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Fiche TD 15 : Calcul matriciel

Partie A : Se familiariser avec le calcul

Exercice A.1: On pose :

A=(s 5)B=(7 5
Déterminer AB et BA puis 3A + B.

Ona:
AxB= (é —24) % (_13 é) - (—_119 —1115)

BxA= (_13 é) (é —24) - (226 jg)

Remarque : On illustre ici que le produit n’est pas commutatif sur M, (R) !!!

De méme on a :
m+B=3(; 2)+ (7 9)=( )

De méme :

Exercice A.2 : On pose :
2=y 5 ¢)8=(7 o)

Déterminer quelle produit est autorisé et calculez-le.

On voit que :
A € M5y3(R), B € M5, (R)
On ne peut donc effectuer que le produit B X A € M, 3(R) :

Ba=(7 )G 5 =G 2 %)

Exercice A.3 : Résoudre I’équation :
x2-2x= (7" 9)

6 3
On pose :
_(a b
XE]V[Z((C),X—(C d)
On a alors :
2_(a bya b :(a2+bc ab+bd)
X (c d)(c d) ca+dc cb+d?
On a donc :

2 _(a?+bc—2a ab+bd—-2b)_(-1 0
X 2X_(ca+dc—2c cb+d2—2d)_(6 3)
On résout le systéme :
a?+bc—2a=-1
ab+bd—-2b=0
cat+dc—2c=6
cb+d?—-2d=3
On regarde la deuxiéme équation :
b=0
ab+bd—2b=0<:>b(a+d—2)=0<:>{ ou
a+d—-2=0
1*cas:b =0
Le systéme devient :
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a?—2a=-1
b=0
ca+dc—2c=6
d?—2d=3
On résout les équations :
a?—2a=-1oa=1
-1
d?>-2d=3<d=1{ou
3
On regarde alors la troisiéme équation :
~Sid= -1:
catdc—2c=6<c=-3
~Sid=3
catdc—2c=6<c=3
On a donc :
X= (é (3)) etX = (_13 _01) sont solutions.

2@mecas:Sib = 0,alorsa+d—2=0

On a alors :
a’+bc—2a=-1
at+d=2
0=6

cb+d?—-2d=3
Cela est impossible !!!
Donc a donc :

xz—zxz(_61 g)@xz(é g)ouxz(_l3 _01)

Partie B : Les matrices carrées

Exercice B.1 (Matrices élémentaires) : On appelle matrice ¢lémentaire E) de M, (R) la matrice définie par :
1si(i,j) =k
El,k = (ei'j)lsi,jsn avec ei,]. = { ( ]) ( )

0 sinon
a) Déterminer la matrice élémentaire E; 3 de M3(R).
b) Pour tout (k, Z,k’,£") € [1,n]?, déterminer que vaut le produit :
E{)’k X E{’,k/
a)Ona:
0 0 O
E,;=(0 0 1
0 0 O
b) On pose :
Bex = (ei'j)lsi,an
Elfl,k/ = (e,i‘j)lsi,jsn
On a alors :
Epx X Ey v = (ailj)lgi’an avec :
. Osii#4
- , 0sij+#K
v(i,j) € [1,n]2,a;; = z eipCh; = -
p=1 elkXe{(klz{lsll,(_{)
’ ' 0 sinon

On en déduit donc que :
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0,sik= ¢
Bea X Brie = {Ef wsik = ¢ = Oebel

Exercice B.2 : On pose :

Z ={M e M,(R),VA € M,(R),AM = MA}
a) Déterminer deux matrices de Z.
b) A I’aide des matrices élémentaires, déterminer Z.

a) On cherche I’ensemble des matrices qui commutent avec tout le monde !!
11 suffit de prendre 0, et [,,. Ona:
VA e M,(R),Ax0,=0,=0,%XA
De méme on a :
VAe M,(R),AXI,=A=1,%XA
Donc :
{0,;1,} = {M € M,(R),VA € M,,(R), AM = MA}
b) On pose :
M= (mi,,-)1<ij<n € {M € M,,(R), VA € M, (R), AM = MA}

M est donc une matrice qui commutent avec tout le monde.
On pose (k,#) € [1;n]? et Eyx , = (ei’j)1<ij<n une matrice élémentaire. On a donc :

Ek’gXM = MXEk_g

Or on pose :
Ek,f XM= (ai'j)lsi,an ’ M x Ek'€ - (bi’j)lii,jin
On a alors :
n
. Osii#k
V(i) € [1,n]% a;; = 2 €ipMpj = {mkj sii =k
p=1 ,

Demémeona:
n
N Osij++*
V(l,]) € [[1,n]]2,bi,j = Z Mjp€p; = {m”; Sij =
p=1 '

On en déduit donc que :
Osik+# ¢
— x T2 .. —
Ek,f XM=M X Ek,{’ (=14 V(l,]) € Hl, Il]] , My {mk,k sinon
On en déduit donc que :

{M € M,(R),VA € M,(R),AM = MA} = {Al,; A € R}

Exercice B.3 : On dit que A = (ai,]-) € M, (R) est stochastique si est seulement si :

v(,j) € [1, n]]z,ai,]- =0
n

Vie [[1,n]],Zai,j =1
=1

1) Donner une matrice stochastique de M, (R).
2) Soit A et B deux matrices stochastiques de M, (R). Montrer que VA € [0; 1],AA + (1 — A)B et AB sont
stochastiques.

1<i,j<n

1) 1l suffit de donner une matrice dont tous les coefficients sont positifs et ou la somme des lignes est égale a 1 :
0,4 0 04 0,2
0 0 10
0,25 0,25 0,25 0,25
0 0 0 1
2) Soit (A, B) € M, (R), stochastiques. On pose :

A = (ai:j)1si'j5n ’ B = (bi’j)lsi,jsn

A=

SoitA € [0;1].Ona:
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C= (Ci,j)1si,j5n =M+(1-MB= ()\ai’j +(1- }\)bi’j)

1<i,j<n
Or on sait que
VA€ [0;1,A=>0et1—-21>0
De méme on a :
v(i,j) € [1,n]%a;; =0eth;; =0
On en déduit donc que :
v(i,j) € [1,n]%¢;; =0
On a de plus :

n n n n
Vi € II]., l'l]],z Ci,j = Z[Aai,j + (1 - )\)bl,]] = )\Z ai,]- + (1 - }\)Zbl'] =A+ (1 - }\) =1
j=1 j=1 j=1 j=1

Donc AA + (1 — A)B est stochastique.
De méme on pose :

D=AB= (di,j)1si,jsn

On sait que :
n
= V() € 1017, dij = ) 2y 2 0
k=1
On a donc :
n n n n n n n n
Vi e [[1,11]],2 di,j = Z Z ai,kbk,j = Z Z ai,kbk,j = Z ai,kz bk,j = Z ai,k =1
j=1 j=1 k=1 k=1j=1 k=1  j=1 =1
=1
Donc AB est stochastique.
Exercice B.4 (La Trace) : On définit :
n
VA = (ali,]-)lsi]_Sn € M,(R), Tr(A) = Z Akk
' k=1

5 2 6
1)Onpose:A=(6 1 2 |. Déterminer Tr(A).

