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Fiches d’exercices 14 : Continuité 

 

Partie A : Continuité locale 

 

Exercice A.1 : Soit f la fonction à valeurs réelles définie par :  

𝑓(𝑥) = {
𝑥 𝑠𝑖 𝑥 < 1

𝑥2𝑠𝑖 1 ≤ 𝑥 ≤ 4

8√𝑥 𝑠𝑖 𝑥 > 4
 

1) Tracer le graphe de f.  

2) f est-elle continue sur ℝ 

 

1) 

 
2) Il suffit de voir que f est continue sur chaque intervalle ]−∞; 1[, [1; 4] et ]4; +∞[. De plus on a :  

𝑙𝑖𝑚
𝑥→1−

𝑓(𝑥) = 1 = 𝑓(1) 

𝑙𝑖𝑚
𝑥→4+

𝑓(𝑥) = 𝑓(4) 

Donc f est continue sur ℝ. 

 

Exercice A.2 :  

Les fonctions suivantes sont-elles prolongeables par continuité en 0 pour f et en 1 pour g ? 

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛 (
1

𝑥
)  𝑏) 𝑔(𝑥) =

1

1 − 𝑥
−

2

1 − 𝑥2
 

 

1) On sait que :  

∀𝑥 ∈ ℝ, |𝑠𝑖𝑛(𝑥)| ≤ |𝑥| 
On a donc :  

∀𝑥 ∈ ℝ∗, |𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛 (
1

𝑥
)| ≤ |𝑥| 

On a donc :  

𝑙𝑖𝑚
𝑥→0

𝑓(𝑥) = 0 

On peut donc prolonger f par continuité en 0 en posant :  

𝑓:{

ℝ → ℝ

𝑥 ↦ {𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛 (
1

𝑥
)  𝑠𝑖 𝑥 ≠ 0

0 𝑠𝑖 𝑥 = 0

 

 

2) On a :  

∀𝑥 > −1,𝑔(𝑥) =
1

1 − 𝑥
−

2

1 − 𝑥2
=

1

1 − 𝑥
(1 −

2

1 + 𝑥
) =

1

1 − 𝑥
(
𝑥 − 1

1 + 𝑥
) = −

1

1 + 𝑥
 

On a donc : 
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lim
x→1

g(x) = −
1

2
 

On peut donc prolonger  par continuité en 1 en posant :  

𝑔̃:

{
 
 

 
 

] − 1;+∞[→ ℝ

𝑥 ↦ {

1

1 − 𝑥
−

2

1 − 𝑥2
 𝑠𝑖 𝑥 ≠ 1

−
1

2
 𝑠𝑖 𝑥 = 1

 

 

Exercice A.3 : On pose :  

g ∶  {

ℝ → ℝ

x ↦ {
x2e−x

1 − e−x

0 sinon

 si x ≠ 0 

On cherche à montrer que g est continue.  

1) Ecrire la condition nécessaire et suffisante pour que g soit continue.  

2) Démontrer que :  

∀ x ∈ [−1; 1], 1 + x + x2 ≥ ex ≥ 1 + x 
3) En déduire que g est continue sur ℝ. 

 

1) On souhaite que :  

𝑙𝑖𝑚
𝑥→0

𝑔(𝑥) = 0 

2) On pose :  

∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑒𝑥 − 1 − 𝑥 

On sait que f est dérivable sur ℝ et que :  

∀𝑥 ∈ ℝ, 𝑓′(𝑥) = 𝑒𝑥 − 1 

On a donc le tableau de variation suivant :  

 
On en déduit donc que :  

∀𝑥 ∈ ℝ, 𝑒𝑥 ≥ 1 + 𝑥 

On fait de même en posant h: x ↦ ex − 1 − x − x2 

On sait que h est dérivable sur ℝ et que :  

∀𝑥 ∈ ℝ, ℎ′(𝑥) = 𝑒𝑥 − 1 − 2𝑥 

On a donc :  

∀𝑥 ∈ ℝ, ℎ′′(𝑥) = 𝑒𝑥 − 2 

On a donc le tableau de variations suivant :  

 
Or on sait que e − 3 < 0 

De plus h′ est continue sur [−1; ln (2)], strictement décroissante et change de signe. Il existe donc un unique α ∈

[−1; ln (2)] tel que h′(α) = 0, d’après le théorème de la bijection.  

On a donc le tableau de variations suivant :  
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Or on sait que :  

ℎ′(𝛼) = 𝑒𝛼 − 1 − 2𝛼 = 0 

On a donc :  

ℎ(𝛼) = 𝑒𝛼 − 1 − 𝛼 − 𝛼2 = 𝛼 − 𝛼2 = 𝛼(1 − 𝛼) 

De plus on a : h′(0) = e0 − 1 = 0. On en déduit donc que α = 0. 

