
Page 1 sur 28 
 

Fiche TD 15 : Calcul matriciel 
 

Partie A : Se familiariser avec le calcul 

 

Exercice A.1 : On pose :  

A = (
1 2
5 −4

) , B = (
−3 1
1 5

) 

Déterminer AB et BA puis 3A + B.  

 

On a :  

A × B = (
1 2
5 −4

) × (
−3 1
1 5

) = (
−1 11
−19 −15

) 

De même :  

B × A = (
−3 1
1 5

) (
1 2
5 −4

) = (
2 −10
26 −18

) 

Remarque : On illustre ici que le produit n’est pas commutatif sur ℳn(ℝ) !!! 
De même on a :  

3A + B = 3(
1 2
5 −4

) + (
−3 1
1 5

) = (
0 7
16 −7

) 

 

Exercice A.2 : On pose :  

A = (
1 2 3
4 5 6

) , B = (
−3 1
1 5

) 

Déterminer quelle produit est autorisé et calculez-le.  

 

On voit que :  

A ∈ ℳ2×3(ℝ), B ∈ ℳ2,2(ℝ) 

On ne peut donc effectuer que le produit B × A ∈ ℳ2,3(ℝ) :  

B × A = (
−3 1
1 5

) (
1 2 3
4 5 6

) = (
1 −1 −3
21 27 33

) 

 

Exercice A.3 : Résoudre l’équation :  

X2 − 2X = (
−1 0
6 3

) 

 

On pose :  

X ∈ ℳ2(ℂ), X = (
a b
c d

) 

On a alors :  

X2 = (
a b
c d

) (
a b
c d

) = (a
2 + bc ab + bd

ca + dc cb + d2) 

On a donc :  

X2 − 2X = (a
2 + bc − 2a ab + bd − 2b

ca + dc − 2c cb + d2 − 2d
) = (

−1 0
6 3

) 

On résout le système :  

{

a2 + bc − 2a = −1
ab + bd − 2b = 0
ca + dc − 2c = 6
cb + d2 − 2d = 3

 

On regarde la deuxième équation :  

ab + bd − 2b = 0 ⟺ b(a + d − 2) = 0 ⟺ {
b = 0
ou

a + d − 2 = 0
 

1er cas : 𝐛 = 𝟎 

Le système devient :  
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{

a2 − 2a = −1
b = 0

ca + dc − 2c = 6
d2 − 2d = 3

 

On résout les équations :  

a2 − 2a = −1 ⟺ a = 1 

d2 − 2d = 3 ⟺ d = {
−1
ou
3

 

On regarde alors la troisième équation :  

_ Si d =  −1 :  

ca + dc − 2c = 6 ⟺ c = −3 

_ Si d = 3 

ca + dc − 2c = 6 ⟺ c = 3 

On a donc :  

X = (
1 0
3 3

)  et X = (
1 0
−3 −1

) sont solutions. 

 

2ième cas : Si 𝐛 ≠ 𝟎, alors 𝐚 + 𝐝 − 𝟐 = 𝟎 

On a alors :  

{

a2 + bc − 2a = −1
a + d = 2
0 = 6

cb + d2 − 2d = 3

 

Cela est impossible !!! 

Donc a donc :  

X2 − 2X = (
−1 0
6 3

) ⟺ X = (
1 0
3 3

)  ou X = (
1 0
−3 −1

) 

 

 

 

Partie B : Les matrices carrées 

 

Exercice B.1 (Matrices élémentaires) : On appelle matrice élémentaire El,k de ℳn(ℝ) la matrice définie par :  

El,k = (ei,j)1≤i,j≤n
 avec ei,j = {

1 si (i, j) = (l, k)
0 sinon

 

a) Déterminer la matrice élémentaire E2,3 de ℳ3(ℝ). 

b) Pour tout (k, ℓ, k′, ℓ′) ∈ ⟦1, n⟧2, déterminer que vaut le produit :  

Eℓ,k × Eℓ′,k′  

 

a) On a :  

E2,3 = (
0 0 0
0 0 1
0 0 0

) 

b) On pose :  

Eℓ,k = (ei,j)1≤i,j≤n
 

E′ℓ′,k′ = (e′i,j)1≤i,j≤n
 

On a alors :  

Eℓ,k × El′,k′ = (ai,j)1≤i,j≤n
  avec : 

∀(i, j) ∈ ⟦1, n⟧2, ai,j = ∑ei,pep,j
′

n

p=1

= {

0 si i ≠ ℓ
0 si j ≠ k′

el,k × ek,k′
′ = {1 si k = ℓ′

0 sinon

 

On en déduit donc que :  

 



Page 3 sur 28 
 

Eℓ,k × El′,k′ = {
0n si k ≠ ℓ′

Eℓ,k′ si k = ℓ′
= δk,ℓ′Eℓ,k′ 

 

Exercice B.2 : On pose :  

Z = {M ∈ ℳn(ℝ), ∀A ∈ ℳn(ℝ), AM = MA}  
a) Déterminer deux matrices de Z. 

b) A l’aide des matrices élémentaires, déterminer Z. 

 

a) On cherche l’ensemble des matrices qui commutent avec tout le monde !! 

Il suffit de prendre 0n et In. On a :  

∀A ∈ ℳn(ℝ), A × 0n = 0n = 0n × A 

De même on a : 

∀A ∈ ℳn(ℝ), A × In = A = In × A 

Donc : 

{0n; In} ⊏ {M ∈ ℳn(ℝ), ∀A ∈ ℳn(ℝ), AM = MA} 
b) On pose : 

M = (mi,j)1≤i,j≤n
∈ {M ∈ ℳn(ℝ), ∀A ∈ ℳn(ℝ), AM = MA} 

M est donc une matrice qui commutent avec tout le monde. 

On pose (k, ℓ) ∈ ⟦1; n⟧2 et Ek,ℓ = (ei,j)1≤i,j≤n
 une matrice élémentaire. On a donc :  

Ek,ℓ × M = M × Ek,ℓ 

Or on pose :  

Ek,ℓ × M = (ai,j)1≤i,j≤n
 , M × Ek,ℓ = (bi,j)1≤i,j≤n

 

On a alors :  

∀(i, j) ∈ ⟦1, n⟧2, ai,j = ∑ei,pmp,j

n

p=1

= {
0 si i ≠ k

mk,j si i = k 

De même on a :  

∀(i, j) ∈ ⟦1, n⟧2, bi,j = ∑mi,pep,j

n

p=1

= {
0 si j ≠ ℓ

mi,ℓ si j = ℓ
 

On en déduit donc que :  

Ek,ℓ × M = M × Ek,ℓ ⟺ ∀(i, j) ∈ ⟦1; n⟧2,mi,j = {
0 si k ≠ ℓ
mk,k sinon

 

On en déduit donc que :  

{M ∈ ℳn(ℝ), ∀A ∈ ℳn(ℝ), AM = MA} = {λIn ;  λ ∈ ℝ} 
 

Exercice B.3 : On dit que A = (ai,j)1≤i,j≤n
∈ ℳn(ℝ) est stochastique si est seulement si :  

∀(i, j) ∈ ⟦1, n⟧2, ai,j ≥ 0 

∀i ∈ ⟦1, n⟧,∑ai,j

n

j=1

= 1 

1) Donner une matrice stochastique de ℳ4(ℝ). 

2) Soit A et B deux matrices stochastiques de ℳn(ℝ). Montrer que ∀λ ∈ [0; 1], λA + (1 − λ)B et AB sont 

stochastiques.  

 

1) Il suffit de donner une matrice dont tous les coefficients sont positifs et où la somme des lignes est égale à 1 :  

A = (

0,4 0 0,4 0,2
0 0 1 0

0,25
0

0,25
0

0,25
0

0,25
1

) 

2) Soit (A, B) ∈ ℳn(ℝ), stochastiques. On pose :  

A = (ai,j)1≤i,j≤n
 , B = (bi,j)1≤i,j≤n

 

Soit λ ∈ [0; 1]. On a :  



Page 4 sur 28 
 

C = (𝑐𝑖,𝑗)1≤i,j≤n
= λA + (1 − λ)B = (λai,j + (1 − λ)bi,j)1≤i,j≤n

 

Or on sait que   

∀𝜆 ∈ [0; 1], 𝜆 ≥ 0 𝑒𝑡 1 − 𝜆 ≥ 0 

De même on a : 

∀(𝑖, 𝑗) ∈ ⟦1, n⟧2, 𝑎𝑖,𝑗 ≥ 0 𝑒𝑡 𝑏𝑖,𝑗 ≥ 0 

On en déduit donc que :  

∀(𝑖, 𝑗) ∈ ⟦1, n⟧2, 𝑐𝑖,𝑗 ≥ 0 

On a de plus :  

∀i ∈ ⟦1, n⟧,∑ci,j

n

j=1

= ∑[λai,j + (1 − λ)bi,j]

n

j=1

= λ∑ai,j + (1 − λ)∑bi,j

n

j=1

n

j=1

= λ + (1 − λ) = 1 

Donc λA + (1 − λ)B est stochastique.  

De même on pose :  

D = AB = (di,j)1≤i,j≤n
 

On sait que :  

⟺ ∀(i, j) ∈ ⟦1; n⟧2, di,j = ∑ai,kbk,j

n

k=1

≥ 0 

On a donc :  

∀i ∈ ⟦1, n⟧,∑di,j

n

j=1

= ∑∑ai,kbk,j

n

k=1

n

j=1

= ∑∑ai,kbk,j

n

j=1

n

k=1

= ∑ai,k ∑bk,j

n

j=1⏟  
=1

n

k=1

= ∑ai,k

n

k=1

= 1 

Donc AB est stochastique.  