1 3 -2

2) Montrer que :
V(A B) € (M,(R))’, Tr(AB) = Tr(BA)
3) En déduire que ¥(A; B) € (M, (R))’, AB — BA I,

5 2 6
)Ona:A=(6 1 2 |=>Tr(A)=5+1-2=4
1 3 =2

2) Soit (A, B) € M, (R), stochastiques. On pose :
A= (ai’j)lsi,jsn B = (bi'j)lsi,jsn

On pose :
AB = (Ci’j)lsi,an
On sait que :
n
= V(i,j) € [1;n]?, ¢ = Z aj by
k=1

On a donc :

n n n n n n n n

Tr(AB) = Cij = Z Z ajxbyi = Z Z ajxbki = Z Z by;ajx = Z dii

i=1 i=1 k=1 k=1i=1 k=1i=1 k=1

Avec :

n
V(i,k) € [1;n]?, dy; = Zbk,iai,k
=1
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On en déduit donc que :

n
z dy; = Tr(BA)
k=1

On a donc :
v(A,B) € (M;,(R))’, Tr(AB) = Tr(BA)
3) Soit (A, B) € M, (R)? tel que AB —BA =1,
On a alors :
Tr(AB —BA) = Tr(AB) — Tr(BA) = 0 = Tr(I,) = n
C’est impossible. On en déduit donc que :

v(A;B) € (M, (R))*, AB — BA # I,

Exercice B.5 : On définit :

n

€ M, (R), Tr(A) = Z Ak

k=1

VA= (ai'j)lsi,jsn
Soit (A, B) € (M, (R))?
Montrer que :

VM € M,(R), Tr(AM) = Tr(BM) = A =B

11 faut travailler avec les matrices ¢lémentaires ! On pose :
A= (ai'j)lsi,an’ B = (bi_j)lsi’an etEyp, = (ei'j)lsi’an une matrice élémentaire.

On a alors :
A X Ek,{) = (Ci’j)lsi,jsn etB X Ek,é’ = (dirj)lsi,jsn
On a alors :
n
Osij=?
P 2 = . L=
V(l,]) € Hl; n]] ) Cl,] Z al:pepr] {ai,k Sl] =4

p=1
De méme on a :
n
o Osij+#+
v(ll]) € ﬂlrn]]zrdi,j = Z bi,pep,j = {bik Sl] — f
p=1 '
On en déduit donc que :
n

n
TF(A X Ek,l) = z Cij = adpk = TF(B X Ek,l) = Z di,i = bf,k
i=1 i=1
On en déduit donc que :
V(l,]) € [[Ln]]z'af,k = bf,k
Donc :
VM € M,(R), Tr(AM) = Tr(BM) = A =B

100

Exercice B.6 : Calculer (i :g)

Méthode 1 : Avec des suites
On pose :

n _ [@n bn)
A ‘<cn d,

AN+ — (an+1 bn+1> _ (an bn) % (5 —4) _ (5311 +4b, —4a,— 3bn)
Cn+1 dnta cn dp 4 -3 5c, +4d, —4c,—3d,

On a alors :

On en déduit donc que :




anyq = 5a, +4b,

vneN, Cns1 = 5cy + 4d,

dp+1 = —4cy — 3dy

On remarque alors que :
Vn € N,{

Deplusona:

b1 = —4a, — 3b,

Vn € N, dpy2 = San+1 + 4’bn+1

= 5ap4q + 4(—4a, — 3b,)

= 5a,41 — 16a, — 12( 2
= 2ap41 — Ay
On a donc :

dn+1 — San>

vneN,ay,, —2ap41 +a, =0

On résout I’équation caractéristique :
r’-2r+l1=0er=1
On a donc :

3(A,B) € R%,vn € N,a, = (An + B)

Orsaitqueag =B =1leta; =5=A+B=VneN,a, =4n+1
On a donc :

vn€N,b, =1-a, =—4n
On a de méme :

Vn €N, cpyp —2¢chyq +¢c, =0
3(A',B") e R, Vn € N,c, = (A'n + B")

Orcy=0=B'etc; =A" =4

On a donc :
vn € N,c, = 4n
Enfinona:
vheN,d,=1—-c,=1—-4n
On a donc :
n_(4n+1 —4n
vn e N A —( in 1— an
On a donc :

100

(5 —4) :(401 —400)

4 -3 400 -399

Méthode 2 : Par récurrence
On peut calculer les premiers termes de la puissance de A :

a=(; =)

A= 5
= 26 D=0

»=(G )6 )=

4n+1 —4n

1 0

0_1 —
OnaA® =1, = (0 1

) par définition.

On peut alors conjecturer que :
vn € N, A" = (

Initialisation : Pour n=0, A® = (é 2)

(4x0F1 —4x0y

4x%x0 1-4x%x0
Donc la proposition est vraie pour n = 0

Hérédité : Soit n un entier naturel fixé. On suppose que :

4n 1—4n

)

)
—12
-11

)

an+1 +bpyr =ap+by=as+by =1
Cnt1 Hdnyr =Ch+dy =co+do=1

)
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n_ (4n+1 —4n
A _( 4n 1—4n)
On a alors :

n+t1 _ (4n+1 —4n 5 —4
= (M0 TG 29
_ (20n—16n+5 —16n—4+12n)
20n+4—-16n -16n-3+ 12n
_<4(n+1)+1 —4(n+1) )
~\ 4(n+1) 1-4(n+1)
Donc la proposition est vraie au rang n+1.
Conclusion : La proposition est vrai au rang 0 et est héréditaire donc d’apres le principe de récurrence, on a :

Vn € N, A" = (4‘143 1 1__42n)
On a donc :
44100 _
(3 73 =(io0 90)

Remarque : On peut faire un programme Python pour illustrer ce propos !
def matrice(A,n):
import numpy as np
B=A
for i in range(1,n+1):
; B=np.dot(A,B)
return (B)

On peut faire afficher les premiers termes :

>>> matrice(A,5)
[[ @ -8]
[ 8-7]]
[[ 13 -12]
[ 12 -11]]
[[ 17 -16]
[ 16 -15]]
[[ 21 -20]
[ 20 -19]]
[[ 25 -24]
[ 24 -23]]
array([[ 25, -24],
[ 24, -23]11)

On a bien :
>>> matrice(A,99)
array([[ 401, -400],
[ 400, -399]])
>>>

Exercice B.7 : On pose :

1.0 0 0 1 —sin(0)
A=(0 1 1) etB=| -1 0 cos(6) rcz(dl:gx% SEEXD
10 1 —sin(@) cos(8) 0 T

Calculer A™ pour tout entier naturel n.
a) On calculer les premiers termes :
0 1
1|%x10
1 1

0 1
2)(c
1 1
0 1
)
1 1

=
w
Il
N
TSN
O R OO R OO - O
O R OO R OO~ O
[
~ —
Il
~/
w W =
O R OO R OO - O
= W o
~

On conjecture alors que :




1 0 0
n(n—1)

2

n 0

vn € N, A" =

1 00
Initialisation : Pourn =0 ona A’ = I3 = <0 1 0
0 0 1

Hérédité : Soit n un entier naturel fixé. On suppose que la proposition est vraie au rang n :
1 0 0

n(h—1

( )1
2
n 0 1

). Donc la proposition est vraie pour n = 0.