On a donc :  

∀ 𝑥 ∈ [−1; 1], 1 + 𝑥 + 𝑥2 ≥ 𝑒𝑥 ≥ 1 + 𝑥 

3) On en déduit donc que :  

∀ 𝑥 ∈ [−1; 1], −𝑥 ∈ [−1; 1] ⟹  1 − 𝑥 + 𝑥2 ≥ 𝑒−𝑥 ≥ 1 − 𝑥 

⟹ ∀ 𝑥 ∈ [−1; 1], 𝑥 ≥ 1 − 𝑒−𝑥 ≥ 𝑥 − 𝑥2 

⟹ ∀ 𝑥 ∈ [−1; 1], 𝑥 ≠ 0,
1

𝑥
≤

1

1 − 𝑒−𝑥
≤

1

𝑥 − 𝑥2
 𝑐𝑎𝑟 𝑥 ↦

1

𝑥
 𝑒𝑠𝑡 𝑑é𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒 𝑠𝑢𝑟 ℝ∗− 𝑒𝑡 ℝ∗+ 

⟹ ∀ 𝑥 ∈ [−1; 1], 𝑥 ≠ 0,
𝑥2𝑒−𝑥

𝑥
≤
𝑥2𝑒−𝑥 

1 − 𝑒−𝑥
≤
𝑥2𝑒−𝑥

𝑥 − 𝑥2
 

⟹ ∀ 𝑥 ∈ [−1; 1], 𝑥 ≠ 0, 𝑥𝑒−𝑥 ≤ 𝑔(𝑥) ≤
𝑥𝑒−𝑥

1 − 𝑥
 

Or on sait que :  

𝑙𝑖𝑚
𝑥→0

𝑥𝑒−𝑥

1 − 𝑥
= 𝑙𝑖𝑚
𝑥→0

𝑥𝑒−𝑥 = 0 

Donc d’après le théorème des gendarmes,  

𝑙𝑖𝑚
𝑥→0

𝑔(𝑥) = 0 

Donc g est continue sur en 0 donc sur ℝ. 

  

Exercice A.4 : On pose :  

𝑔 ∶  {

]0; 1[∪]1;+∞[→ ℝ

𝑥 ↦
(𝑥 + 2)(𝑥 − 1)

𝑥 𝑙𝑛(𝑥)

 

a) Montrer que 𝑔 est prolongeable par continuité en 1.  

b) 𝑔 est-elle prolongeable par continuité en 0 ? 

 

a) On veut montrer que :  

𝑙𝑖𝑚
𝑥→1

𝑔(𝑥)  existe! 

𝑙𝑖𝑚
𝑥→1

(𝑥 + 2)(𝑥 − 1)

𝑥𝑙𝑛(𝑥)
= 𝑙𝑖𝑚
𝑥→1

(𝑥 + 2)

𝑥
× 𝑙𝑖𝑚
𝑥→1

𝑥 − 1

𝑙𝑛 (𝑥)
= 3 𝑙𝑖𝑚

𝑥→1

𝑥 − 1

𝑙𝑛 (𝑥)
 

Or on sait que :  

𝑙𝑖𝑚
𝑥→1

𝑙𝑛 (𝑥)

𝑥 − 1
= 𝑙𝑖𝑚
𝑥→1

𝑙𝑛(𝑥) − 𝑙𝑛 (1)

𝑥 − 1
= 𝑙𝑛′(1) =

1

1
= 1 
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Ainsi on a :  

𝑙𝑖𝑚
𝑥→1

𝑥 − 1

𝑙𝑛 (𝑥)
= 1 (𝑝𝑎𝑟 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) 

On a donc :  

lim
x→1

(x + 2)(x − 1)

𝑥𝑙𝑛(𝑥)
= 3 

Donc 𝑔 est prolongeable par continuité en 1 en posant :  

𝑔̃: {

]0;+∞[→ ℝ

𝑥 ↦ {

(𝑥 + 2)(𝑥 − 1)

𝑥 𝑙𝑛(𝑥)
 𝑠𝑖 𝑥 > 1

3 𝑠𝑖 𝑥 = 1

 

b) On a :  

{
lim
𝑥→0+

(𝑥 + 2)(𝑥 − 1) = −2

lim
𝑥→0+

𝑥𝑙𝑛(𝑥) = 0− (𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑎𝑟é𝑒)
⟹ lim

𝑥→0+
𝑔(𝑥) = +∞ 

Ainsi 𝑔 n’est pas prolongeable par continuité en 0. 

