicité de la décomposition, on en déduit donc que :  

2𝑥𝑦𝑝
′(𝑥) − 2𝑦𝑝(𝑥) + 2𝑥𝑦𝑖

′(𝑥) + 2𝑦𝑖(𝑥) =
𝑥

𝑥2 + 1
⟹ ∀𝑥 ∈ ℝ, {

2𝑥𝑦𝑝
′(𝑥) − 2𝑦𝑝(𝑥) = 0

2𝑥𝑦𝑖
′(𝑥) + 2𝑦𝑖(𝑥) =

𝑥

𝑥2 + 1

 

On en déduit donc que :  

𝑦 ∈ 𝐸 ⟹ {
𝑦𝑝 ∈ 𝐸1
𝑦𝑖 ∈ 𝐸2

 

4) On sait que :  
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𝑦 ∈ 𝐸 ⟺ {
𝑦𝑝 ∈ 𝐸1
𝑦𝑖 ∈ 𝐸2

 

De plus on sait que E1 = {f: {
ℝ → ℝ
x ↦ λx

, λ ∈ ℝ}. Ainsi la seule fonction paire de E1 est la 

fonction nulle 0ℝℝ: x ↦ 0. 

De plus on sait que :  

𝐸2 = {𝑓: {

ℝ → ℝ 

𝑥 ↦ {
1

4

𝑙𝑛(1 + 𝑥2)

𝑥
 𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖𝑛𝑜𝑛

} 

On vérifie que f est impaire. On en déduit donc que :  

E = {y ∈ 𝒞1(ℝ,ℝ), ∀x ∈ ℝ, 2xy′(x) − 2y(−x) =
x

x2 + 1
 }

= {𝑓: {

ℝ → ℝ 

𝑥 ↦ {
1

4

𝑙𝑛(1 + 𝑥2)

𝑥
 𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖𝑛𝑜𝑛

} 

 

Problème 2 : une équation différentielle 

 

Le but de ce problème est de résoudre l’équation différentielle suivante :  

(E): y′′ + 6y′ + 9y =
e−3x

√x2 + 1
 

 

Partie A : Des résultats préliminaires 

1) Démontrer que la fonction sh définie par :  

sh ∶  {
ℝ → ℝ

x ⟼
ex − e−x

2

 

réalise une bijection de ℝ dans ℝ.  

2) Déterminer sa bijection réciproque, notée sh−1 ou argsh. 

3) Démontrer que : 

∀x ∈ ℝ, argsh′(x) =
1

√x2 + 1
 

Partie B : Résolution de l’équation différentielle 

1) Résoudre l’équation homogène suivante :  

(E0): y
′′ + 6y′ + 9y = 0 

2) Soit z ∈ 𝒞2(ℝ). On pose :  

f: {
ℝ → ℝ

x ⟼ z(x)e−3x
  

a) Montrer que f est solution de l’équation différentielle (E) si et seulement si z vérifie la 

relation :  

z′′(x) =
1

√x2 + 1
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b) En remarquant que :  

∀x ∈ ℝ, argsh(x) = 1 × argsh(x) 
Et à l’aide d’une intégration par partie, déterminer une primitive de argsh.  

c) Déterminer l’ensemble des solutions de (E).  

 

Partie A :  

1) On sait que :  

𝑠ℎ ∶  {
ℝ → ℝ

𝑥 ⟼
𝑒𝑥 − 𝑒−𝑥

2

 

On en déduit donc que sh est de classe 𝒞∞ sur ℝ et que :  

∀x ∈ ℝ, sh′(x) =
ex + e−x

2
> 0 

Comme sh est continue sur ℝ et sstrictement croissante, d’après le théorème des valeurs 

intermédiaires, sh réalise une bijection de ℝ dans son image.  

Or on a :  

lim
x→+∞

sh(x) = lim
x→+∞

ex

2
 = +∞ 

Par imparité de sh on a :  

lim
x→−∞

sh(x) = −∞ 

Donc sh réalise une bijection de ℝ dans ℝ. 
 

2) Soit y ∈ ℝ. Pour déterminer sh−1 il suffit de résoudre sur ℝ l’équation d’inconnu x :  

sh(x) = y 

⟺
ex − e−x

2
= y 

⟺ ex − e−x = 2y 

⟺ e2x − 2yex − 1 = 0 (car ex ≠ 0 ∀ x ∈ ℝ) 

⟺ X2 − 2yX − 1 = 0 car X = ex 

On a :  

Δ = 4y2 + 4 = 4(y2 + 1) > 0 

On a donc deux solutions réelles à X2 − 2yX − 1 = 0 ∶  

{
X1 =

2y − 2√y2 + 1

2
= y − √y2 + 1

X2 = y + √y
2 + 1

 

Or on sait que :  