 

Exercice B.4 (La Trace) : On définit :  

∀A = (ai,j)1≤i,j≤n
∈ ℳn(ℝ), Tr(A) = ∑ak,k

n

k=1

 

1) On pose : A = (
5 2 6
6 1 2
1 3 −2

). Déterminer Tr(A). 

2) Montrer que :  

∀(A, B) ∈ (ℳn(ℝ))
2
, Tr(AB) = Tr(BA) 

3) En déduire que ∀(A; B) ∈ (ℳn(ℝ))
2
, AB − BA ≠ In 

 

1) On a : A = (
5 2 6
6 1 2
1 3 −2

) ⇒ Tr(A) = 5 + 1 − 2 = 4 

2) Soit (A, B) ∈ ℳn(ℝ), stochastiques. On pose :  

A = (ai,j)1≤i,j≤n
 , B = (bi,j)1≤i,j≤n

 

On pose :  

AB = (ci,j)1≤i,j≤n
 

On sait que :  

⟺ ∀(i, j) ∈ ⟦1; n⟧2, ci,j = ∑ai,kbk,j

n

k=1

 

On a donc :  

Tr(AB) =  ∑ci,i

n

i=1

= ∑∑ai,kbk,i

n

k=1

n

i=1

= ∑∑ai,kbk,i

n

i=1

n

k=1

= ∑∑bk,iai,k

n

i=1

n

k=1

= ∑dk,i

n

k=1

 

Avec :  

∀(i, k) ∈ ⟦1; n⟧2, dk,i = ∑bk,iai,k

n

i=1
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On en déduit donc que :  

∑dk,i

n

k=1

= Tr(BA) 

On a donc :  

∀(A, B) ∈ (ℳn(ℝ))
2
, Tr(AB) = Tr(BA) 

3) Soit (A, B) ∈ ℳn(ℝ)2 tel que AB − BA = In 

On a alors :  

Tr(AB − BA) = Tr(AB) − Tr(BA) = 0 = Tr(In) = n 

C’est impossible. On en déduit donc que :  

∀(A; B) ∈ (ℳn(ℝ))
2
, AB − BA ≠ In 

 

Exercice B.5 : On définit :  

∀A = (ai,j)1≤i,j≤n
∈ ℳn(ℝ), Tr(A) = ∑ak,k

n

k=1

 

Soit (A, B) ∈ (ℳn(ℝ))
2
 

Montrer que :  

∀M ∈ ℳn(ℝ), Tr(AM) = Tr(BM) ⟹ A = B 

 

Il faut travailler avec les matrices élémentaires ! On pose :  

A = (ai,j)1≤i,j≤n
, B = (bi,j)1≤i,j≤n

 et Ek,ℓ = (ei,j)1≤i,j≤n
 une matrice élémentaire. 

On a alors :  

A × Ek,ℓ = (ci,j)1≤i,j≤n
 et B × Ek,ℓ = (di,j)1≤i,j≤n

 

On a alors :  

∀(i, j) ∈ ⟦1, n⟧2, ci,j = ∑ ai,pep,j

n

p=1

= {
0 si j ≠ ℓ
ai,k si j = ℓ

 

De même on a :  

∀(i, j) ∈ ⟦1, n⟧2, di,j = ∑bi,pep,j

n

p=1

= {
0 si j ≠ ℓ
bi,k si j = ℓ

 

On en déduit donc que : 

Tr(A × Ek,l) = ∑ci,i

n

i=1

= aℓ,k = Tr(B × Ek,l) = ∑di,i

n

i=1

= bℓ,k  

On en déduit donc que :  

 ∀(i, j) ∈ ⟦1, n⟧2, aℓ,k = bℓ,k 

Donc : 

∀M ∈ ℳn(ℝ), Tr(AM) = Tr(BM) ⟹ A = B 

 

Exercice B.6 : Calculer (
5 −4
4 −3

)
100

. 

 

 

Méthode 1 : Avec des suites 

On pose :  

An = (
an bn

cn dn
) 

On a alors :  

An+1 = (
an+1 bn+1

cn+1 dn+1
) = (

an bn

cn dn
) × (

5 −4
4 −3

) = (
5an + 4bn −4an − 3bn

5cn + 4dn −4cn − 3dn
) 

On en déduit donc que :  
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∀n ∈ ℕ, {

an+1 = 5an + 4bn

bn+1 = −4an − 3bn

cn+1 = 5cn + 4dn

dn+1 = −4cn − 3dn

 

On remarque alors que :  

∀n ∈ ℕ, {
an+1 + bn+1 = an + bn = a0 + b0 = 1
cn+1 + dn+1 = cn + dn = c0 + d0 = 1

 

De plus on a :  

∀n ∈ ℕ, an+2 = 5an+1 + 4bn+1 

= 5an+1 + 4(−4an − 3bn) 

= 5an+1 − 16an − 12(
an+1 − 5an

4
) 

= 2an+1 − an 

On a donc :  

∀n ∈ ℕ, an+2 − 2an+1 + an = 0 

On résout l’équation caractéristique :  

r2 − 2r + 1 = 0 ⟺ r = 1 

On a donc :  

∃(A, B) ∈ ℝ2, ∀n ∈ ℕ, an = (An + B) 
Or sait que a0 = B = 1 et a1 = 5 = A + B ⟹ ∀n ∈ ℕ, an = 4n + 1 

On a donc :  

∀n ∈ ℕ, bn = 1 − an = −4n 

On a de même :  

∀n ∈ ℕ, cn+2 − 2cn+1 + cn = 0 

∃(A′, B′) ∈ ℝ2, ∀n ∈ ℕ, cn = (A′n + B′) 
Or c0 = 0 = B′et c1 = A′ = 4 

On a donc :  

∀n ∈ ℕ, cn = 4n 

Enfin on a :  

∀n ∈ ℕ, dn = 1 − cn = 1 − 4n 

On a donc :  

∀n ∈ ℕ, An = (
4n + 1 −4n

4n 1 − 4n
) 

On a donc :  

(
5 −4
4 −3

)
100

= (
401 −400
400 −399

) 

Méthode 2 : Par récurrence 

On peut calculer les premiers termes de la puissance de A :  

A = (
5 −4
4 −3

) 

On a A0 = I2 = (
1 0
0 1

) par définition. 

A = (
5 −4
4 −3

) 

A2 = (
5 −4
4 −3

) × (
5 −4
4 −3

) = (
9 −8
8 −7

) 

A3 = (
5 −4
4 −3

) × (
9 −8
8 −7

) = (
13 −12
12 −11

) 

On peut alors conjecturer que :  

∀n ∈ ℕ, An = (
4n + 1 −4n

4n 1 − 4n
) 

Initialisation : Pour n=0, A0 = (
1 0
0 1

) 

(
4 × 0 + 1 −4 × 0

4 × 0 1 − 4 × 0
) = I2 

Donc la proposition est vraie pour n = 0 

Hérédité : Soit n un entier naturel fixé. On suppose que :  
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An = (
4n + 1 −4n

4n 1 − 4n
) 

On a alors :  

An+1 = (
4n + 1 −4n

4n 1 − 4n
) × (

5 −4
4 −3

) 

= (
20n − 16n + 5 −16n − 4 + 12n
20n + 4 − 16n −16n − 3 + 12n

) 

= (
4(n + 1) + 1 −4(n + 1)

4(n + 1) 1 − 4(n + 1)
) 

Donc la proposition est vraie au rang n+1. 

Conclusion : La proposition est vrai au rang 0 et est héréditaire donc d’après le principe de récurrence, on a :  

∀n ∈ ℕ, An = (
4n + 1 −4n

4n 1 − 4n
) 

On a donc :  

(
5 −4
4 −3

)
100

= (
401 −400
400 −399

) 

 

Remarque : On peut faire un programme Python pour illustrer ce propos ! 

 
On peut faire afficher les premiers termes :  

 
On a bien :  

 
 

Exercice B.7 : On pose :  

A = (
1 0 0
0 1 1
1 0 1

)  et B = (
0 1 − sin(θ)

−1 0 cos(θ)

− sin(θ) cos(θ) 0
) , C = (

ch(x) sh(x)

sh(x) ch(x)
) 

Calculer An pour tout entier naturel n.  

a) On calculer les premiers termes :  

A2 = (
1 0 0
0 1 1
1 0 1

) × (
1 0 0
0 1 1
1 0 1

) = (
1 0 0
1 1 2
2 0 1

) 

A3 = (
1 0 0
1 1 2
2 0 1

) × (
1 0 0
0 1 1
1 0 1

) = (
1 0 0
3 1 3
3 0 1

) 

A4 = (
1 0 0
3 1 3
3 0 1

) × (
1 0 0
0 1 1
1 0 1

) = (
1 0 0
6 1 4
4 0 1

) 

On conjecture alors que :  
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∀n ∈ ℕ, An = (

1 0 0
n(n − 1)

2
1 n

n 0 1

) 

Initialisation : Pour n = 0 on a A0 = I3 = (
1 0 0
0 1 0
0 0 1

). Donc la proposition est vraie pour n = 0. 

Hérédité : Soit n un entier naturel fixé. On suppose que la proposition est vraie au rang n :  

An = (

1 0 0
n(n − 1)

2
1 n

n 0 1

) 

On a alors :  

An+1 = (

1 0 0
n(n − 1)

2
1 n

n 0 1

)(
1 0 0
0 1 1
1 0 1

) 

= (

1 0 0
n(n − 1)

2
+ n 1 n + 1

n + 1 0 1

) 

= (

1 0 0
n(n + 1)

2
1 n + 1

n + 1 0 1

) 

Donc la proposition est héréditaire. 