 

Partie B : Continuité globale 

 

Exercice B.1 : Soit n ∈ ℕ∗. On pose :  

(En): x + x
2 +⋯+ xn =∑xk

n

k=1

= 1 

1) Montrer que (En) admet une unique solution sur [0 ;+∞[. 

2) Soit xn cette unique solution. Montrer que (xn) converge puis calculer sa limite.  

 

a) Soit n ∈ ℕ. On pose la fonction :  

𝑓𝑛 : {
[0;+∞[→ ℝ

𝑥 ↦ 𝑥 + 𝑥2 +⋯+ 𝑥𝑛
 

𝑓𝑛 ∈ 𝒞
1(ℝ) et  

∀𝑥 ∈ ℝ+, 𝑓𝑛
′(𝑥) = 1 + 2𝑥 +⋯+ 𝑛𝑥𝑛−1 > 0 𝑐𝑎𝑟 𝑥 ≥ 0 

On en déduit donc que fn est strictement croissante sur ℝ+.  

 
On a donc fn est :  

_ continue sur ℝ+  

_ strictement croissante sur ℝ+ 

_ fn(0) = 0 et fn → +∞ quand x → +∞  

Donc d’après le théorème de la bijection, il existe un unique xn ∈ ℝ
+ tel que fn(xn) = 1 

b) On a :  

∀n ∈ ℕ, fn+1(xn) = xn + xn
2 +⋯+ (xn)

n + (xn)
n+1 = 1 + (xn)

n+1 > 1 

On en déduit donc que :  

fn+1(xn) > fn+1(xn+1) 
Comme la fonction 𝑓𝑛+1 est croissante on en déduit donc que : fn+1(xn) > fn+1(xn+1) ⟹ xn > xn+1 

Donc la suite (xn) est décroissante. 

De plus (xn) est minorée par 0 donc elle converge vers un réel ℓ, ℓ ≥ 0. 

De plus on sait que :  

∀n ∈ ℕ∗, n ≥ 2, fn(1) = n > 1 
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⟹∀n ∈ ℕ∗, n ≥ 2, fn(xn) < fn(1) 

⟹ ∀n ∈ ℕ∗, n ≥ 2, xn < 1 car fn est croissante sur ℝ
+ 

De plus on sait que :  

∀𝑛 ∈ ℕ∗, 𝑛 ≥ 2, 𝑥𝑛 +⋯+ (𝑥𝑛)
𝑛 = 1 

⟹ 𝑥𝑛 = 1 − (𝑥𝑛)
2(1 + 𝑥𝑛 +⋯+ (𝑥𝑛)

𝑛−2) 

= 1 − (𝑥𝑛)
2 ×

1 − (𝑥𝑛)
𝑛−1

1 − 𝑥𝑛
 

On en déduit donc que :  

∀𝑛 ∈ ℕ∗, 𝑛 ≥ 2, 𝑥𝑛 = 1 − (𝑥𝑛)
2 ×

1 − (𝑥𝑛)
𝑛−1

1 − 𝑥𝑛
 

De plus on sait que :  

∀𝑛 ≥ 2, 0 < 𝑥𝑛 ≤ 𝑥2 < 1 

⟹ ∀𝑛 ≥ 2,0 <  (𝑥𝑛)
𝑛−1 ≤ (𝑥2)

𝑛−1 < 1 

Or on sait que :  

𝑙𝑖𝑚
𝑛
(𝑥2)

𝑛−1 = 0 𝑐𝑎𝑟 𝑥2 < 1 

On en déduit donc d’après le théorème des gendarmes que :  

𝑙𝑖𝑚
𝑛
(𝑥𝑛)

𝑛−1 = 0 

On a donc par passage à la limite :  

𝑥𝑛 = 1 − (𝑥𝑛)
2 ×

1 − (𝑥𝑛)
𝑛−1

1 − 𝑥𝑛
 

⟹ ℓ = 1 − ℓ2 ×
1

1 − ℓ
 

⟹ ℓ− ℓ2 = 1 − ℓ − ℓ2 

⟹ ℓ =
1

2
 

On en déduit donc que :  

𝑙𝑖𝑚
𝑛
𝑥𝑛 =

1

2
 

 

Exercice B.2 : Soit f ∶ I → ℝ une fonction continue telle que :  

∀ x ∈ I, f(x)2 = 1 

Déterminer toutes les fonctions f possibles.  

 

Et si ℓ = 1, fn(1) = n > 0 ce qui est impossible.  