A" =

On a alors :
1 0 0

_ 1 0 O
An+1:¥1 (011)

n
n 0 1
1 0 0
n(n—1)
_ 1
5 +n
n+1 0
1 0 0

nn+1

n+1 0 1

Donc la proposition est héréditaire.
Conclusion :

: La proposition est vrai au rang 0 et est héréditaire donc d’apres le principe de récurrence, on a :
1 0 0
Vn € N,A" = @ 1 n
n 0 1
b) On calculer les premiers termes :
0 1 —sin(0)
B = -1 0 cos(0)
—sin(0) cos(0) 0
0 1 —sin(0) 0 1 —sin(0)
B? = -1 0 cos(8) | x -1 0 cos(0)
—sin(0) cos(0) 0 —sin(0) cos(0) 0
sin?(0) —1  —sin(0) cos(0) cos(0)
=| —sin(8) cos(0)  cos?(0) — 1 sin(0)
—cos(0) —sin(0) sin?(0) + cos?(0)

—cos?(8) —%sin(ZB) cos(8)

—%sin(Ze) —sin?(0)  sin(0)
—cos(0) —sin(0) 1
—cos?(@) - %sin(Z 8) cos(0)

0 1 —sin(0)
3 — —

—cos(0) —sin(0) 1
0 0 0
= <O 0 O>
0 0 O

On en déduit donc que :
vn>3,B3=0,

Page 8 sur 28



Page 9 sur 28

c)Ona:
C= (ch(x) sh(x))
sh(x) ch(x)
_ (ch(x) sh(x) ch(x) sh(x)\ _ (ch(2x) sh(2x)
=C= (sh(x) ch(x)) X (sh(x) ch(x)) = (sh(Zx) ch(ZX))

On rappelle que :

V(a,b) € R?,ch(a + b) = ch(a)ch(b) + sh(a)sh(b)

sh(a + b) = ch(a)sh(b) + ch(b)sh(a)

On a donc :

3 = ch(2x) sh(2x) ch(x) sh(x))_ ch(3x) sh(3x))

_(sh(Zx) ch(Zx))X(sh(x) ch(x) _(sh(3x) ch(3x)
On conjecture alors que :

n _ (ch(nx) sh(nx)

vneEN,C _(sh(nx) ch(nx))

Initialisation : Comme ch(0) = 1 et sh(0) = 0 et C° = I, on en déduit que la proposition est vraie au rang n = 0.

Hérédité : Soit n un entier naturel. On suppose que :
cn = (ch(nx) sh(nx))
~ \sh(nx) ch(nx)
On a donc :
n+l _ rn _ (ch(nx) sh(nx) ch(x) sh(x)

T =exe= (sh(nx) ch(nx)) % (sh(x) ch(x))
(Ch(nx)ch(x) + sh(nx)sh(x) sh(nx)ch(x) + ch(nx)sh(x))
sh(nx)ch(x) + ch(nx)sh(x) ch(nx)ch(x) + sh(nx)sh(x)

B (ch((n + 1)x) sh((n+ 1)x))

sh((n+ 1)x) ch((n+ 1)x)
Donc la proposition est héréditaire.
Conclusion : D’apreés le principe de récurrence on a :
n _ (ch(nx) sh(nx))
voeEN, "= (sh(nx) ch(nx)

Exercice B.8 : On pose :

1) Calculer (M — I3)(M + 3I3).
2) En déduire M™ pour tout entier naturel n.
3) On pose les suites (uy), (vy) et (wy,) tels que :
Uptq = 2Up — 2V, + Wy
(ug, vy, Wo) € R3,Vn €N, {vn+1 = 2u, — 3vy + 2w,
Wnt1 = —Up + 2vy
Déterminer une expression de chaque suite en fonction de n.

1)Ona:
1 -2 1 5 =21
(M—I3)(M+313)=<2 —4 2>><<2 0 2)
-1 2 -1 -1 2 3
0 0 O
= <0 0 O>
0 0 O
On a donc :
(M —1I3)(M + 3I3) =04
2)Ona:

M2 4+ 2M — 3I; = 03 = M? = —2M + 31,
On suppose que :
3((up), (vy)) € RN, vn € N,M™ = uyM + vyl
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Initialisation : Pourn =0onaM® =1; = uy,=0etvy =1
Donc la proposition est vraie pour n = 0.
Hérédité : Soit n un entier naturel n fixé. On suppose que :
M" =u, M + v, 15
On a alors :
M1 =y M2 + vyM = u,(—2M + 313) + v,M
= (—2u, + vy)M + 3u,1;
= Up+1M + Vpyql3
Conclusion : La proposition est vraie au rang 0 et est héréditaire donc d’apres le principe de récurrence :
EI((un), (vn)) € RN,vn € NM" = u,M + v,I;

On a de plus :
u = —2u, +v
g, vo) = (0,1 etVneN,{ nt oo
(0, o) = (0,1) S
On a donc :
vn € N,upy o = —2Up4q1 + Vg1 = —2Up4q + 34,

= VneN,uyp +2up; —3u, =0
On résout 1’équation caractéristique :
r’+2r-3=0<re€{1;,-3}
On a donc :
3(A,B) € R%,vn € N,u, = (-3)"A+B
Orug=A+B=0etuy;=-3A+B=1
On en déduit donc que :

=-3)" 1 1-(=3)"
VnEN,unz—( )+—=¥

4 4 4
Demémeona:
1—(=3)"1
vn €N, v, =3 X —
On en déduit donc que :
1—(=3)0n /2 -2 1 3+_3n100
VnEN,Mn=#<2 -3 2 +#O 1 0
-1 2 0 0 0 1
5—(=3)" (-3)"-1 1-(=3)"
4 2 4
1-(=3)" 1-(=3)"
= -~ -3 n -~
2 (=3) 2
\(—3)n —1 1-(-3)" 3+ (—3)n/
4 2 4

3) On pose le systéme sous forme matriciel. On a :

Upt1 = 2Up — 2V + Wy Up Unt1
vn € N{vyi1 = 2u, —3vp + 2w, © Vn €E N M| Vo | = Vn+1

Wpi1 = —Up + 2v, Wn

Up Up
vn € N,(Vn) = MH<V0>
' Wy

(5= (-1 1-(=3)"

Wn+1
On adonc:

On en déduit donc que :

Up 4 Ug > Vo + 4 W
1 _ (_3)11 1 _ (_3)11 ul’l ul’l+1
Vn € N, Vi =—u0+(—3)nvo+—wo S Vn€eENM| Vn | = Vn+1
2 2 Wn Wh+1
(-3)" -1 1-(=3)" 3+ (=3)"
w, = 4 Uy 5 Vo + 4 Wy

Exercice B.9 (Oral ccp PSI 2016) : Soit a un réel. On pose :
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1-—2a a a
M(a) = a 1-2a a

a a 1-2a
1) Montrer que :

V(a,b) € R%,M(a) x M(b) = M(a + b — 3ab)
2) Trouver une suite (u,) tel que :
vn € N,M(a)" = M(u,)

1)Ona:

1-—2a a a 1-2b b b
V(a,b)E]RZ,M(a)XM(b)=< a 1-2a a >X< b 1-2b b >
a a 1-—2a b b 1-2b

(1 —-2a)(1 —2b) + 2ab (1-2a)b+a(l—-2b)+ab (1—-2a)b+ab+a(l—2b)
=la(l—-2b)+(1—2a)b+ab ab+ (1—2a)(1—2b)+ab ab+ (1 —2a)b+ a(l—2b)
a(l1—-2b)+ab+ (1 —2a)b ab+a(l—-2b)+ (1—2a)b 2ab + (1 — 2a)(1 — 2b)