Conclusion :  

: La proposition est vrai au rang 0 et est héréditaire donc d’après le principe de récurrence, on a :  

∀n ∈ ℕ, An = (

1 0 0
n(n − 1)

2
1 n

n 0 1

) 

b) On calculer les premiers termes : 

B = (
0 1 − sin(θ)

−1 0 cos(θ)

− sin(θ) cos(θ) 0
) 

B2 = (
0 1 − sin(θ)

−1 0 cos(θ)

− sin(θ) cos(θ) 0
) × (

0 1 − sin(θ)

−1 0 cos(θ)

− sin(θ) cos(θ) 0
) 

= (

sin2(θ) − 1 − sin(θ) cos(θ) cos(θ)

− sin(θ) cos(θ) cos2(θ) − 1 sin(θ)

−cos(θ) −sin(θ) sin2(θ) + cos2(θ)

) 

=

(

 
 

−cos2(θ) −
1

2
sin(2θ) cos(θ)

−
1

2
sin(2θ) − sin2(θ) sin(θ)

− cos(θ) −sin(θ) 1 )

 
 

 

B3 = (
0 1 − sin(θ)

−1 0 cos(θ)

− sin(θ) cos(θ) 0
) ×

(

 
 

−cos2(θ) −
1

2
sin(2θ) cos(θ)

−
1

2
sin(2θ) − sin2(θ) sin(θ)

− cos(θ) −sin(θ) 1 )

 
 

 

= (
0 0 0
0 0 0
0 0 0

) 

On en déduit donc que :  

∀n ≥ 3, B3 = 0n 
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c) On a :  

C = (
ch(x) sh(x)

sh(x) ch(x)
) 

⟹ C2 = (
ch(x) sh(x)

sh(x) ch(x)
) × (

ch(x) sh(x)

sh(x) ch(x)
) = (

ch(2x) sh(2x)

sh(2x) ch(2x)
) 

On rappelle que :  

∀(a, b) ∈ ℝ2, ch(a + b) = ch(a)ch(b) + sh(a)sh(b) 

sh(a + b) = ch(a)sh(b) + ch(b)sh(a) 
On a donc :  

C3 = (
ch(2x) sh(2x)

sh(2x) ch(2x)
) × (

ch(x) sh(x)

sh(x) ch(x)
) = (

ch(3x) sh(3x)

sh(3x) ch(3x)
) 

On conjecture alors que :  

∀n ∈ ℕ, Cn = (
ch(nx) sh(nx)

sh(nx) ch(nx)
) 

Initialisation : Comme ch(0) = 1 et sh(0) = 0 et C0 = I2 on en déduit que la proposition est vraie au rang n = 0. 

 

Hérédité : Soit n un entier naturel. On suppose que :  

Cn = (
ch(nx) sh(nx)

sh(nx) ch(nx)
) 

On a donc :  

Cn+1 = Cn × C = (
ch(nx) sh(nx)

sh(nx) ch(nx)
) × (

ch(x) sh(x)

sh(x) ch(x)
) 

= (
ch(nx)ch(x) + sh(nx)sh(x) sh(nx)ch(x) + ch(nx)sh(x)

sh(nx)ch(x) + ch(nx)sh(x) ch(nx)ch(x) + sh(nx)sh(x)
) 

= (
ch((n + 1)x) sh((n + 1)x)

sh((n + 1)x) ch((n + 1)x)
) 

Donc la proposition est héréditaire. 

Conclusion : D’après le principe de récurrence on a :  

∀n ∈ ℕ, Cn = (
ch(nx) sh(nx)

sh(nx) ch(nx)
) 

 

Exercice B.8 : On pose :  

M = (
2 −2 1
2 −3 2
−1 2 0

) 

1) Calculer (M − I3)(M + 3I3). 

2) En déduire Mn pour tout entier naturel n.  

3) On pose les suites (un), (vn) et (wn) tels que :  

(𝑢0, v0, w0) ∈ ℝ3, ∀n ∈ ℕ, {

un+1 = 2un − 2vn + wn

vn+1 = 2un − 3vn + 2wn

wn+1 = −un + 2vn

 

Déterminer une expression de chaque suite en fonction de n. 

 

1) On a :  

(M − I3)(M + 3I3) = (
1 −2 1
2 −4 2
−1 2 −1

) × (
5 −2 1
2 0 2
−1 2 3

) 

= (
0 0 0
0 0 0
0 0 0

) 

On a donc :  

(M − I3)(M + 3I3) = 03 

2) On a :  

M2 + 2M − 3I3 = 03 ⟹ M2 = −2M + 3I3 

On suppose que :  

∃((un), (vn)) ∈ ℝℕ, ∀n ∈ ℕ,Mn = unM + vnI3 
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Initialisation : Pour n = 0 on a M0 = I3 ⟹ u0 = 0 et v0 = 1 

Donc la proposition est vraie pour n = 0. 

Hérédité : Soit n un entier naturel n fixé. On suppose que :  

Mn = unM+ vnI3 

On a alors :  

Mn+1 = unM
2 + vnM = un(−2M+ 3I3) + vnM 

= (−2un + vn)M + 3unI3 

= un+1M+ vn+1I3 

Conclusion : La proposition est vraie au rang 0 et est héréditaire donc d’après le principe de récurrence :  

∃((un), (vn)) ∈ ℝℕ, ∀n ∈ ℕ,Mn = unM + vnI3 

On a de plus :  

(u0, v0) = (0,1) et ∀n ∈ ℕ, {
un+1 = −2un + vn

vn+1 = 3un
 

On a donc :  

∀n ∈ ℕ, un+2 = −2un+1 + vn+1 = −2un+1 + 3un 

⟹ ∀n ∈ ℕ, un+2 + 2un+1 − 3un = 0 

On résout l’équation caractéristique :  

r2 + 2r − 3 = 0 ⟺ r ∈ {1;−3} 
On a donc :  

∃(A, B) ∈ ℝ2, ∀n ∈ ℕ, un = (−3)nA+ B  
Or u0 = A + B = 0 et u1 = −3A + B = 1 

On en déduit donc que :  

∀n ∈ ℕ, un = −
(−3)n

4
+

1

4
=

1 − (−3)n

4
 

De même on a :  

∀n ∈ ℕ, vn = 3 ×
1 − (−3)n−1

4
 

On en déduit donc que :  

∀n ∈ ℕ,Mn =
1 − (−3)n

4
 (

2 −2 1
2 −3 2
−1 2 0

) +
3 + (−3)n

4
(
1 0 0
0 1 0
0 0 1

) 

=

(

 
 
 

5 − (−3)n

4

(−3)n − 1

2

1 − (−3)n

4
1 − (−3)n

2
(−3)n

1 − (−3)n

2
(−3)n − 1

4

1 − (−3)n

2

3 + (−3)n

4 )

 
 
 

 

3) On pose le système sous forme matriciel. On a :  

∀n ∈ ℕ, {

un+1 = 2un − 2vn + wn

vn+1 = 2un − 3vn + 2wn

wn+1 = −un + 2vn

⟺ ∀n ∈ ℕ,M(

un

vn

wn

) = (

un+1

vn+1

wn+1

) 

On a donc :  

∀n ∈ ℕ, (

un

vn

wn

) = Mn (

u0

v0

w0

) 

On en déduit donc que :  

 

∀n ∈ ℕ,

{
 
 

 
 un =

5 − (−3)n

4
u0 +

(−3)n − 1

2
v0 +

1 − (−3)n

4
w0

vn =
1 − (−3)n

2
u0 + (−3)nv0 +

1 − (−3)n

2
w0

wn =
(−3)n − 1

4
u0 +

1 − (−3)n

2
v0 +

3 + (−3)n

4
w0

⟺ ∀n ∈ ℕ,M(

un

vn

wn

) = (

un+1

vn+1

wn+1

) 

 

Exercice B.9 (Oral ccp PSI 2016) : Soit a un réel. On pose :  
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M(a) = (
1 − 2a a a

a 1 − 2a a
a a 1 − 2a

) 

1) Montrer que :  

∀(a, b) ∈ ℝ2, M(a) × M(b) = M(a + b − 3ab) 

2) Trouver une suite (un) tel que :  

∀n ∈ ℕ,M(a)n = M(un) 

 

1) On a :  

∀(a, b) ∈ ℝ2, M(a) × M(b) = (
1 − 2a a a

a 1 − 2a a
a a 1 − 2a

) × (
1 − 2b b b

b 1 − 2b b
b b 1 − 2b

) 

= (

(1 − 2a)(1 − 2b) + 2ab (1 − 2a)b + a(1 − 2b) + ab (1 − 2a)b + ab + a(1 − 2b)

a(1 − 2b) + (1 − 2a)b + ab ab + (1 − 2a)(1 − 2b) + ab ab + (1 − 2a)b + a(1 − 2b)

a(1 − 2b) + ab + (1 − 2a)b ab + a(1 − 2b) + (1 − 2a)b 2ab + (1 − 2a)(1 − 2b)
) 

= (
1 − 2(a + b) + 6ab a + b − 3ab a + b − 3ab

a + b − 3ab 1 − 2(a + b) + 6ab a + b − 3ab
a + b − 3ab a + b − 3ab 1 − 2(a + b) + 6ab

) 

2) On démontre cela par récurrence. On pose :  

∀𝑛 ∈ ℕ,𝒫(𝑛) "M(a)n = M(un)": 
Initialisation 𝒏 = 0 :   

On a :  

M(a)0 = I3 = M(0) 
On a donc u0 = 0. 

Donc la proposition est vraie au rang n = 0. 