∀ y ∈ ℝ, y2 + 1 > y2 

⟹ ∀ y ∈ ℝ,√y2 + 1 > |y|  (car x ↦ √x est croissante sur ℝ+) 

On en déduit donc que :  

∀ y ∈ ℝ, y − √y2 + 1 < 0 

∀ y ∈ ℝ, y + √y2 + 1 > 0 
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ex = y − √y2 + 1 ⟺ x ∈ ∅ 

ex = y − √y2 + 1 ⟺ x = ln (y + √y2 + 1) 

Donc on a :  

sh(x) = y ⟺ x = ln (y + √y2 + 1) 

On a donc :  

𝐚𝐫𝐠𝐬𝐡

= 𝐬𝐡−𝟏: {
ℝ → ℝ

𝐱 ⟼ 𝐥𝐧(𝐱 + √𝐱𝟐 + 𝟏)
 

 

3) On peut utiliser deux méthodes.  

M1 : On a réussi la question précédente !! 

On a :  

argsh ∈ 𝒟(ℝ) et :  

∀x ∈ ℝ, argsh′(x) =

1 +
2x

2√x2 + 1

x + √x2 + 1
 

=
√x2 + 1 + x

x + √x2 + 1
×

1

√x2 + 1
 

=
1

√x2 + 1
 

M2 : On utilise la forme d’une fonction composée :  

∀x ∈ ℝ, sh(argsh(x)) = x 

⟹ argsh′(x) =
1

ch(argsh(x))
 

=
1

√1 + sh2(argsh(x))

 

=
1

√x2 + 1
 

Partie B : Résolution de l’équation différentielle 

(E0): y
′′ + 6y′ + 9y = 0 

On résout l’équation caractéristique :  

r2 + 6r + 9 = 0 ⟺ (r + 3)2 = 0 ⟺ r = −3 

On en déduit donc que :  

𝑦′′ + 6𝑦′ + 9𝑦 = 0 ⟺ ∃(𝐴, 𝐵) ∈ ℝ2, 𝑦0(𝑥) = (𝐴𝑥 + 𝐵)𝑒
−3𝑥 

2)  a) z ∈ 𝒞2(ℝ) donc f ∈ 𝒞2(ℝ) et on a :  

∀𝑥 ∈ ℝ, 𝑓′(𝑥) = (𝑧′(𝑥) − 3𝑧(𝑥))𝑒−3𝑥 

𝑓′′(𝑥) = (𝑧′′(𝑥) − 3𝑧′(𝑥) − 3𝑧′(𝑥) + 9𝑧(𝑥))𝑒−3𝑥 

On a donc :  
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∀𝑥 ∈ ℝ, , 𝑓(𝑥)′′ + 6𝑓′(𝑥) + 9𝑓(𝑥)

= (𝑧′′(𝑥) − 6𝑧′(𝑥) + 9𝑧(𝑥) + 6𝑧′(𝑥) − 18𝑧(𝑥) + 9𝑧(𝑥))𝑒−3𝑥 

= 𝑧′′(𝑥)𝑒−3𝑥 

Ainsi f est solution de (E) si et seulement si : 

∀𝑥 ∈ ℝ, , 𝑓(𝑥)′′ + 6𝑓′(𝑥) + 9𝑓(𝑥) =
𝑒−3𝑥

√𝑥2 + 1
 

⟺𝐳′′(𝐱) =
𝟏

√𝐱𝟐 + 𝟏
 

b) On effectue une intégration par partie :  

On pose :  

{
u(x) =  argsh(x)

v′(x) = 1
⟹ {

u′(x) =
1

√x2 + 1
v(x) = x

 

On a donc :  

∫argsh(x)dx = xargsh(x) − ∫
x

√x2 + 1
dx 

=  𝐱𝐚𝐫𝐠𝐬𝐡(𝐱) − √𝐱𝟐 + 𝟏 

c) On cherche une solution particulière de  

(E): y′′ + 6y′ + 9y =
e−3x

√x2 + 1
 

On a vu précédemment que cela revient à déterminer :  

z′′(x) =
1

√x2 + 1
 

Or on sait que :  

z′′(x) =
1

√x2 + 1
⟹ z′(x) = argsh(x) + cste 

On peut poser cste = 0 puisque l’on cherche une solution particulière. 

On a donc :  

z′(x) = argsh(x) ⟹ z(x) = xargsh(x) − √x2 + 1 + cste 
De la même façon on peut poser cste = 0. 

On obtient donc :  

 y′′ + 6y′ + 9y =
e−3x

√x2 + 1
⟺⟺ ∃(A, B) ∈ ℝ2, y(x)

=(𝐀𝐱 + 𝐁 + 𝐱𝐚𝐫𝐠𝐬𝐡(𝐱) − √𝐱𝟐 + 𝟏)𝐞−𝟑𝐱 

 