1—-2(a+b)+ 6ab a+b-—3ab a+b—3ab
= a+b—3ab 1—-2(a+Db)+ 6ab a+b-—3ab
a+b—3ab a+b-—3ab 1—-2(a+Db)+ 6ab

2) On démontre cela par récurrence. On pose :
vn € N,P(n) "M(a)™ = M(u,)"™:
Initialisation n =0 :
Ona:
M(a)? =13 = M(0)
On a donc uy = 0.
Donc la proposition est vraie au rang n = 0.
Hérédité : Soit n un entier naturel non nul. On suppose que :
M(a)" = M(up)
On a alors :
M(a)*1 = M(a) x M(a)®
= M(a) X M(uy)
= M(a+u, —3uya) = M(a+ (1 —3a)uy,)
Donc P (n) est héréditaire en posant u,,; = a + (1 — 3a)u,
Conclusion : On conclut par le principe de récurrence.
c)Ona:
VvneEN U, =a+ (1 -3au,etuy=0
1cas:1—-3a=0

. 1 .
Sia= Jonen déduit donc que :

21eme cas .] :ga _]

Onaalorsa=0et:

vn € N,u, =naet M(0)" = I,

. 1

mcas:1—3a ¢ {O;;}

On a alors affaire a une suite arithmético-géométrique.
e  On cherche le point fixe. On résout :

(1—3a)x+a=x(=>x=%
e  On définit une suite auxiliaire. On pose :
vneN,y, = un—g
On a alors :

1 1 1
VnEN,vn+1=un+1—§=(1—3a)un+a—§=(1—3a)(un—§)=(1—3a)vn

r . . , y. . . 1
On en déduit donc que la suite (v,,) est géométrique de raison ¢ = 1 — 3a de premier terme vy = — e On a donc :
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1
vn €N, v, = —§(1 —3a)"
On a donc :
1 1 .
vn € N,u, :§—§(1 —3a)
On a donc :
1 1
vn e N,M(a)" = M <§ —sa- 3a)n)
On remarque que le résultat reste valable poura = 0 et a = § On en déduit donc que :

1 1
Va e R, vn € NM(a)" = M(§—§(1—3a)")

Exercice B10 : On pose :

1 (2)
A=
(2) 1
Calculer A™ pour tout entier naturel n.
Méthode 1 : Avec le binome de Newton
On pose :
1 €Y)
] =
(€Y) 1
On a alors :
1 (2
A= =2]—1Iy
(2 1

Ou k est le nombre de lignes de A.

Comme ] et [, commutent on peut utiliser le binome de Newton :
n

=@ -1 =) (1) o

i=0
_ ; (}) ozt
Ona: )
=K

On démontre alors facilement par récurrence que :
vi>1,]l = ki7Y
On a donc :
n n
n . . . CnN
A =@ -10" = > (V)2 xJ x 00N = DM+ Y (=0 (V)2 x )
i=1

i=0

= (~1) I + y (?) (—1)"=i2i x kil
i=1
= (=)™, + ( (r:) 21 x ki—l(—1)n—i)]
= (-1 + G; (r:) (—D)"i2i x ki>]

= (-D+ %(Z (7) o - (—1)“)1

i=0
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(2k—1)" = (-1)"

— (_1\n

J

Méthode 2 : Par récurrence
On peut calculer les premiéres puissances de matrices pour k = 3 par exemple :

1 2 2

A=(2 1 2

2 2 1
1 2 2 1 2 2
=>A’=(2 1 2]|x[2 1 2
2 21 2 2 1

9 8 8

=(8 9 8

8 8 9

1 2 2 41 42 42
A2=12 1 2|x[42 41 42

Demémeona:

2 21 41 42 41
On peut donc conjecturer que :
dn (by)
3(ay, by), Vn € N, A" =
(bn) ap

Initialisation : Puisque A° = I il suffit de poser ap = 1 et by = 0 donc la proposition est vraie pour n = 0.

Hérédité : Soit n un entier naturel n fixé. On suppose que :

ap (bn)
A" =
(bn) ap
On a alors :
an (bn) 1 (2)
An+1 — X
(bn) an (2) 1
ap +2(k—1)b, 2a, + (1 + 2(k—2))b,
Qap+ (2+k—1)by) a, + (k—1b,
dn+1 (bn+1)
(bns1) An+1
Deplusona:
ant1 = ap +2(k—1b,
vneN, {bn+1 = 2a, + (2k — )b,
Conclusion : D’apreés le principe de récurrence on a :
an (by)
3d(ap, by), Vn € N, A" =
(bn) ap
Il reste a déterminer les suites (ap) et (by,).
On sait que :
aps, =ap +2(k—1)b,
vneN, {bn+1 — 2a, + (2k — 3)b,,
= a4z = Angr + 2(k— Dbpyy
=apy +2(k—1)(2a, + 2k —3)b,)
= ap41 +4(k— Day + 2k - 3)(@n+1 —an)
=2(k—1Dap;q + 2k— Da,
On a donc :

vneN,ay,, —2(k—1Dayy; — (2k—1)a, =0
On résout 1’équation caractéristique :
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r’—2(k—-Dr—-2k—-1)=0
A= (2(k—1))° +4(2k — 1) = 4k? — 8k + 4 + 8k — 4 = 4Kk>
On a donc :
r’=2(k-1Dr—-Q2k—-1)=0<re{-1;2k—1}
On en déduit donc que :
3(A,B) € R?,a, = (-1)"A+ (2k— 1)"B
On sait de plus que :
ap=1=a4

On a donc :
A+B=1 B_2_1 A_k—l
{—A+(2k—1)B:1:> Sk KA TR
On a donc :
-Mk-1 2k— 1" 2k— D —(—=1)"
e g, = COETD @Ry @R (D

On fait de méme avec (b,) et on trouve :
2k-1D"-(=D"
vn € N,b, = K
Le mieux est de vérifier pour un certain k et un certain n. On prend ici k = 4 et n = 3 avec un programme Python ou
a la main !!!

*»» a=np.array([[1,2,2,2],[2,1,2,2],[2,2,1,2],[2,2,2,1]])
»»» matrice(a,3)
array([[8%, 86, 86, 86],

[86, 85, 86, 86],

[86, 86, 85, 86],

[86, 86, 86, 85]])

FEE I

Onaaz = 601 etb; =600
On calcule ensuite avec :
2x4-1)3%-(-1)3

(-1)3*+ . =—-1+86=85

Exercice B11 (Oral Mines-Ponts Psi 2014) : Soit a un réel non nul. Calculer A" pour n entier naturel et a :

0 a a?
! 0
A=| 2 a
1 1 1
az a
On calcule les premiers termes :
0 a a? 0 a a?
! 0 ! 0
A= 3 x| a 4
AT
az a az a
/2 a 2a2\
1
- 2 2a
=| a |
\2 2 3/
az a
De mémeona:
2 a 2a? 0 a a®
! 2 2 ! 0
M=AxA=]|3 2 1x| a2 a
2 2 3 1 1 1
az a a? a




3 4a Sa\
3 5a|
S )
a2 a

On peut alors conjecturer que :

o

an
by
3((an), (bn), (cn), (dp)), A" = | 5 % 0
4 dn
a’ a
Initialisation : On sait que :
A% =1; = Enposant: ag =dy=1letby=cy =0
Donc la proposition est vraie pour n = 0.