On sait que :  

∀ 𝑥 ∈ 𝐼, 𝑓(𝑥)2 = 1 ⇔ ∀ 𝑥 ∈ 𝐼, 𝑓(𝑥) = {
1
𝑜𝑢
−1

 

On suppose qu’il existe deux intervalles I′et J′ inclus dans I disjoints telle que :  

∀ x ∈ I′, f(x) = 1 

∀ 𝑥 ∈ 𝐽, 𝑓(𝑥) = −1 

Comme f est continue sur i on peut appliquer le théorème des valeurs intermédiaires et il existe c ∈ I tel que f(c) = 0 

et donc f(c)2 = 0 ce qui est absurde.  

 

On en déduit donc que :  

Soit f ∶ I → ℝ une fonction continue telle que :  

∀ x ∈ I, f(x)2 = 1 ⟺ f = 1I ou f = −1I 
Avec 1I qui désigne l’indicatrice de I.  

 

Exercice B.3 : Une personne parcourt 4 km en une heure. Montrer qu’il existe un intervalle de 30mn où il a parcouru 

exactement 2km.  
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On pose f ∶  {
[0; 60] → ℝ

t ↦ f(t) = distance parcourue en km par la personne au bout de t minutes
 

On pose alors :  

g ∶  {
[0; 30] → ℝ

t ↦ f(t + 30) − f(t)
 

On sait que :  

∀t ∈ [0; 30], g(30) + g(0) = f(60) = 4 

On en déduit donc que :  

{
g(30) ≥ 2 et g(0) ≤ 2

ou
g(30) ≤ 2 et g(0) ≥ 2

 

Comme g est continue, il existe t ∈ [0; 30] tel que g(t) = 2 d’après le théorème des valeurs intermédiaires.  

 

Exercice B.4 : Soient f et g deux fonctions de [−1 ; 1] dans ℝ. On définit pour tout x ∈ ℝ, la fonction :  

M(x) = sup
t∈[−1;1]

(f(t) + xg(t)) 

a) Expliciter M(x) lorsque f(t) = √1 − t2 et g(t) = t. 

b) Montrer que M:ℝ → ℝ est bien définie.  

c) Montrer que :  

∀ h > 0, ∀ x ∈ ℝ, {

M(x + h) ≤ M(x) + h × sup
t∈[−1;1]

g

M(x + h) ≥ M(x) + h × inf
t∈[−1;1]

g
  

d) En déduire que M: ℝ → ℝ est continue.  

 

a) On a :  

M(x) = sup
t∈[−1;1]

(f(t) + xg(t)) = sup
t∈[−1;1]

(√1 − t2 + xt) 

On pose :  

hx ∶ {
[−1; 1] → ℝ

t ↦ √1 − t2 + xt
 

On a alors :  

hx ∈ 𝒟(]−1; 1[) et ∶  ∀t ∈ ]−1; 1[, hx
′ (t) = −

t

√1 − t2
+ x 

On résout :  

−
t

√1 − t2
+ x = 0 ⟹ x =

t

√1 − t2
⟹ x√1 − t2 = t ⟹ x2(1 − t2) = t2⟹

x2

1 + x2
= t2 ⟹ |t| =

|x|

√1 + x2
 

De plus on a :  

hx
′ (t) = −

t

√1 − t2
+ x 

hx′ a les mêmes variations que  

h0
′ : t ↦ −

t

√1 − t2
 

Il suffit alors de voir que :  

ℎ0
′′(𝑡) = −

√1 − 𝑡2 +
𝑡2

√1 − 𝑡2

1 − 𝑡2
< 0 𝑠𝑢𝑟 ] − 1; 1[ 

On en déduit donc que :  

hx
′ (t) = 0 admet au plus une valeur sur ] − 1; 1[, appelé t0. 

On sait de plus que :  

hx
′ (0) = x 

On en déduit donc que :  

Si x < 0 alors :  

hx
′ (0) = x < 0 ⇒ t0 =

x

√1 + x2
< 0 
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De même si x > 0 alors :  

hx
′ (0) = x > 0 ⇒ t0 =

x

√1 + x2
> 0 

On a donc le tableau de variations suivant :  

 
On a donc :  

M(x) = sup
t∈[−1;1]

(f(t) + xg(t)) = hx (
x

√1 + x2
) = √1 − (

x

√1 + x2
)
2

+ x (
x

√1 + x2
) =

1

√1 + x2
+

x2

√1 + x2
 

⟹M(x) = √1 + x2 

 
b) On a :  

M(x) = sup
t∈[−1;1]

(f(t) + xg(t)) 

Or on sait que (f, g) ∈ (𝒞([−1; 1]))
2
, on en déduit donc que :  

∀x ∈ ℝ, hx: t ↦ f(t) + xg(t) ∈ 𝒞([−1; 1]) 
Or toute fonction continue sur un segment est bornée et atteint ses bornes. 