Hérédité : Soit n un entier naturel non nul. On suppose que :  

M(a)n = M(un) 
On a alors :  

M(a)n+1 = M(a) × M(a)n 

= M(a) × M(un) 

= M(a + 𝑢𝑛 − 3una) = 𝑀(𝑎 + (1 − 3𝑎)𝑢𝑛) 
Donc 𝒫(𝑛) est héréditaire en posant 𝑢𝑛+1 = 𝑎 + (1 − 3𝑎)𝑢𝑛 

Conclusion : On conclut par le principe de récurrence.  

c) On a :  

∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑎 + (1 − 3𝑎)𝑢𝑛 𝑒𝑡 𝑢0 = 0 

1er cas : 𝟏 − 𝟑𝒂 = 𝟎 

Si 𝑎 =
1

3
, on en déduit donc que :  

∀𝑛 ∈ ℕ, 𝑢𝑛 =
1

3
 𝑒𝑡 𝑀 (

1

3
)
𝑛

= 𝑀(
1

3
) 

2ième cas : 𝟏 − 𝟑𝒂 = 𝟏 

On a alors 𝑎 = 0 et :  

∀𝑛 ∈ ℕ, 𝑢𝑛 = 𝑛𝑎 𝑒𝑡 𝑀(0)𝑛 = 𝐼3 

3ième cas : 𝟏 − 𝟑𝒂 ∉ {𝟎;
𝟏

𝟑
  

On a alors affaire à une suite arithmético-géométrique.  

 On cherche le point fixe. On résout :  

(1 − 3𝑎)𝑥 + 𝑎 = 𝑥 ⟺ 𝑥 =
1

3
 

 On définit une suite auxiliaire. On pose  :  

∀𝑛 ∈ ℕ, 𝑣𝑛 = 𝑢𝑛 −
1

3
 

On a alors :  

∀𝑛 ∈ ℕ, 𝑣𝑛+1 = 𝑢𝑛+1 −
1

3
= (1 − 3𝑎)𝑢𝑛 + 𝑎 −

1

3
= (1 − 3𝑎) (𝑢𝑛 −

1

3
) = (1 − 3𝑎)𝑣𝑛 

On en déduit donc que la suite (𝑣𝑛) est géométrique de raison 𝑞 = 1 − 3𝑎 de premier terme 𝑣0 = −
1

3
. On a donc :  
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∀𝑛 ∈ ℕ, 𝑣𝑛 = −
1

3
(1 − 3𝑎)𝑛 

On a donc :  

∀𝑛 ∈ ℕ, 𝑢𝑛 =
1

3
−

1

3
(1 − 3𝑎)𝑛 

On a donc :  

∀𝑛 ∈ ℕ,𝑀(𝑎)𝑛 = 𝑀(
1

3
−

1

3
(1 − 3𝑎)𝑛) 

On remarque que le résultat reste valable pour 𝑎 = 0 𝑒𝑡 𝑎 =
1

3
. On en déduit donc que :  

∀𝒂 ∈ ℝ, ∀𝒏 ∈ ℕ,𝑴(𝒂)𝒏 = 𝑴(
𝟏

𝟑
−

𝟏

𝟑
(𝟏 − 𝟑𝒂)𝒏) 

 

Exercice B10 : On pose :  

A = (
1 (2)

⋱
(2) 1

) 

Calculer An pour tout entier naturel n.  

 

Méthode 1 : Avec le binôme de Newton 

On pose :  

J = (
1 (1)

⋱
(1) 1

) 

On a alors :  

A = (
1 (2)

⋱
(2) 1

) = 2J − Ik 

Où k est le nombre de lignes de A.  

Comme J et In commutent on peut utiliser le binôme de Newton :  

An = (2J − Ik)
n = ∑(

n

i
)

n

i=0

(−1)n−i(2J)i 

= ∑(
n

i
)

n

i=0

(−1)n−i2i × Ji 

On a :  

J2 = kJ 
On démontre alors facilement par récurrence que :  

∀i ≥ 1, Ji = ki−1J 
On a donc :  

An = (2J − Ik)
n = ∑(

n

i
)

n

i=0

2i × Ji × (−1)n−i(Ik)
n−i = (−1)nIk +∑(−1)n−i (

n

i
)

n

i=1

2i × Ji 

= (−1)nIk +∑(
n

i
)

n

i=1

(−1)n−i2i × ki−1J 

= (−1)nIk + (∑(
n

i
)

n

i=1

2i × ki−1(−1)n−i) J 

= (−1)nIk + (
1

k
∑(

n

i
)

n

i=1

(−1)n−i2i × ki) J 

= (−1)nIk +
1

k
(∑(

n

i
)

n

i=0

(−1)n−i(2k)i − (−1)n) J 



Page 13 sur 28 
 

= (−1)nIk +
(2k − 1)n − (−1)n

k
J 

Méthode 2 : Par récurrence 

On peut calculer les premières puissances de matrices pour k = 3 par exemple :  

A = (
1 2 2
2 1 2
2 2 1

) 

⟹ A2 = (
1 2 2
2 1 2
2 2 1

) × (
1 2 2
2 1 2
2 2 1

) 

= (
9 8 8
8 9 8
8 8 9

) 

De même on a :  

A3 = (
1 2 2
2 1 2
2 2 1

) × (
41 42 42
42 41 42
41 42 41

) 

On peut donc conjecturer que :  

∃(an, bn), ∀n ∈ ℕ, An = (
an (bn)

⋱
(bn) an

) 

Initialisation : Puisque A0 = Ik il suffit de poser a0 = 1 et b0 = 0 donc la proposition est vraie pour n = 0. 

 

Hérédité : Soit n un entier naturel n fixé. On suppose que :  

An = (
an (bn)

⋱
(bn) an

) 

On a alors :  

An+1 = (
an (bn)

⋱
(bn) an

) × (
1 (2)

⋱
(2) 1

) 

= (
an + 2(k − 1)bn 2an + (1 + 2(k − 2))bn

⋱
(2an + (2 + k − 1)bn) an + (k − 1)bn

) 

= (
an+1 (bn+1)

⋱
(bn+1) an+1

) 

De plus on a :  

∀n ∈ ℕ, {
an+1 = an + 2(k − 1)bn

bn+1 = 2an + (2k − 1)bn
 

Conclusion : D’après le principe de récurrence on a :  

∃(an, bn), ∀n ∈ ℕ, An = (
an (bn)

⋱
(bn) an

) 

Il reste à déterminer les suites (an) et (bn). 
On sait que :  

∀n ∈ ℕ, {
an+1 = an + 2(k − 1)bn

bn+1 = 2an + (2k − 3)bn
 

⟹ an+2 = an+1 + 2(k − 1)bn+1 

= an+1 + 2(k − 1)(2an + (2k − 3)bn) 

= an+1 + 4(k − 1)an + (2k − 3)(an+1 − an) 

= 2(k − 1)an+1 + (2k − 1)an 

On a donc :  

∀n ∈ ℕ, an+2 − 2(k − 1)an+1 − (2k − 1)an = 0 

On résout l’équation caractéristique :  
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r2 − 2(k − 1)r − (2k − 1) = 0 

Δ = (2(k − 1))
2
+ 4(2k − 1) = 4k2 − 8k + 4 + 8k − 4 = 4k2 

On a donc :  

r2 − 2(k − 1)r − (2k − 1) = 0 ⟺ r ∈ {−1; 2k − 1} 
On en déduit donc que : 

∃(A, B) ∈ ℝ2, an = (−1)nA + (2k − 1)nB 

On sait de plus que :  

a0 = 1 = a1 

On a donc :  

{
A + B = 1

−A + (2k − 1)B = 1
⟹ B =

2

2k
=

1

k
 et A =

k − 1

k
 

On a donc :  

∀n ∈ ℕ, an =
(−1)n(k − 1)

k
+

(2k − 1)n

k
= (−1)n +

(2k − 1)n − (−1)n

k
 

On fait de même avec (bn) et on trouve :  

∀n ∈ ℕ, bn =
(2k − 1)n − (−1)n

k
 

Le mieux est de vérifier pour un certain k et un certain n. On prend ici k = 4 et n = 3 avec un programme Python ou 

à la main !!!  

 

 
On a a3 = 601 et b3 = 600 

On calcule ensuite avec :  

(−1)3 +
(2 × 4 − 1)3 − (−1)3

4
= −1 + 86 = 85 

 

Exercice B11 (Oral Mines-Ponts Psi 2014) : Soit a un réel non nul. Calculer An pour n entier naturel et a :    

A =

(

 
 

0 a a2

1

a
0 a

1

a2
1

a
1
)

 
 

 

 

On calcule les premiers termes :  

A2 =

(

 
 

0 a a2

1

a
0 a

1

a2
1

a
1
)

 
 

×

(

 
 

0 a a2

1

a
0 a

1

a2
1

a
1
)

 
 

 

=

(

 
 

2 a 2a2

1

a
2 2a

2

a2
2

a
3

)

 
 

 

De même on a :  

A3 = A2 × A =

(

 
 

2 a 2a2

1

a
2 2a

2

a2
2

a
3

)

 
 

×

(

 
 

0 a a2

1

a
0 a

1

a2
1

a
1
)
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=

(

 
 

3 4a 5a2

4

a
3 5a

5

a2
5

a
7

)

 
 

 

On peut alors conjecturer que :  

∃((an), (bn), (cn), (dn)), A
n =

(

 
 

an bna cna
2

bn

a
an cna

dn

a2
dn

a
en )

 
 

 

Initialisation : On sait que :  

A0 = I3 ⟹ En posant ∶  a0 = d0 = 1 et b0 = c0 = 0 

Donc la proposition est vraie pour n = 0. 

Hérédité : Soit n un entier naturel n fixé. On suppose que :  

An =

(

 
 

an bna cna
2

bn

a
an cna

dn

a2
dn

a
en )

 
 

 

On a alors :  

An+1 =

(

 
 

an bna cna
2

bn

a
an cna

dn

a2
dn

a
en )

 
 

×

(

 
 

0 a a2

1

a
0 a

1

a2
1

a
1
)

 
 

 

=

(

 
 

bn + cn (an + cn)a (an + bn + cn)a
2

an + cn
a

bn + cn (an + bn + cn)a

dn + en
a2

dn + en
a

2dn + en )

 
 

 

=

(

 
 

an+1 bn+1a cn+1a
2

bn+1

a
an+1 cn+1a

dn+1

a2
dn+1

a
en+1 )

 
 

 

En posant :  

{
 
 

 
 

an+1 = bn + cn
bn+1 = an + cn

cn+1 = an + bn + cn
dn+1 = dn + en
en+1 = 2dn + en

 

Conclusion : On conclut par le principe de récurrence.  