Hérédité : Soit n un entier naturel n fixé. On suppose que :

a, bpa cya®
by,
An=|73 @ Cnd |
dy dy /
— — e
a2  a n
On a alors :
a, bpa cya’ 0 a a°
b 1
ADn+1 :n an Cha |y« 5 0 a
d, d, 1 1
2 _ €n a2 A 1
a a a? a
b,+c, (a,+cya (a,+by, +cy)a?
a, + ¢,
_ : b, + ¢, (ap + b, +cy)a
d, +e, d, +e,
2 a 2d,, + e,
an+1 bn+1a Cn+1a2
n+1
dn+1 Cn+14d
dpt1 .
3 n+1
En posant :

an+1 =by +cy
n+1 =an + Cn
cn+1 =a, +b, +c,
dn+1 =dn + ey
k ent1 = 2d, + e,
Conclusion : On conclut par le principe de récurrence.
On résout d’une part les deux dernicres équations :
{ dpt1 =dy ey
en+1 = 2dy + ey

On a donc :
vneN,d,;, =d,q +2d, + e,
=dpsq +2d, + (dn+1 - dn)
= 2dp41 +dy
On a donc :
vneN,d,;, —2d,41 —d, =0
On résout :

(E):r’—2r-1=0e (r-12-2=0er=1—+V2Zour=1++2

On a donc :
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3(A,B) € R%,vn € N,d, = A(1—v2)" +B(1+v2)"
Onsaitdeplusquedy =0=A+B =0
d;=1=A1—-V2)+B(1+V2)=A+B+V2(B—A)

2
:>B—A:£
2
On a donc :
A+B=0 N
2 V2
V2= A=——cetB=—
A—B=—— 4
2
Doncona:

V2 V2
vn €N, d, = —T(l—x/i)n+7(1+x/§)n
De plus on sait que :
vneN,d,;; =d, +e, = e, =dpyq —dy

= —?(1—\/5)”1+g(1+\/§)n+l+g(1—ﬁ)n—g(1+\/§)n

zg(uﬁ)“ﬁ—g@_ﬁ)“ﬁ
= (1 +vD)" (1D

Il reste a déterminer les suites (a,), (by,), (cy).

On sait que :
apt1 = by + ¢y
bny1 =ap + ¢y
Cnsq = ap +by + ¢y
On sait que :

vn €N, dn+1 — bn+1 = _(an - bn)
= ap — by = (—1)"(@ap —bo) = (=1)"
Deplusona:
apt+q + bpyr = ap + by + 2¢,
= apyz +bpyy = anys +bpyy +2(ap + by +cp)
= apyq +bnys +2(@, +by) +ap11 — by +byyy —ay
=2(ap41 + bny1) +an + by

On pose :
Vn € N,a, +b, =u,
On a alors :
vn €N, uy;p —2up; —u, =0
Donc :

(A, B) € R%,vn € Nu, = A(1—v2)" +B(1+v2)"
Or on sait que uy = 1 et u; = 1. On en déduit donc que :
A+B=1 - 1
{A(1—x/§)+13(1+\/§)=1=> =B=3
1 1
vn € N,u, =§(1—x/§)n+§(1+\/§)n
On a donc :
an_bn = (_l)n
1 1
{an+bn =E(1—\/§)n+§(1+\/§)n

(-Dn +%(1 —V2)" +%(1 +v2)"

= VneN,a, = 2

Demémeona:
1 n 1 n
(D™ +5(1-v2) +5(1++2)

= Vn€N,b, = >
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On sait de plus que :

(D)™ + % (1-v2)"™ +%(1 +v2)" (4 % (1-v2)" + % (1+v2)"
vn€e€N,c, =ap; — b, = > - >

%(1_&)“(1-@-1)+%(1+ﬁ)“(1+ﬁ—1)=§(1+ﬁ)“—\/§(1—ﬁ)”=dn

On a donc :
A" =
2"+ (1-v2) + (1 +v2)" 2D+ (1-v2)" + (1++2)" V2 f "
( D" +( 4)+(+ ) D™+ ( 4)+(+ ). T((1+\/§)—(1—\/§))32\

|(—1)n+1+%(1—\/§)n+%(1+x/§)n (—1)“+%(1—x/§)n+%(1+x/7)n V2

((1 + \/E)“ - (1 — \/E)“) a

2a 2 4
\/E n n \/Z n n
| e -emm) ) ey

Exercice B.12 : Calculer A™ avec 4 :

01 1 1
_[1 0 1 1
A_<1 1 0 1)
1110
Ona:
01 1 1 1 1 1 1 1 0 0 O
A=1011=1111—0100=]—I
1 1 0 1 1 1 1 1 0 01 0 N
1 1 1 0 1 1 1 1 0 0 0 1
] et I, commutent donc on peut appliquer le bindme de Newton :

n
_ n _ n ke_ n-k
VnEN, (- 1" = ]Z) () OF1
On démontre par récurrence que :
vk € N, Jk = 4k71]
On a donc :

0-10"= ) (D) WML = DM+ ) () ORI = DM+ ) (1) (3 (=D H)
k=0 k=1 k=1
C n - n— n 1 \ n - n— n
= (-1) In+<kz=1 ()#'D k)] = (-1) In+z(;(k)4k =Dk - (-1) )1
= (=1)"I, + #]
On a donc :
A L G L L G O 3= (=" 3" - (D"
D= 4 4 4
30 _ (—1)n 30 _ (—1)" 30 _ (—1)" 30 _(—1)0
N e e
v enAT= 3"~ (-1" 3" - (-D" B et O LR LE e D
4 4 D= 4
30— (—1)" 37— (—1) . iy 12D

4 4 4
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Partie C : Calcul de I’inverse par polynome ou astuce

8 -1 2
Exercice C.1: On pose: A = < 7 0 2 )
-18 3 -4
a) Calculer A3 — 4A% + 5A
b) Montrer que A est inversible et déterminer A~

a) On calcule eton a :
A3 — 4A% + 5A =21,
b) On a donc :

1

On en déduit donc que A € G#3(R) eton a:

-3 1 -1
1 -4 2 -1

-1 2 _
A —E(A —4a+5l3) = | »q ; -
2 2

Exercice C.2 : On pose : A = (

a) Calculer A% — 2A + 21,.
b) Montrer que A est inversible et déterminer A~
¢) Retrouver ce résultat grace a la formule.