Donc il existe t0 ∈ [−1; 1] tel que :  

M(x) = hx(t0) 
Donc M est bien définie.  

c) On sait que :  

sup(f + g) ≤ sup(f) + sup(g) 
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On a donc :  

∀h > 0,M(x + h) = sup
t∈[−1;1]

(f(t) + (x + h)g(t)) 

= sup
t∈[−1;1]

(f(t) + xg(t) + hg(t)) 

≤ sup
t∈[−1;1]

(f(t) + xg(t)) + sup
t∈[−1;1]

(hg(t)) 

≤ M(x) + h × sup
t∈[−1;1]

g 

De même on a :  

M(x + h) = sup
t∈[−1;1]

(f(t) + (x + h)g(t)) 

= sup
t∈[−1;1]

(f(t) + xg(t) + hg(t)) 

Or on sait que :  

∀t ∈ [−1; 1], f(t) + xg(t) + hg(t) ≥ f(t) + xg(t) + h inf
t∈[−1;1]

g  

On a donc :  

M(x + h) = sup
t∈[−1;1]

(f(t) + xg(t) + hg(t)) 

≤ sup
t∈[−1;1]

(f(t) + xg(t) + h inf
t∈[−1;1]

g) 

≤ M(x) + h × inf
t∈[−1;1]

g 

d) M est continue sur ℝ si et seulement si :  

lim
h→0

M(x + h) = M(x) 

Or on sait :  

∀ h > 0, ∀ x ∈ ℝ,M(x) + h × inf
t∈[−1;1]

g ≤ M(x + h) ≤ M(x) + h × sup
t∈[−1;1]

g 

Comme g est continue sur [−1; 1], g est bornée et atteint ses bornes. Donc il existe (t0, t1) ∈ ([−1; 1])
2 tel que :  

inf
t∈[−1;1]

g = g(t0) = m 

sup
t∈[−1;1]

g = g(t1) = M 

On en déduit donc que : 

∀ h > 0, ∀ x ∈ ℝ,M(x) + h ×m ≤ M(x + h) ≤ M(x) + h × M 

Donc d’après le théorème des gendarmes, on a :  

lim
h→0+

M(x + h) = M(x) 

On peut raisonner de même et démontrer que :  

lim
h→0−

M(x + h) = M(x) 

On en déduit donc que M est continue sur ℝ.  

 

Exercice B.5 : Soient f et g deux fonctions continues sur ℝ tel que : 

∀ x ∈ ℚ, f(x) = g(x) 
Montrer que f = g 

 

Il suffit d’utiliser la densité de ℚ dans ℝ. C’est-à-dire que :  

∀x ∈ ℝ, ∃(xn) ∈ ℚ
ℕ tel que :  

lim
n
xn = x 

Autrement dit tout nombre irrationnel est limite d’une suite de rationnels. Il suffit de prendre par exemple la suite des 

décimale de x.  

Comme f et g sont continues sur ℝ, on a :  

∀n ∈ ℕ, f(xn) − g(xn) = 0 ⟹ lim
n
f(xn) − g(xn) = 0 = f(x) − g(x) 

On en déduit que f = g. 
 

Exercice B.6 : On pose :  
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f: {

]0; 1[→ ℝ

x ↦
1

x
+

1

x − 1

 

1) Montrer que f est bijective.  

2) Déterminer :  

lim
n→+∞

f−1(2−n) 

 

1) Il suffit de voir que f est dérivable sur son ensemble de définition et que :  

∀x ∈]0; 1[, f ′(x) = −
1

x2
−

1

(x − 1)2
< 0 

Donc f est continue et strictement monotone sur ]0; 1[, elle est donc bijective d’après le théorème de la bijection.  

De plus on peut voir que :  

lim
x→0+

f(x) = +∞ 

lim
x→1−

f(x) = −∞ 

Donc f réalise une bijection de ]0; 1[ dans ℝ. 