On résout d’une part les deux dernières équations :  

{
dn+1 = dn + en
en+1 = 2dn + en

 

On a donc :  

∀n ∈ ℕ, dn+2 = dn+1 + 2dn + en 

= dn+1 + 2dn + (dn+1 − dn) 

= 2dn+1 + dn 

On a donc :  

∀n ∈ ℕ, dn+2 − 2dn+1 − dn = 0 

On résout :  

(Eq): r
2 − 2r − 1 = 0 ⟺ (r − 1)2 − 2 = 0 ⟺ r = 1 − √2 ou r = 1 + √2 

On a donc :  
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∃(A, B) ∈ ℝ2, ∀n ∈ ℕ, dn = A(1 − √2)
n
+ B(1 + √2)

n
 

On sait de plus que d0 = 0 ⟹ A + B = 0 

d1 = 1 ⟹ A(1 − √2) + B(1 + √2) = A + B + √2(B − A) 

⟹ B − A =
√2

2
 

On a donc :  

{

A + B = 0

A − B = −
√2

2

⟹ A = −
√2

4
 et B =

√2

4
 

Donc on a :  

∀n ∈ ℕ, dn = −
√2

4
(1 − √2)

n
+

√2

4
(1 + √2)

n
 

De plus on sait que :  

∀n ∈ ℕ, dn+1 = dn + en ⟹ en = dn+1 − dn 

= −
√2

4
(1 − √2)

n+1
+

√2

4
(1 + √2)

n+1
+

√2

4
(1 − √2)

n
−

√2

4
(1 + √2)

n
 

=
√2

4
(1 + √2)

n
√2 −

√2

4
(1 − √2)

n
√2 

=
1

2
(1 + √2)

n
−

1

2
(1 − √2)

n
 

Il reste à déterminer les suites (an), (bn), (cn). 
On sait que :  

{

an+1 = bn + cn
bn+1 = an + cn

cn+1 = an + bn + cn

 

On sait que :  

∀n ∈ ℕ, an+1 − bn+1 = −(an − bn) 

⟹ an − bn = (−1)n(a0 − b0) = (−1)n 

De plus on a :  

an+1 + bn+1 = an + bn + 2cn 

⟹ an+2 + bn+2 = an+1 + bn+1 + 2(an + bn + cn) 

= an+1 + bn+1 + 2(an + bn) + an+1 − bn + bn+1 − an 

= 2(an+1 + bn+1) + an + bn 

On pose :  

∀n ∈ ℕ, an + bn = un 

On a alors :  

∀n ∈ ℕ, un+2 − 2un+1 − un = 0 

Donc :  

∃(A, B) ∈ ℝ2, ∀n ∈ ℕ, un = A(1 − √2)
n
+ B(1 + √2)

n
 

Or on sait que u0 = 1 et u1 = 1. On en déduit donc que :  

{
A + B = 1

A(1 − √2) + B(1 + √2) = 1
⟹ A = B =

1

2
 

∀n ∈ ℕ, un =
1

2
(1 − √2)

n
+

1

2
(1 + √2)

n
 

On a donc :  

{
an − bn = (−1)n

an + bn =
1

2
(1 − √2)

n
+

1

2
(1 + √2)

n 

⟹ ∀n ∈ ℕ, an =
(−1)n +

1
2 (1 − √2)

n
+

1
2 (1 + √2)

n

2
 

De même on a :  

⟹ ∀n ∈ ℕ, bn =
(−1)n+1 +

1
2 (1 − √2)

n
+

1
2 (1 + √2)

n

2
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On sait de plus que :  

∀n ∈ ℕ, cn = an+1 − bn =
(−1)n+1 +

1
2 (1 − √2)

n+1
+

1
2 (1 + √2)

n+1

2
−

(−1)n+1 +
1
2 (1 − √2)

n
+

1
2 (1 + √2)

n

2
 

=
1

4
(1 − √2)

n
(1 − √2 − 1) +

1

4
(1 + √2)

n
(1 + √2 − 1) =

√2

4
(1 + √2)

n
−

√2

4
(1 − √2)

n
= dn 

 

On a donc :  

An = 

(

 
 
 
 
 

2(−1)n + (1 − √2)
n
+ (1 + √2)

n

4

2(−1)n+1 + (1 − √2)
n
+ (1 + √2)

n

4
a

√2

4
((1 + √2)

n
− (1 − √2)

n
) a2

(−1)n+1 +
1
2 (1 − √2)

n
+

1
2 (1 + √2)

n

2a

(−1)n +
1
2 (1 − √2)

n
+

1
2 (1 + √2)

n

2

√2

4
((1 + √2)

n
− (1 − √2)

n
) a

√2
4

((1 + √2)
n
− (1 − √2)

n
)

a2

√2
4

((1 + √2)
n
− (1 − √2)

n
)

a

1

2
((1 + √2)

n
− (1 − √2)

n
) )

 
 
 
 
 

 

 

Exercice B.12 : Calculer 𝐴𝑛 avec 𝐴 :   

A = (

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

)  

 

On a :  

A = (

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

) = (

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

) − (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) = J − I4 

J et I4 commutent donc on peut appliquer le binôme de Newton :  

∀n ∈ ℕ, (J − I4)
n = ∑(

n

k
) (J)k(−I4)

n−k

n

k=0

 

On démontre par récurrence que :  

∀k ∈ ℕ, Jk = 4k−1J  
On a donc :  

(J − I4)
n = ∑(

n

k
) (J)k(−I4)

n−k

n

k=0

= (−1)nIn + ∑(
n

k
) (J)k(−I4)

n−k

n

k=1

= (−1)nIn + ∑(
n

k
) (4k−1(−1)n−k)J

n

k=1

 

= (−1)nIn + (∑(
n

k
)4k−1(−1)n−k

n

k=1

) J = (−1)nIn +
1

4
(∑(

n

k
)4k−1(−1)n−k

n

k=0

− (−1)n) J

= (−1)nIn +
3n − (−1)n

4
J 

On a donc :  

∀n ∈ ℕ, An =

(

 
 
 
 
 
 
(−1)n +

3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4
(−1)n +

3n − (−1)n

4

3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4

3n − (−1)n

4

(−1)n +
3n − (−1)n

4

3n − (−1)n

4

1 (−1)n +
3n − (−1)n

4 )
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Partie C : Calcul de l’inverse par polynôme ou astuce 

 

Exercice C.1 : On pose : A = (
8 −1 2
7 0 2

−18 3 −4
).  

a) Calculer A3 − 4A2 + 5A 

b) Montrer que A est inversible et déterminer A−1. 

 

a) On calcule et on a :  

A3 − 4A2 + 5A = 2I3 

b) On a donc :  

A(
1

2
(A2 − 4a + 5I3)) = I3 

On en déduit donc que A ∈ 𝒢ℓ3(ℝ) et on a :  

A−1 =
1

2
(A2 − 4a + 5I3) = (

−3 1 −1
−4 2 −1
21

2
−3

7

2

) 

 

Exercice C.2 : On pose : A = (
−1 −2
3 4

).  

a) Calculer A2 − 2A + 2I2.  

b) Montrer que A est inversible et déterminer A−1. 

c) Retrouver ce résultat grâce à la formule.  

 

a) On a :  

A2 − 2A + 2I2 = (
−1 −2
3 4

) = A 

b) On en déduit donc que :  

A2 − 3A = −2I2 ⟹ A(
1

2
(I2 − 3A)) = I2   

On en déduit donc que A est inversible et que :  

A−1 = −
3

2
A +

1

2
I2 = (

2 1

−
3

2
−

1

2

) 

c) On sait que :  

det ((
−1 −2
3 4

)) = −4 + 6 = 2 ≠ 0 

⟹ A ∈ 𝒢ℓ2(ℝ) et A−1 =
1

2
(

4 2
−3 −1

) = (
2 1

−
3

2
−

1

2

) 

 

 

Exercice C.3 : On pose : A = (
2 −1 2
5 −3 3
−1 0 −2

) 

1) Calculer (A + I3)
3 

2) En déduire que A ∈ GL3(ℝ) 

 

1) On sait que :  

A + I3 = (
3 −1 2
5 −2 3
−1 0 −1

) 

On a alors par le calcul :  

(A + I3)
3 = 03 

2) On sait que A et I3 commutent donc : 
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(A + I3)
3 = A3 + 3A2 + 3A + I3 = 03 

⟹ A(−A2 − 3A − 3I3) = I3  
On en déduit donc que :  

A ∈ GL3(ℝ)et A−1 = −A2 − 3A − 3I3 = (
−6 2 −3
−7 2 −4
3 −1 1

) 

 

Exercice C.4 : Soit n un entier supérieur ou égale à 2. On pose ω = e
2iπ

n  et   

A = (ω(k−1)(l−1))
1≤k,l≤n

∈ ℳn(ℂ) 

1) Calculer AA̅. 

2) En déduire que A est inversible et calculer A−1. 