3 W)

a)Ona:

A2—2A+212:(_31 _42):A

b) On en déduit donc que :
1

On en déduit donc que A est inversible et que :

2 1
3 1
Al=——A+-1, = 3 1

2 2
det<(_31 _42)> - 446=2%0

(¢ 2-(3 )

¢) On sait que :

= A€Gl(R)etA ==

2 -1 2
Exercice C.3 : On pose : A = < 5 -3 3 )
-1 0 =2
1) Calculer (A + 13)3
2) En déduire que A € GL3(R)

1) On sait que :
3 -1 2
A+1; = < 5 -2 3 )
-1 0 -1

(A + 13)3 = 03

On a alors par le calcul :

2) On sait que A et [3; commutent donc :
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(A+13)3=A3+3A2+3A+1; =04
= A(-A? -3A-313) =13
On en déduit donc que :

-6 2 -3
A €GL;(R)etA™t = —A2 —3A—3I, = (—7 2 —4)
3 -1 1

2im
Exercice C.4 : Soit n un entier supérieur ou égale a 2. On pose w = e n et

A= (w(k—l)(l—l))1<k1<n € M,(C)

1) Calculer AA.
2) En déduire que A est inversible et calculer A™2,

1) On pose :

AK = (ap’q) 1<p,q<n

On sait de plus que :

n
v(p,q) € [1;n]% a4 = z @@ DE-DgE-D@E-1)

k=1
Or on sait que :
i ity (P~ D (k-1) iy (a—1D(k-1)
© = et = oP-DE-D g Kk-1(a-1) = (eZ‘T“) (e—z%)
i
— o1 k-DI(Pp-D~(-D)]
_ oD (p-a)
2 k-1
— (e%(p—q)>
o (2 g\
V(p,q) € [n], 254 = ) (e ®0)
k=1
n-1 K
_ z (emT“(p—q))
k=0

Or on sait que :

n-1 N

k4 —1
v(n,0) € N x (Q\{1]), ) (@F =
q—1

k=0

De plus on sait que :
V(p,q) €[1;n],-n<1-n<p-q<n-1

2im

1*cas:Sipq=(p—q) € [[—n+ 1;n— 1]]\{0}: en P D £ q
2 g))
=, ain k (e n P ) -1 g2inp-a) _q
— Z (eT(p_q)> — . — . =0
2iT 2iTt
= en P~D _q en P~ _q

2meeag: Sip=q

. LIt !
= ap, = Z (e n ) =n
k=1
On en déduit donc que :
AA = nl,

2) On adonc :
1_
A€ Gt (R),A™L = HA

Partie D : Par un systéme linéaire ou Gauss-Jordan
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Exercice D.1 : Déterminer 1’inverse, s’il existe, des matrices suivantes :

3 2 -1 -1 0 2 1 -1 0
A=|1 -1 1 |;B=|0 0 1);C=(1 2 1
2 -2 1 0 -1 1 1 1 0

1) On peut soit appliquer le pivot de Gauss, soit résoudre un systéme. Nous allons faire le pivot de Gauss avec la

matrice A et résoudre un systéme avec la matrice B.

Opérations 3 2 -1 1 0 0
1 -1 1 0 1 0
2 =2 1 0 0 1
L L 1 - ! ! 0 0
(—_ — —_—— —
R 3 3 3
1 -1 1 0 1 0
2 -2 1 0 0 1
Ly —=Ly—=L 1 E _l
Ly = L3 — 2L / 3 3\ 1 0 0
1o -2 4| /3 \
| 3 3 1,
\0 10 5 | 73
3 \—E 0 1
3
L L 1 - ! ! 0 0
(___ — [R—— —

? 577 / 3 3\ /3 \
o . % 11 3 |
| 5 | |5 75 |
\0 10 5/ \ 2 1/

3 3 3

L L +10L /1 - ! /1 0 0\
H — f— —— —

S T 3 3 3

lo 1 _* 113 ]
\y o \§ 5
0 (2) —% 10 -2 1
he ( (5 0 o)
1 - —= = 0 0
3 3 3
lo 1 _* 113 |
oo o Y,
00 1 0 2 -1
Remarque : La matrice échelonnée réduite de A
a 3 pivots donc elle est inversible.

L L +4L 1 - 0 Lz !
H [— — — — — —
2 5»3 3 3 3 3

0 1 0 1 4

b litgls 00 1 : 1 —<

0 2 -1
1 0 0 1 1
bi—Li—3ls 01 0)=1, = 0 <
0 0 1 1 4
Z 1 ==
5 5
0 2 -1
On en déduit donc que A est inversible, A € G£5(R) et :
1 1
— 0 —
5 5
At=11 . 4
5 5
0 2 -1
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b)Ona:
-1 0 2
B=<O 0 1>
0o -1 1

-1 0 2\ /X X' —x+2z=%
V(x,V,2) € R3,< 0 0 1) <y> = (y') = z=y'
0 -1 1/ \z 7' —y+z=12

On sait que :

On cherche a résoudre le systeme suivant :

—x+2z=x'
z=y'
-y+z=12
x =2y —x'
sly=y -7
z=y'
X -1 2 0 X'
@<y>=<0 1 —1><y’>
z 0 1 o0 7!
Donc B est inversible et :
-1 2 0
B‘1=(0 1 —1>
0 0 1

On peut vérifier en calculant :

-1 0 2\/-1 2 O
( 0 0 1)( 0 1 —1)
0 -1 1 0 1 O

¢) Par la méthode de votre choix, je vous donne juste le résultat :

1 0 0
010
0 0 1

1 0 1
c=(1 2 1|=cCct= -3 0 5
1 1 0 1 1 3

2 2

Exercice D.2 : Déterminer si les matrices suivantes en discutant suivant le paramétre réel o puis calculer leur inverse.

a) cosha sinha 1 1 1 2 1
b) a 1 c) 11 14« |.
1 a 11 —a?

— =D

sinha cosha
a)Ona:
_ (ch(a) sh(a) - )
A= <sh(a) ch(oo> = det(A) = ch?*(a) —sh*(0) =1 # 0
On en déduit donc que A € G£,(R) et :
~1_( c¢h(@) —sh(a)
A= (—sh(a) ch(c) )

a 1 1
B=(1 o 1
1 1 «

On voit déja que si a = 1, alors le rang de la matrice est 1, rg(B) = 1 donc B n’est pas inversible.
A présent on étudie le cas : ot # 1
On applique I’algorithme du pivot de Gauss :

Opérations a 1 1 1 0 0
1 a 1 0 1 0
1 1 « 0 0 1

b) On pose :
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Ly & L, <1 1 a) (0 0 1)
1 a 1 0 1 0
a 1 1 1 0 0
Ly —L,—L; 1 1 a 0 1
Ly «— Lz —al, (0 a—1 1—0() (0 —1>
0 1—a 1—0d? 1 —q
1 1 a 0 1
L, «— _1L2caroc¢0 (0 1 _1> . - 1
1 0 1 14+« a—1 a—1
Lz «— —ch3 1 o
11—« 11—«
Ly —L;—L, 1 1 a 0 1
(0 1 -1 ) ( 0 1
0 0 24+« a—1 a—1
\ 1
l—a 1—-«a
Remarque : Si a = —2, alors la SiA=2,ona:
matrice B n’est pas inversible non -2 1 1
plus car il y aurait deux pivots, ( 1 -2 1 )
=21 1 1 -2
rg(B) =21 On a alors :
L, +Ls = —L;
Donc B # G£5(R)
On étudie a présent le cas :
a+{-2;1}
1 1 1 « 0 0 1
0 0 1 | a—1 a—1|
\ 1 1 1 /
I-oZ+a) A-)(Z+a) (2+a)
L, —L;+L, 1 1 0 —a —a __«a
L, «— L; —als (O 1 0) 1-a02+a) (A-02+w) a+ 2
0 0 1 1 1 ( 1 1) 1 1
1-02+a) 1-a\2+a« Q2+a) a-—-1
1 1 1
1-02+a) (A-a0)2+a) 2+w
- - 2(1 —a)
=(1—OL)(2+O()(1 —1—-a 3 )
1 1 1—a
L, —L —L, 1 0 O -1—-a 1 -1 -2«
(0 1 0) (1—0()(2+a)< 1 —1—-a 3 )
0 0 1 1 1 1—«a
On en déduit donc que :
a 1 1 -1-a 1 —1-2«a
B=<1 a 1>€g€(ﬂ§)<:>a${—2; 1}etalors B! = (1—0()(2+0()< 1 —-1—-a 3 )
1 1 « 1 1 11—«
0 -1 1 1 1 0
Exercice D.3 : On considere les matrices suivantes : A = (1 2 —3) etP = <1 -1 1)
1 1 =2 1 0 1

a) Montrer que P est inversible et calculer son inverse.

b) Montrer que : D = P~1AP est diagonale, puis calculer D"

¢) Montrer que A" = PD"P~1,
d) On pose :
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(UO'VO'WO) = (37175)
Upt1 = —Vp + Wy
Vne1 = Up + 2vy — 3wy
Wpyq = Uy + vy — 2w

Déterminer une expression explicite des suites u, v et w.