2) On sait que f−1 est continue sur ℝ et donc :  

lim
n→+∞

f−1(2−n) = f−1(0) 

Il suffit alors de résoudre l’équation :  

f(x) = 0 ⟺
1

x
+

1

x − 1
= 0 ⟺ x =

1

2
 

On en déduit donc que :  

lim
n→+∞

f−1(2−n) =
1

2
 

 

Exercice B.7 : Soient (a; b) ∈ ℝ2 et f ∈ 𝒞0([a; b];ℝ) tel que :  

f([a; b]) ⊂ [a; b] 
Montrer que :  

∃ c ∈ [a; b], f(c) = c 

 

Il suffit de poser :  

g ∶ x ↦ f(x) − x 
On a :  

g(a) = f(a) − a ≥ 0 car f(a) ∈ [a; b] donc f(a) ≥ a 
De même on a :  

g(b) = f(b) − b ≤ 0 car f(b) ∈ [a; b] 
On a donc :  

 g ∈ 𝒞([a; b]) 

 g(a) ≤ 0 

 g(b) ≥ 0 

 

Donc d’après le TVI, il existe une valeur c ∈ [a; b] tel que g(c) = 0 

Donc :  

∃ c ∈ [a; b], f(c) = c 
 

Exercice B.8 : Soit f ∶ [0; 1] → ℝ une fonction continue telle que f(0) = f(1). Montrer que :  

∃(x1; x2) ∈ [0; 1]
2, {
f(x1) = f(x2)

x2 − x1 =
1

2

 

 

On pose :  



Page 10 sur 18 
 

g: {
[0;
1

2
] → ℝ

x ↦ f (x +
1

2
) − f(x)

 

On a :  

g(0) = f (
1

2
) − f(0) 

g (
1

2
) = f(1) − f (

1

2
) 

On a donc :  

g(0) + g (
1

2
) = f(1) − f(0) = 0 

On en déduit donc que :  

{
 
 

 
 g(0) ≥ 0 et g (

1

2
) ≤ 0

ou

g(0) ≤ 0 et g (
1

2
) ≥ 0

 

Donc :  

 g change de signe sur [0;
1

2
] (ou g est toujours nul !) 

 g est continue 

Donc il existe c ∈ [0;
1

2
] tel que g(c) = 0 

On a alors :  

f (c +
1

2
) = f(c) 

On pose :  

x1 = c +
1

2
, x2 = c 

On a alors :  

{
f(x1) = f(x2)

x2 − x1 =
1

2

 

  

Exercice B.9 : Soient I un intervalle de ℝ et f ∶ I → ℝ une application continue et injective. On se propose de montrer 

que f est strictement monotone.  

Partie A : Première méthode :  

On considère (a, b, x, y) ∈ I4 avec a < b et x < y. On pose :  

∀t ∈ [0; 1], u(t) = tx + (1 − t)a  

∀t ∈ [0; 1], v(t) = ty + (1 − t)b 

∀t ∈ [0; 1], G(t) = f(u(t)) − f(v(t)) 

1) Calculer u(0), u(1), v(0) et v(1).  
2) Tracer u et v.  

3) Montrer que :  

∀t ∈ [0; 1], u(t) < v(t) 
4) En déduire que G ne s’annule pas sur [0; 1] puis que G(0) et G(1) ont même signe.  

5) En déduire que f est monotone sur I. 

Partie B : Deuxième méthode : On suppose que f n’est pas monotone.  

1) Expliquer pourquoi on peut supposer :  

∃a < b < c tels que f(a) < f(b) < f(c) 
2) Faire un dessin.  

3) Conclure.  

  

 

Partie A : Première méthode :  
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1) u(0) = a, u(1) = x, v(0) = b et v(1) = y 

2)  

 
3) On a :  

∀t ∈]0; 1[, a < b ⟹ tx < ty  et (1 − t)⏟    
>0

a < (1 − t)b 

Par addition :  

∀t ∈]0; 1[, tx + (1 − t)a < ty + (1 − t)b 

Si t = 0, tx + (1 − t)a = a < b = ty + (1 − t)b 

Si t = 1, tx + (1 − t)a = x < y = ty + (1 − t)b 

On a donc :  

∀t ∈ [0; 1], u(t) < v(t) 
4) On a vu grâce à la question précédente que :  

∀t ∈ [0; 1], u(t) < v(t) ⟹ u(t) ≠ v(t) ⟹ f(u(t)) ≠ f(v(t)) car f est injective.  

On a donc :  

∀t ∈ [0; 1], G(t) = f(u(t)) − f(v(t)) ≠ 0 

Donc G ne s’annule pas sur [0; 1].  

Or f est continue (énoncé) de même que u et v (fonctions affines). Donc par composition G est aussi continue et 

comme G ne s’annule pas, d’après la contraposée du théorème des valeurs intermédiaires, on en déduit que G est 

toujours de même signe. Donc G(0) et G(1) sont de même signe.  

5) On a d’après la question précédente :  

∀(a; b) ∈ I2, a < b, ∀(x, y) ∈ [a; b]2, x < y le signe de f(a) − f(b) = G(0) est le même que le signe de G(1) = f(x) −
f(y). Donc la fonction f est monotone.  