 

1) On pose :  

AA̅ = (ap,q)1≤p,q≤n
 

On sait de plus que :  

∀(p, q) ∈ ⟦1; n⟧2, ap,q = ∑ω(p−1)(k−1)ω̅(k−1)(q−1)

n

k=1

 

Or on sait que :  

ω = e
2iπ
n ⟹ ω(p−1)(k−1)ω̅(k−1)(q−1) = (e

2iπ
n )

(p−1)(k−1)

(e−
2iπ
n )

(q−1)(k−1)

 

= e
2iπ
n

(k−1)[(p−1)−(q−1)]
 

= e
2iπ
n

(k−1)(p−q)
 

= (e
2iπ
n

(p−q))
k−1

 

∀(p, q) ∈ ⟦1; n⟧2, ap,q = ∑(e
2iπ
n

(p−q))
k−1n

k=1

 

= ∑(e
2iπ
n

(p−q))
kn−1

k=0

 

Or on sait que :  

∀(n, q) ∈ ℕ × (ℂ\{1}),∑(q)k
n−1

k=0

=
qn − 1

q − 1
  

De plus on sait que : 

∀(p, q) ∈ ⟦1; n⟧2, −n < 1 − n ≤ p − q ≤ n − 1 

1er cas : Si 𝐩 ≠ 𝐪 ⟹ (𝐩 − 𝐪) ∈ ⟦−𝐧 + 𝟏 ; 𝐧 − 𝟏⟧\{𝟎} ⟹ 𝐞
𝟐𝐢𝛑

𝐧
(𝐩−𝐪) ≠ 𝟏 

⟹ ∑(e
2iπ
n

(p−q))
kn−1

k=0

=
(e

2iπ
n

(p−q))
n

− 1

e
2iπ
n

(p−q) − 1

=
e2iπ(p−q) − 1

e
2iπ
n

(p−q) − 1

= 0 

2ième cas : 𝐒𝐢 𝐩 = 𝐪 

⟹ ap,p = ∑(e
2iπ
n

(p−p))
k−1n

k=1

= n 

On en déduit donc que :  

AA̅ = nIn 

2) On a donc :  

A ∈ 𝒢ℓn(ℝ), A−1 =
1

n
A̅ 

 

Partie D : Par un système linéaire ou Gauss-Jordan 
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Exercice D.1 : Déterminer l’inverse, s’il existe, des matrices suivantes :  

A = (
3 2 −1
1 −1 1
2 −2 1

) ;  B = (
−1 0 2
0 0 1
0 −1 1

) ; C = (
1 −1 0
1 2 1
1 1 0

) 

 

1) On peut soit appliquer le pivot de Gauss, soit résoudre un système. Nous allons faire le pivot de Gauss avec la 

matrice A et résoudre un système avec la matrice B. 

 

Opérations 
(
3 2 −1
1 −1 1
2 −2 1

) (
1 0 0
0 1 0
0 0 1

) 

L1 ⟵
1

3
L1 

(
1

2

3
−

1

3
1 −1 1
2 −2 1

) (

1

3
0 0

0 1 0
0 0 1

) 

L2 ⟵ L2 − L1 

L3 ⟵ L3 − 2L1 

(

 
 
 
1

2

3
−

1

3

0 −
5

3

4

3

0 −
10

3

5

3 )

 
 
 

 

 

(

 
 
 

1

3
0 0

−
1

3
1 0

−
2

3
0 1)

 
 
 

 

L2 ⟵ −
3

5
L2 

(

 
 
 
1

2

3
−

1

3

0 1 −
4

5

0 −
10

3

5

3 )

 
 
 

 

(

 
 
 

1

3
0 0

1

5
−

3

5
0

−
2

3
0 1)

 
 
 

 

L3 ⟵ L3 +
10

3
L2 

(

 
 
1

2

3
−

1

3

0 1 −
4

5
0 0 −1)

 
 

 

(

 
 

1

3
0 0

1

5
−

3

5
0

0 −2 1)

 
 

 

L3 ⟵ −L3 

(

 
 
1

2

3
−

1

3

0 1 −
4

5
0 0 1 )

 
 

 

(

 
 

1

3
0 0

1

5
−

3

5
0

0 2 −1)

 
 

 

Remarque :  La matrice échelonnée réduite de A 

à 3 pivots donc elle est inversible. 

 

L2 ⟵ L2 +
4

5
L3 

L1 ⟵ L1 +
1

3
L3 

 

(
1

2

3
0

0 1 0
0 0 1

) 

(

 
 

1

3

2

3
−

1

3
1

5
1 −

4

5
0 2 −1)

 
 

 

L1 ⟵ L1 −
2

3
L3 

 

(
1 0 0
0 1 0
0 0 1

) = I3 

(

 
 

1

5
0

1

5
1

5
1 −

4

5
0 2 −1)

 
 

 

 

On en déduit donc que A est inversible, A ∈ 𝒢ℓ3(ℝ) et :  

A−1 =

(

 
 

1

5
0

1

5
1

5
1 −

4

5
0 2 −1)
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b) On a :  

B = (
−1 0 2
0 0 1
0 −1 1

) 

On sait que :  

∀(x, y, z) ∈ ℝ3, (
−1 0 2
0 0 1
0 −1 1

)(
x
y
z
) = (

x′
y′

z′

) ⟺ {
−x + 2z = x′

z = y′

−y + z = z′
 

On cherche à résoudre le système suivant :  

{

−x + 2z = x′

z = y′

−y + z = z′
 

⟺ {

x = 2y′ − x′

y = y′ − z′

z = y′
 

⟺ (
x
y
z
) = (

−1 2 0
0 1 −1
0 1 0

)(
x′
y′

z′

) 

Donc B est inversible et :  

B−1 = (
−1 2 0
0 1 −1
0 0 1

) 

On peut vérifier en calculant : 

(
−1 0 2
0 0 1
0 −1 1

)(
−1 2 0
0 1 −1
0 1 0

) = (
1 0 0
0 1 0
0 0 1

) 

 

c) Par la méthode de votre choix, je vous donne juste le résultat :  

C = (
1 −1 0
1 2 1
1 1 0

) ⟹ C−1 =

(

 
 
 

1

2
0

1

2

−
1

2
0

1

2
1

2
1 −

3

2)

 
 
 

 

 

Exercice D.2 : Déterminer si les matrices suivantes en discutant suivant le paramètre réel α puis calculer leur inverse.  

 

 

a) On a :  

A = (
ch(α) sh(α)

sh(α) ch(α)
) ⟹ det(A) = ch2(α) − sh2(α) = 1 ≠ 0 

On en déduit donc que A ∈ 𝒢ℓ2(ℝ) et ∶ 

A−1 = (
ch(α) −sh(α)

−sh(α) ch(α)
) 

b) On pose :  

B = (
α 1 1
1 α 1
1 1 α

) 

On voit déjà que si α = 1, alors le rang de la matrice est 1, rg(B) = 1 donc B n’est pas inversible. 

A présent on étudie le cas : α ≠ 1 

On applique l’algorithme du pivot de Gauss :  

Opérations 
(
α 1 1
1 α 1
1 1 α

) (
1 0 0
0 1 0
0 0 1

) 
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L3 ⟷ L1 
(
1 1 α
1 α 1
α 1 1

) (
0 0 1
0 1 0
1 0 0

) 

L2 ⟵ L2 − L1 

L3 ⟵ L3 − αL1 (
1 1 α
0 α − 1 1 − α
0 1 − α 1 − α2

) (
0 0 1
0 1 −1
1 0 −α

) 

L2 ⟵
1

α − 1
L2 car α ≠ 0 

L3 ⟵
1

1 − α
L3 

(
1 1 α
0 1 −1
0 1 1 + α

) 

(

 
 

0 0 1

0
1

α − 1
−

1

α − 1
1

1 − α
0 −

α

1 − α)

 
 

 

L3 ⟵ L3 − L2 
(
1 1 α
0 1 −1
0 0 2 + α

) 

(

 
 

0 0 1

0
1

α − 1
−

1

α − 1
1

1 − α

1

1 − α
1

)

 
 

 

Remarque : Si α = −2, alors la 

matrice B n’est pas inversible non 

plus car il y aurait deux pivots, 

rg(B) = 2 !! 

Si A = 2, on a :  

(
−2 1 1
1 −2 1
1 1 −2

) 

On a alors :  

L2 + L3 = −L1  
Donc B ≠ 𝒢ℓ3(ℝ) 

 

 

On étudie à présent le cas :  

α ≠ {−2; 1} 

L3 ⟵
1

2 + α
L3, α ≠ −2 (

1 1 α
0 1 −1
0 0 1

) 

(

 
 

0 0 1

0
1

α − 1
−

1

α − 1
1

(1 − α)(2 + α)

1

(1 − α)(2 + α)

1

(2 + α))

 
 

 

L2 ⟵ L3 + L2 

L1 ⟵ L1 − αL3 (
1 1 0
0 1 0
0 0 1

) 

(

 
 
 
 

−α

(1 − α)(2 + α)

−α

(1 − α)(2 + α)
1 −

α

α + 2
1

(1 − α)(2 + α)

1

1 − α
(

1

2 + α
− 1)

1

(2 + α)
−

1

α − 1
1

(1 − α)(2 + α)

1

(1 − α)(2 + α)

1

(2 + α) )

 
 
 
 

 

= (1 − α)(2 + α)(
−α −α 2(1 − α)
1 −1 − α 3
1 1 1 − α

) 

L1 ⟵ L1 − L2 
 (

1 0 0
0 1 0
0 0 1

) (1 − α)(2 + α)(
−1 − α 1 −1 − 2α

1 −1 − α 3
1 1 1 − α

) 

 

On en déduit donc que :  

B = (
α 1 1
1 α 1
1 1 α

) ∈ 𝒢ℓ(ℝ) ⟺ α ∉ {−2; 1}et alors B−1 = (1 − α)(2 + α)(
−1 − α 1 −1 − 2α

1 −1 − α 3
1 1 1 − α

) 

 

Exercice D.3 : On considère les matrices suivantes : A = (
0 −1 1
1 2 −3
1 1 −2

)  et P = (
1 1 0
1 −1 1
1 0 1

) 

a) Montrer que P est inversible et calculer son inverse.  

b) Montrer que : D = P−1AP est diagonale, puis calculer Dn 

c) Montrer que An = PDnP−1.  

d) On pose :  
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∀n ∈ ℕ, {

(u0, v0, w0) = (3,1,5)
un+1 = −vn + wn

vn+1 = un + 2vn − 3wn

wn+1 = un + vn − 2wn

 

Déterminer une expression explicite des suites u, v et w.  