Vn € N,

a) On peut le faire par le pivot de Gauss ou la résolution d’un systéme. On a :

1 1 0 1 1 -1
P=<1 -1 1)=>P-1=<0 -1 1)
1 0 1 -1 -1 2
b) C’est un simple calcul :

1 1 -1 0 -1 1 1 1 0 0 0 O
0 -1 1 |x|(1 2 =-3|I%x|1 -1 1)=(0 1 O
-1 -1 2 1 1 -2 1 0 1 0 0 -1

Comme D est diagonale on a :

0" 0 0 0 0 0
VnEN*,D“=(O 1" 0 >=(0 1 0 )
0 0 (—n" 0 0 (="

c) Méthode 1 : Par récurrence
On pose :

vn € N, P, : "A" = PD"P~1"
Initialisation : n = 0, A = I et PD°P~! = P[P~ = PP~ 1 =,
Donc P, est vraie.

Hérédité : Soit n un entier naturel fixé. On suppose vraie P,. On a :
A" = PD"P~! = A™1 = pD"P~'PDP?!
In

= PD"DP!
— PDn+1P—1
Donc P, est héréditaire.
Conclusion : P, est vraie et P, est héréditaire donc d’aprées le principe de récurrence, on a :

vn € N,A" = PD"p~1

Méthode 2 : Par itération

Ona:
A" = (PDP~1)" = PDP"! x PDP™! x ...x PDP™1 = PDP~'PDP~!..PDP™1 =PD x ... x DP~! = PD"P~1
In
d)Ona:
(uOJ VOJ WO) = (3P1P5)
Uny1 = —Vp + Wy
vneN, Vpe1 = Uy + 2v, — 3wy,
Wpyq = Uy + vy — 2wy

On sait que :

Upty = —Vp + Wy 0 -1 1 Up Up41
Vpg1 =Up+2vp—3wp (1 2 =3[ Va | = Vn+1
Wpy1 = Uy + Vy — 2wy 1 1 =2/ \Wn Wh+1

On en déduit donc par une récurrence immédiate que :

up 0 -1 1\"/u
VnEN,(Vn>=<1 2 —3) (V0>
Wy 1 1 =2/ \W
up 1 1 0\/0 0 0 1 1 -1\/3
=>Vn€N*,<Vn>=<1 -1 1)(0 1 0 )(o -1 1)(1)
Wy 1 0 1/\0 0 (—D"/\=1 -1 2/\5
1 1 0\/0 0 0 -1
1 0 1/\0 0o (-D"/\6e6




Page 24 sur 28

4
- (—4 +6 X (—1)n>
6 x (—1)P

Exercice D.4 (Matrice a diagonale dominante) : Soit A = (ai'j) L€ M, (R). Montrer que :

1<ij<
vi € [1,n], |a;;| > Z |aij| = A € GL,(R)
iEl[[qlt.ln]]

On raisonne par 1’absurde. On suppose que A n’est pas inversible. On sait que :

A= (ai'j)lsi,an ¢ GL,(R) © 3(xy, ..., Xp) # (0, ...,0)tel que :

n
Vie [[1, n]],z ai‘]-X]- =0
=

)

On pose :
Xi, = sup {lxi[} >0
i€[1;n]
On a alors :
n n
z aio‘ij =0= aio’ioxio = — Z ai‘]-X]-
j=1 j=1
j#io
On a donc :
n n n
[0 i0%io| = [io a0 | = Z Qg jXj| < Z|aio,,-x]-| < [xio| Z'aimjl
j=1 =1 =1
j#io j#io j#io
Comme |XiO| #0ona:
n
i1 | < Z|ai,j|
j=1
j#ig

Cela est impossible.
On en déduit donc que A € GL,(R).

Exercice D.5 : On considére les matrices :
-1 2 1 1
a=(T, ser=(1 )
a) Montrer que P est inversible et calculer P71
b) Calculer P~1AP. En déduire alors A" pour tout n entier naturel.
¢) On pose les suites (uy,) et (v,) définie par (ug,vy) € R? et :
Up1 = —Up + 2vy
VnEN, {Vn+1 = —4uy, + 5vy
Donner la formule explicite de u, et v, en fonction de n.
d) On considere les équations différentielles :
X' =—x+2y
{y' = —4x + 5y
Résoudre de deux maniéres différentes cette équation différentielle.

a)Ona:

o= Ym s zmioiximomri= (3 )

rap=(2 (0 DG D=0 3

b)Ona:
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On en déduit alors comme dans 1’exercice D.3 que :
AT = G 1%)1((1) gon) (—2% _11)
- (1 2) (—3n 5“)
_ ( 2-3" -1+3" )
2—-2x3" —142x3"

¢) On a comme dans I’exercice D.3 :

Vn €N, {VIET:—_A}ILHH-:-ZS?H & Vn€EN, (:411 é) (32) = (32:1)

—wen () =04 ()
:( 2—30 -1+ 3" )(UO)
2—2x3" —14+2x3%\Vy

On en déduit donc que :

u, = (2-=3Mug + (=14 3Mvy,
vn € N’{vn = (2=2%3Yu, + (=1 + 2 x 30y,
d)Ona:
X' =—-x+2y
{y' = —4x + 5y

Méthode 1 : Avec des dérivées secondes !
X'=—=x4+2y=x"=—=x"+2y =2x"+x'=-8x+10y = —8x+ 5(x' +x)
=x"—-4x'"+3x=0

On résout 1’équation caractéristique :
(Eq):ir? —4r+3=0ore€(l1;3}
On en déduit donc que :
3(A,B) € R?, vVt € R, x(t) = Aet + Be3*
On peut faire de méme avec y ou bien résoudre :
y' — 5y = —4(Ae' + Be3Y)
On sait que :
y' —5y =0 < 3L € R,y(t) = Ae>t
De plus on cherche une solution particuliere. On pose :
yp(t) = Ae* + 2Be3"
On a alors :
Vp' — 5yp = —4(Ae" + Be®")
On en déduit donc que :

X' =—x+2y 5 x(t) = Ae' + Be3t
{y’ = —4x + 5y = IABYERVEER, {3?\ € R,y(t) = AeSt + Ae' + 2Be3t
Cependant on a trois degrés de liberté ce qui n’est pas possible.
On sait que :
x'(0) = —x(0) +2y(0) =—-A—-B+2A+2A+4B=A+3B
=21=0
=A=0

On en déduit donc que :
X' = —x+2y
{y' = —4x + 5y
Il reste a vérifier car nous n’avons pas travaillé par équivalence !!
x(t) = Ae® + Be3t
3A € R,y(t) = Ae' + 2Be3t

x(t) = Ae' + Be3t

= 3(A,B ERZ,VtER{
(A B) 3 € R,y(t) = Ae' + 2Bet

3(A,B) e R, VteR {

CVieR { x'(t) = Aet + 3Be3t = —Aet — Be3t + 2(Aet + 2Be3t) = —x(t) + 2y(t)
"ly’ = Aet + 6Be3t = —4(Aet + Be3Y) + 5(Aet + 2Be3t) = —4x(t) + 5y(t)
On a donc :
X' = —x+2y x(t) = Ae' + Be3t
< 3(AB E]RZ,VtER{
{y' = —4x + 5y (A B) 3 € R,y(t) = Ae' + 2Bet
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Méthode 2 : Avec des matrices !