Partie B : Deuxième méthode : On suppose que f n’est pas monotone.  

1) On suppose ici que f n’est pas monotone. Donc elle n’est ni croissante ni décroissante sur I.  
On cherche donc la négation de :  

{
∀(a, b) ∈ I2, a < b ⟹ f(a) < f(b)

ou
∀(a, b) ∈ I2, a < b ⟹ f(a) > f(b)

 

Ce qui donne :  

NON({
∀(a, b) ∈ I2, a < b ⟹ f(a) < f(b)

ou
∀(a, b) ∈ I2, a < b ⟹ f(a) > f(b)

) = {
∃a < b < c tels que f(a) < f(b) et f(b) > f(c)

ou
∃a < b < c tels que f(a) > f(b) et f(b) < f(c)

 

On peut supposer le premier, ce qui ne change rien à la démonstration.  

3) On pose :  

M = max(
f(a) + f(b)

2
,
f(c) + f(b)

2
)  

On sait que :  

f(a) < M < f(b) et f(c) < M < f(b) 
Donc en appliquant le TVI sur l’intervalle [a, b] puis sur l’intervalle [b, c], on obtient (x1, x2) ∈]a, b[∩]b, c[ tel que 

f(x1) = f(x2). Donc f n’est pas injective.  
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Donc f doit être monotone pour être injective.  

 

Exercice B.10 : Soit f ∶ [0; 1] → [0; 1] continue vérifiant f(0) = 0; f(1) = 1, ∀ x ∈ [0; 1], fof(x) = x. Déterminer f.  

 

On sait que f(f(x)) = x. Donc f est bijective et f−1: x ↦ x 

Comme f est continue, f est monotone. 

Or f(0) = 0 < f(1) = 1 on en déduit donc que f est croissante.  

Donc ∀x ∈ [0; 1], f(x) ∈ [0; 1]. 

Soit y ∈ [0; 1]. On pose la suite définie par :  

{
u0 = y

∀n ∈ ℕ, un+1 = f(un)
 

Comme f est croissante, (un) est monotone. 

Or on a :  

∀n ∈ ℕ, un+2 = f(un+1) = f(f(un)) = un 

On en déduit donc que (un) est stationnaire car monotone. 

On a donc :  

∀n ∈ ℕ, u1 = y = f(u0) = f(y) 
Donc la seule fonction qui convienne est f: x ↦ x 
 

Exercice B.11 : Soient f, g ∶ [0; 1] → ℝ continues telles que ∀ x ∈ [0; 1], f(x) < g(x). Montrer que :  

∃m > 0; ∀ x ∈ [0; 1], f(x) + m ≤ g(x) 

 

On l’a fait dans le cours. On pose : h: x ↦ g(x) − f(x) 
On a :  

∀x ∈ [0; 1], h(x) > 0 

De plus h est continue sur un segment donc elle est bornée et atteint ses bornes :  

∃x0 ∈ [0; 1], ∀x ∈ [0; 1], h(x) ≥ h(x0) 
On pose m = h(x0) 
On a bien :  

∃m > 0; ∀ x ∈ [0; 1], f(x) + m ≤ g(x) 
Remarque : Cela n’est plus vrai si l’on se place sur un segment. 

Contre-exemple :  

f ∶  {
ℝ → ℝ

x ↦
1

1 + x2
 et g ∶  {

ℝ → ℝ

x ↦
2

1 + x2
 

On a :  

∀x ∈ ℝ, g(x) − f(x) =
1

1 + x2
> 0 

Cependant :  

lim
x→+∞

(g(x) − f(x)) = 0 

 

Partie C : Equations fonctionnelles 

 

Exercice C.1 : Déterminer toutes les fonctions continues sur l’intervalle considéré vérifiant les relations fonctionnelles 

suivantes :  

a) ∀ x ∈ ℝ, f(2x) = f(x)   

b) ∀ x ∈ ℝ, f(x)2 = f(x)   

c) ∀ x ∈ ℝ, f(x2) = f(x)  (On poura prendre (x2
n
) et (x2

−n
))  

d) ∀ x ∈ [0; 1], f(x2) ≤ f(x) et f(0) = f(1) (On poura prendre (x2
n
) et (x2

−n
)) 

e)∀ x ∈ ℝ, f (
x + 1

2
) = f(x) (Etudier la suite définie par u0 = x et un+1 =

un + 1

2
) 
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Pour ce genre d’exercice il faut utiliser les suites et la définie séquentielle de la limite ! 

a)  Soit x ∈ ℝ. On pose :  

{

u0 = x

∀n ∈ ℕ, un+1 =
un
2

 

On a alors :  

∀n ∈ ℕ, un = (
1

2
)
n

x 

On a donc :  

lim
n→+∞

un = 0 car
1

2
∈] − 1; 1[ 

De plus on a : 

∀n ∈ ℕ, f(un+1) = f (
un
2
) = f(un) = f(x) 

Donc f(un) est stationnaire. 