 

a) On peut le faire par le pivot de Gauss ou la résolution d’un système. On a :  

P = (
1 1 0
1 −1 1
1 0 1

) ⟹ P−1 = (
1 1 −1
0 −1 1
−1 −1 2

) 

b) C’est un simple calcul :  

(
1 1 −1
0 −1 1
−1 −1 2

) × (
0 −1 1
1 2 −3
1 1 −2

) × (
1 1 0
1 −1 1
1 0 1

) = (
0 0 0
0 1 0
0 0 −1

) 

Comme D est diagonale on a :  

∀n ∈ ℕ∗, Dn = (
0n 0 0
0 1n 0
0 0 (−1)n

) = (
0 0 0
0 1 0
0 0 (−1)n

) 

c) Méthode 1 : Par récurrence 

On pose :  

∀𝐧 ∈ ℕ, 𝐏𝐧 ∶ "An = PDnP−1" 

Initialisation : 𝐧 = 𝟎, 𝐀𝟎 = 𝐈𝟑 et PD0P−1 = PInP
−1 = PP−1 = In 

Donc P0 est vraie. 

 

Hérédité : Soit n un entier naturel fixé. On suppose vraie Pn. On a :  

An = PDnP−1 ⟹ An+1 = PDn P−1P⏟  
In

DP−1 

= PDnDP−1 

= PDn+1P−1 

Donc Pn est héréditaire. 

Conclusion : P0 est vraie et Pn est héréditaire donc d’après le principe de récurrence, on a :  

∀𝐧 ∈ ℕ,𝐀𝐧 = PDnP−1 

 

Méthode 2 : Par itération 

On a :  

An = (PDP−1)n = PDP−1 × PDP−1 ×…× PDP−1 = PDP−1P⏟  
In

DP−1 …PDP−1 = PD ×…× DP−1 = PDnP−1 

d) On a :  

∀n ∈ ℕ, {

(u0, v0, w0) = (3,1,5)
un+1 = −vn + wn

vn+1 = un + 2vn − 3wn

wn+1 = un + vn − 2wn

 

On sait que :  

{

un+1 = −vn + wn

vn+1 = un + 2vn − 3wn

wn+1 = un + vn − 2wn

⟺ (
0 −1 1
1 2 −3
1 1 −2

)(

un

vn

wn

) = (

un+1

vn+1

wn+1

) 

On en déduit donc par une récurrence immédiate que : 

∀n ∈ ℕ, (

un

vn

wn

) = (
0 −1 1
1 2 −3
1 1 −2

)

n

(

u0

v0

w0

) 

⟹ ∀n ∈ ℕ∗, (

un

vn

wn

) = (
1 1 0
1 −1 1
1 0 1

)(
0 0 0
0 1 0
0 0 (−1)n

)(
1 1 −1
0 −1 1
−1 −1 2

)(
3
1
5
)

= (
1 1 0
1 −1 1
1 0 1

)(
0 0 0
0 1 0
0 0 (−1)n

)(
−1
4
6

) 
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= (
4

−4 + 6 × (−1)n

6 × (−1)n
) 

 

Exercice D.4 (Matrice à diagonale dominante) : Soit A = (ai,j)1≤i,j≤n
∈ Mn(ℝ). Montrer que :  

∀i ∈ ⟦1, n⟧, |ai,i| > ∑ |ai,j|
j≠i

j∈⟦1,n⟧

⟹ A ∈ GLn(ℝ) 

 

On raisonne par l’absurde. On suppose que A n’est pas inversible. On sait que :  

  

A = (ai,j)1≤i,j≤n
∉ GLn(ℝ) ⟺ ∃(x1, … , xn) ≠ (0,… ,0)tel que : 

∀i ∈ ⟦1; n⟧,∑ai,jxj

n

j=1

= 0 

On pose :  

xi0 = sup⏟
i∈⟦1;n⟧

 {|xi|} > 0 

On a alors :  

∑ai0,jxj

n

j=1

= 0 ⟹ ai0,i0xi0 = −∑ai,jxj

n

j=1
j≠i0

 

On a donc :  

|ai0,i0xi0| = |xi0||ai0,i0| = ||∑ai0,jxj

n

j=1
j≠i0

|| ≤ ∑|ai0,jxj|

n

j=1
j≠i0

≤ |xi0|∑|ai0,j|

n

j=1
j≠i0

 

Comme |xi0| ≠ 0 on a :  

|ai0,i0| ≤ ∑|ai,j|

n

j=1
j≠i0

 

Cela est impossible. 

On en déduit donc que  A ∈ GLn(ℝ). 

 

Exercice D.5 : On considère les matrices :  

A = (
−1 2
−4 5

)  et P = (
1 1
1 2

) 

a) Montrer que P est inversible et calculer P−1. 

b) Calculer P−1AP. En déduire alors An pour tout n entier naturel.  

c) On pose les suites (un) et (vn) définie par (u0, v0) ∈ ℝ2 et :  

∀n ∈ ℕ, {
un+1 = −un + 2vn

vn+1 = −4un + 5vn
 

Donner la formule explicite de un et vn en fonction de n.  

d) On considère les équations différentielles :  

 {
x′ = −x + 2y

y′ = −4x + 5y
 

Résoudre de deux manières différentes cette équation différentielle.  

 

a) On a :  

P = (
1 1
1 2

) ⟹ det(P) = 2 × 1 − 1 × 1 ≠ 0 ⟹ P−1 = (
2 −1
−1 1

) 

b) On a :  

P−1AP = (
2 −1
−1 1

)(
−1 2
−4 5

) (
1 1
1 2

) = (
1 0
0 3

) 
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On en déduit alors comme dans l’exercice D.3 que :  

An = (
1 1
1 2

) (
1 0
0 3n) (

2 −1
−1 1

) 

= (
1 1
1 2

) (
2 −1

−3n 3n ) 

= (
2 − 3n −1 + 3n

2 − 2 × 3n −1 + 2 × 3n) 

c) On a comme dans l’exercice D.3 :  

∀n ∈ ℕ, {
un+1 = −un + 2vn

vn+1 = −4un + 5vn
⟺ ∀n ∈ ℕ, (

−1 2
−4 5

) (
un

vn
) = (

un+1

vn+1
) 

⟹ ∀n ∈ ℕ, (
un

vn
) = (

−1 2
−4 5

)
n

(
u0

v0
) 

= (
2 − 3n −1 + 3n

2 − 2 × 3n −1 + 2 × 3n) (
u0

v0
) 

On en déduit donc que :  

∀n ∈ ℕ, {
un = (2 − 3n)u0 + (−1 + 3n)v0

vn = (2 − 2 × 3n)u0 + (−1 + 2 × 3n)v0
 

d) On a :  

{
x′ = −x + 2y

y′ = −4x + 5y
 

Méthode 1 : Avec des dérivées secondes ! 

x′ = −x + 2y ⟹ x′′ = −x′ + 2y′ ⟹ x′′ + x′ = −8x + 10y = −8x + 5(x′ + x) 

⟹ x′′ − 4x′ + 3x = 0 

On résout l’équation caractéristique :  

(Eq): r
2 − 4r + 3 = 0 ⟺ r ∈ {1; 3} 

On en déduit donc que :  

∃(A, B) ∈ ℝ2, ∀t ∈ ℝ, x(t) = Aet + Be3t 
On peut faire de même avec y ou bien résoudre :  

y′ − 5y = −4(Aet + Be3t) 
On sait que :  

y′ − 5y = 0 ⟺ ∃λ ∈ ℝ, y(t) = λe5t  
De plus on cherche une solution particulière. On pose :  

yp(t) = Aet + 2Be3t 

On a alors :  

yp
′ − 5yp = −4(Aet + Be3t) 

On en déduit donc que :  

{
x′ = −x + 2y

y′ = −4x + 5y
⟹ ∃(A, B, λ) ∈ ℝ3, ∀t ∈ ℝ, {

x(t) = Aet + Be3t

∃λ ∈ ℝ, y(t) = λe5t + Aet + 2Be3t
 

Cependant on a trois degrés de liberté ce qui n’est pas possible. 

On sait que :  

x′(0) = −x(0) + 2y(0) = −A − B + 2λ + 2A + 4B = A + 3B 

⟹ 2λ = 0 

⟹ λ = 0  
On en déduit donc que :  

{
x′ = −x + 2y

y′ = −4x + 5y
⟹ ∃(A, B) ∈ ℝ2, ∀t ∈ ℝ {

x(t) = Aet + Be3t

∃λ ∈ ℝ, y(t) = Aet + 2Be3t
 

Il reste à vérifier car nous n’avons pas travaillé par équivalence !! 

∃(A, B) ∈ ℝ2, ∀t ∈ ℝ {
x(t) = Aet + Be3t

∃λ ∈ ℝ, y(t) = Aet + 2Be3t
 

⟹ ∀t ∈ ℝ , {
x′(t) = Aet + 3Be3t = −Aet − Be3t + 2(Aet + 2Be3t) = −x(t) + 2y(t)

y′ = Aet + 6Be3t = −4(Aet + Be3t) + 5(Aet + 2Be3t) = −4x(t) + 5y(t)
 

On a donc :  

{
x′ = −x + 2y

y′ = −4x + 5y
⟺ ∃(A, B) ∈ ℝ2, ∀t ∈ ℝ {

x(t) = Aet + Be3t

∃λ ∈ ℝ, y(t) = Aet + 2Be3t
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Méthode 2 : Avec des matrices ! 