Ona:
Y =)= Ch 6 =a0)-ror()
= p-1 (X> = pp-1 (X)
y y
0] :
n pose Ve A = -t (x(t)) ~ ( 2 _1) (x(t)) B (Zx(t) - y(t))
B y®/ =1 1/\y®)  \=x@® +y®)
On pose :
® 2x(t) —y(©)
vEERZ(H) = (Z(t)) = (—);((tt) +}}I/(tt))
On a alors :

(1 0) (xl(t)) o vie R,{ X0 =x () _ (A B) e RZ’{Xl(t) et

x"1(O) (X' (®
el <y'1(t)) =P <Y'(t)> 0 3/\y;(v) y1 () = 3y1 (D) y1(t) = Be3*

Or on sait que :

wenr ()« (10) v (1) -#(0) - H0) - ¢ D - (5780

On en déduit donc que :
{ X' =—x+2y
y' = —4x+ 5y

x(t) = Ae' + Be3t

< 3(AB ERZ,VteR{
(A B) 3 € R,y(t) = Ae' + 2Bet

Partie E: Matrices symétriques

2
Exercice E.1 : Soient (n,p,m) € (N*)3,A € M, ,(R), (B,C) € (Mm'n(]R))

1) Montrer que :
AAT =0, = A =0y,
2) Montre que :
BAAT = 0,,,, = BA = Oy,
3) Montrer que :
BAAT = CAAT = BA = CA
1) On pose :
A= (ai,j)1sisn
1<j<p
On a alors :
T _
AA" = (bi’j)1si,j5n
Avec :
P
VG,j) € 1,007, byy = ) aay
k=1
On a donc :

p p
AAT = On = Vie [[1,n]],bi,i = Z ajkadik = 0= Z aik =
k=1 k=1

Or on sait que A € M, ,(R) doncon a:
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p
vie [Ln], ) af, =0 V(,k) € [1,n] x [1,plajx =0 A=0,,
k=1
2) On sait que AT € M n(R) et BT € M, ;n(R) donc le produit AT x BT existe. On a donc :

BAAT = 0,,, = BAATBT = 0, = (BA) x (BA)T = 0,
= BA = 0y, , d’aprés la question précédente.
3)Ona:
BAAT = CAAT & BAAT — CAAT = 0, © (B— C)AAT =0, © B—C=0y,, ©B=C

Exercice E.2 : Calculer si cela est possible ’inverse de :

A=

[ =
[ = I
R OR R

I N

0

On peut bien siir le faire de fagon classique, soit avec un systéme, soit avec le pivot de Gauss. Ici nous allons présenter
une fagon plus original, en utilisant un polynome en A.

Ona:
01 1 1 1 1 1 1 1 0 0 O
A=1011=1111—0100=]—I
11 0 1 1 1 1 1 0 010 N
1 1 1 0 1 1 1 1 0 0 0 1
] et I, commutent donc on peut appliquer le bindme de Newton :
n
_ n _ n ke_ n—-k
vneN, (- 1) —kzo(k)a)( L)
On démontre par récurrence que :
vk € N, Jk = 4k-1j
On a donc :
n n n
_ n _ n ke_ n-k _ /_1\n zn ke_ n-kK _ /_1\n zn k-1,7_1\yn-k
010" = > () DK, = DM+ ) (1) OF1™ = (DM + ) (1) (#1=Dm))
k=0 k=1 k=1
= n 1/~ m
— (_1)\n k—-1/_1\n-k — (_1\n - k-17_14\n-kK _ r_1\n
= (-1 I4+<Z(k)4 (1) )1—( D I4+4(Z(k)4 (=D = (-1) )J
k=1 k=0
3 — (="
=D+ ———]
4
On pose :
3n_(_1)n
Uy =——
On a alors :
A" —a,] = (1",
Or on sait que :
J=A+1,
On a donc :
A" —a,] = (D", =
On a donc :
(D" 3 - (D 30— (=" 37— (-1
e~ 7 -~ 7
=D+ 4 4 4 4
3N - (=" 3N — (=" 3 —-(C=D" 3 —-(=D"
(-1) 1 + (-1) (-1) (-1)
vn € N AP = 4 4 4 4
) 3n_(_1)n 3n_(_1)n ( 1)n+3n_(_1)n 3n_(_1)n
4 4 4 4
311 _ (_1)11 311 . (_1)11 N 3n . (_1)11
2 2 1 (-1 +—4
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Exercice E.3 : On veut montrer que A € A, (R) = (I, + A) € GL,(R)

1) Soit X un vecteur colonne. Montrer que X*X € [0; +oo[

2) Soit A € A, (R). Montrer que (I, + A)X =0p,1 = X =0y,

3) En déduire que (I, + A) € GL,(R)

4) Soit A € A,(R). On pose M = (I, — A)(I, + A)~. Montrer que M~ = MT

1) On pose :
X1
X= ( : ) EMn,l(R)

Xn

X1 n
XTX=(X1 -« Xp)X ( : > = > (x)?=0

On en déduit donc que : XTX € [0; +oo].
On remarque méme que

On a alors :

n
XTX = 0 @Z(xk)z — 0o vke[Ln]x =0

k=1
2)Ona:
(I, +A)X =0y,
= [, +AX]Tx (I, +A)X=0
= XTI, +ATJ,+A)X=0
Orona:
I, +AT=1,-A

On a donc :

I, +A)X=0,1 =X, — AU, +AX=0=2X"([, —ADX=0=>X"X - XTA’X =0
Or on sait que :
—A? = AT X Acar A € A,(R)
On en déduit donc que :
XTX —XTA2X =0= XX+ XTATAX =0=XTX+(AX)T(4X) =0
Or on sait que :
I, +AX=0p1 =X +AX =0, > X =-AX

On a donc :

I, +A)X=0,1 =X X+AX)TAX) =0=X"X+(-X)(-X)=0=2X"X=0=X =0,
D’apres la question précédente.
3) C’est une caractérisation des matrices inversibles. On sait que :

A€GL,(R) & VX € R\{0,1},AX # 0,1
C’est donc immédiat !
4) On pose :
M=(1,-A) A, +A)™*

On a alors :

MI,+A) =1, —-A=> MU, +AD]"=U,-AT= U, +A™M =1, +A= (I, —-AMT =1,+ A

M =U,+A)U,-A) =M1