On a :  

{
x′ = −x + 2y

y′ = −4x + 5y
⟺ (

x′

y′) = (
−1 2
−4 5

) (
x
y) = A(

x
y) = PDP−1 (

x
y) 

⟹ P−1 (
x′

y′) = DP−1 (
x
y) 

On pose :  

∀t ∈ ℝ, Z(t) = P−1 (
x(t)

y(t)
) = (

2 −1
−1 1

) (
x(t)

y(t)
) = (

2x(t) − y(t)

−x(t) + y(t)
) 

On pose :  

∀t ∈ ℝ, Z(t) = (
x1(t)

y1(t)
) = (

2x(t) − y(t)

−x(t) + y(t)
)  

On a alors :  

∀t ∈ ℝ, (
x′

1(t)

y′
1
(t)

) = P−1 (
x′(t)

y′(t)
) = (

1 0
0 3

) (
x1(t)

y1(t)
) ⇔ ∀t ∈ ℝ, {

x1
′ (t) = x1(t)

y1
′ (t) = 3y1(t)

⇔ ∃(A, B) ∈ ℝ2, {
x1(t) = Aet

y1(t) = Be3t
 

Or on sait que :  

∀t ∈ ℝ, P−1 (
x(t)

y(t)
) = (

x1(t)

y1(t)
) ⟺ ∀t ∈ ℝ, (

x(t)

y(t)
) = P (

x1(t)

y1(t)
) = (

1 1
1 2

) (
x1(t)

y1(t)
) = (

1 1
1 2

) ( Aet

Be3t
) = ( Aet + Be3t

Aet + 2Be3t
) 

  
On en déduit donc que :  

{
x′ = −x + 2y

y′ = −4x + 5y
⟺ ∃(A, B) ∈ ℝ2, ∀t ∈ ℝ {

x(t) = Aet + Be3t

∃λ ∈ ℝ, y(t) = Aet + 2Be3t
 

 

 

 

 

 

 

Partie E: Matrices symétriques 

 

Exercice E.1 : Soient (n, p, m) ∈ (ℕ∗)3, A ∈ ℳn,p(ℝ), (B, C) ∈ (ℳm,n(ℝ))
2
 

1) Montrer que :  

AAT = 0𝑛 ⟹ A = On,p 

2) Montre que :  

BAAT = 0𝑚,𝑛 ⟹ BA = Om,p 

3) Montrer que :  

BAAT = CAAT ⟹ BA = CA 

 

1) On pose :  

A = (ai,j)1≤i≤n
1≤j≤p

 

On a alors :  

 AAT = (bi,j)1≤i,j≤n
  

Avec :  

∀(i, j) ∈ ⟦1, n⟧2, bi,j = ∑ai,kaj,k

p

k=1

 

On a donc :  

AAT = 0n ⟹ ∀i ∈ ⟦1, n⟧, bi,i = ∑ai,kai,k

p

k=1

= 0 ⟹ ∑ai,k
2

p

k=1

= 0 

Or on sait que A ∈ ℳn,p(ℝ) donc on a : 
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∀i ∈ ⟦1, n⟧,∑ ai,k
2

p

k=1

= 0 ⟺ ∀(i, k) ∈ ⟦1, n⟧ × ⟦1, p⟧, ai,k = 0 ⟺ A = On,p 

2) On sait que AT ∈ ℳp,n(ℝ) et BT ∈ ℳn,m(ℝ) donc le produit AT × BT existe. On a donc :  

BAAT = 0m,n ⟹ BAATBT = 0n ⟹ (BA) × (BA)T = 0n 

⟹ BA = 0m,p  d
′après la question précédente. 

3) On a :  

BAAT = CAAT ⟺ BAAT − CAAT = 0m,n ⟺ (B − C)AAT = 0m,n ⟺ B − C = 0m,p ⟺ B = C 

 

Exercice E.2 : Calculer si cela est possible l’inverse de :  

A = (

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

)  

On peut bien sûr le faire de façon classique, soit avec un système, soit avec le pivot de Gauss. Ici nous allons présenter 

une façon plus original, en utilisant un polynôme en 𝐴. 

On a :  

A = (

0 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

) = (

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

) − (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) = J − I4 

J et I4 commutent donc on peut appliquer le binôme de Newton :  

∀n ∈ ℕ, (J − I4)
n = ∑(

n

k
) (J)k(−I4)

n−k

n

k=0

 

On démontre par récurrence que :  

∀k ∈ ℕ, Jk = 4k−1J  
On a donc :  

(J − I4)
n = ∑(

n

k
) (J)k(−I4)

n−k

n

k=0

= (−1)nIn + ∑(
n

k
) (J)k(−I4)

n−k

n

k=1

= (−1)nIn + ∑(
n

k
) (4k−1(−1)n−k)J

n

k=1

 

= (−1)nI4 + (∑(
n

k
)4k−1(−1)n−k

n

k=1

) J = (−1)nI4 +
1

4
(∑(

n

k
)4k−1(−1)n−k

n

k=0

− (−1)n) J

= (−1)nI4 +
3n − (−1)n

4
J 

On pose :  

𝛼𝑛 =
3n − (−1)n

4
 

On a alors :  

𝐴𝑛 − 𝛼𝑛𝐽 = (−1)𝑛𝐼4 

Or on sait que :  

𝐽 = 𝐴 + 𝐼4 

On a donc :  

𝐴𝑛 − 𝛼𝑛𝐽 = (−1)𝑛𝐼4 ⟹ 

 

On a donc :  

∀n ∈ ℕ, An =

(

 
 
 
 
 
 
(−1)n +

3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4
(−1)n +

3n − (−1)n

4

3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4

3n − (−1)n

4
3n − (−1)n

4

3n − (−1)n

4

(−1)n +
3n − (−1)n

4

3n − (−1)n

4

1 (−1)n +
3n − (−1)n

4 )
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Exercice E.3 : On veut montrer que A ∈ An(ℝ) ⟹ (In + A) ∈ GLn(ℝ) 

1) Soit X un vecteur colonne. Montrer que XTX ∈ [0;+∞[ 

2) Soit A ∈ An(ℝ). Montrer que (In + A)X = On,1 ⟹ X = On,1 

3) En déduire que  (In + A) ∈ GLn(ℝ) 

4) Soit A ∈ An(ℝ). On pose M = (In − A)(In + A)−1. Montrer que M−1 = MT 

 

1) On pose :  

X = (

x1
⋮
xn

) ∈ ℳn,1(ℝ) 

On a alors :  

XTX = (x1 … xn) × (

x1
⋮
xn

) = ∑(xk)
2

n

k=1

≥ 0 

On en déduit donc que : XTX ∈ [0;+∞[. 
On remarque même que  

XTX = 0 ⟺ ∑(xk)
2

n

k=1

= 0 ⟺ ∀k ∈ ⟦1; n⟧, xk = 0 

2) On a :  

(In + A)X = On,1 

⟹ [(In + A)X]T × (In + A)X = 0 

⟹ XT(𝐼𝑛 + 𝐴)T(In + A)X = 0 

Or on a :  

(𝐼𝑛 + 𝐴)T = 𝐼𝑛 − 𝐴 

On a donc :  

(In + A)X = On,1 ⟹ 𝑋𝑇(𝐼𝑛 − 𝐴)(𝐼𝑛 + 𝐴)X = 0 ⟹ 𝑋𝑇(𝐼𝑛 − 𝐴2)𝑋 = 0 ⟹ 𝑋𝑇𝑋 − 𝑋𝑇𝐴2𝑋 = 0 

Or on sait que :  

−𝐴2 = 𝐴𝑇 × 𝐴 𝑐𝑎𝑟 𝐴 ∈ 𝒜𝑛(ℝ) 
On en déduit donc que :  

𝑋𝑇𝑋 − 𝑋𝑇𝐴2𝑋 = 0 ⟹ 𝑋𝑇𝑋 + 𝑋𝑇𝐴𝑇𝐴𝑋 = 0 ⟹ 𝑋𝑇𝑋 + (𝐴𝑋)𝑇(𝐴𝑋) = 0 

Or on sait que :  

 (In + A)X = On,1 ⟹ 𝑋 + 𝐴𝑋 = 0𝑛,1 ⟹ 𝑋 = −𝐴𝑋 

On a donc :  

(𝐈𝐧 + 𝐀)𝐗 = 𝐎𝐧,𝟏 ⟹ 𝑿𝑻𝑿+ (𝑨𝑿)𝑻(𝑨𝑿) = 𝟎 ⟹ 𝑿𝑻𝑿+ (−𝑿)𝑻(−𝑿) = 𝟎 ⟹ 𝟐𝑿𝑻𝑿 = 𝟎 ⟹ 𝑿 = 𝟎𝒏,𝟏  

D’après la question précédente.  

3) C’est une caractérisation des matrices inversibles. On sait que : 

𝐴 ∈ 𝐺𝐿𝑛(ℝ) ⟺ ∀X ∈ ℝn\{0n,1}, 𝐴𝑋 ≠ 0𝑛,1   

C’est donc immédiat ! 

4) On pose :  

M = (In − A)(In + A)−1 

On a alors :  

𝑀(𝐼𝑛 + 𝐴) = 𝐼𝑛 − 𝐴 ⟹ [𝑀(𝐼𝑛 + 𝐴)]𝑇 = (𝐼𝑛 − 𝐴)𝑇 ⟹ (𝐼𝑛 + 𝐴)𝑇𝑀𝑇 = 𝐼𝑛 + 𝐴 ⟹ (𝐼𝑛 − 𝐴)𝑀𝑇 = 𝐼𝑛 + 𝐴 

⟹ 𝑴𝑻 = (𝑰𝒏 + 𝑨)(𝑰𝒏 − 𝑨)−𝟏 = 𝑴−𝟏 

 

 