Or on sait que f est continue en 0 donc :  

lim
n
f(un) = f(0) = f(x) 

On en déduit donc que f est constante.  

b)  

∀ x ∈ ℝ, f(x)2 = f(x) ⟺ ∀x ∈ ℝ, f(x) = {
1
ou
−1

 

On suppose qu’il existe J et J′ deux intervalles distincts inclus dans ℝ tel que :  

∀x ∈ J, f(x) = 1 

∀x ∈ J′, f(x) = −1 

Or f est continue sur ℝ donc d’après le TVI, il existe c ∈ ℝ tel que f(x) = 0. Absurde car f(c)2 = 1 

On a donc :  

f = 1 ou f = −1 

Il n’existe alors que deux fonctions qui vérifie cette relation fonctionnelle tout en étant continue. 

 

Remarque : Si f n’est pas continue il existe une infinité de fonctions vérifient cette relation. 

Exemple :  

 
 

c) On a :  

∀ x ∈ ℝ, f(x2) = f(x)  
On suit l’indication.  

 1er cas : Soit 𝐱 ∈] − 𝟏; 𝟏[. 
On pose :  

∀n ∈ ℕ, un = x
2n 

On a alors :  

u0 = x et ∀n ∈ ℕ, un+1 = x
2n+1 = x2

n×2 = (x2
n
)
2
= un

2  

On en déduit donc que :  

∀n ∈ ℕ, f(un+1) = f(un) = f(u0) = f(x) 
De plus on a :  
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{
lim
n
2n = +∞

lim
N→+∞

xN = 0 car x ∈ [0; 1[ 
 

Par continuité de f en 0 on en déduit que :  

lim
n
f(un) = f(0) = f(x) 

On en déduit que :  

∀x ∈] − 1; 1[, f(x) = f(0) 

 2ième cas :  Soit 𝐱 ∈ ℝ, 𝐭𝐞𝐥 𝐪𝐮𝐞 |𝐱| > 𝟏 

On pose :  

∀n ∈ ℕ, un = x
2−n  

On a alors :  

u0 = x et ∀n ∈ ℕ, (un+1)
2 = (x2

−n−1
)
2
= un 

On en déduit donc que :  

∀n ∈ ℕ, f(un+1) = f(un) = f(u0) = f(x) 
De plus on a :  

{
lim
n
2−n = 0

lim
N→0

xN = 1 
 

Par continuité de f en 1 on en déduit que :  

lim
n
f(un) = f(1) = f(x) 

On en déduit que :  

∀x ∈ ℝ, tel que |x| > 1, f(x) = f(1) 
Par continuité de f en 1 on a :  

lim
x→1−

f(x) = f(0) = f(1) 

De même par continuité en -1 :  

lim
x→−1+

f(x) = f(0) = f(−1) = lim
x→−1−

f(x) 

On en déduit donc que :  

∀x ∈ ℝ, f(x) = f(0) 
Donc f est constante.  

 

d) On a :  

∀ x ∈ ℝ, f (
x + 1

2
) = f(x) 

On pose :  

{

u0 = x

∀n ∈ ℕ, un+1 =
un + 1

2

 

C’est une suite arithmético-géométrique.  

On cherche le point fixe :  

On résout :  

x =
x + 1

2
⟺ x = 1 

On pose :  

∀n ∈ ℕ, vn = un − 1  
On a donc :  

∀n ∈ ℕ, vn+1 = un+1 − 1 =
1

2
vn 

Donc (vn) est géométrique de raison 
1

2
. On en déduit donc que :  

∀n ∈ ℕ, un = (
1

2
)
n

(x − 1) + 1 

On a de plus :  

∀n ∈ ℕ, f(un+1) = f (
un + 1

2
) = f(un) = f(x) 
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Donc la suite (f(un)) est stationnaire. Or on sait que f est continue en 1 et : 

lim
n
un = 1 

On en déduit donc que :  

lim
n
f(un) = f(1) = f(x) 

Donc f est constante.  

 

Exercice C.2 : Déterminer toutes les fonctions continues sur ℝ vérifiant les relations fonctionnelles suivantes :  

a) ∀(x; y) ∈ ℝ2, f(x + y) = f(x) + f(y) 

b)∀(x; y) ∈ ℝ2, f(x + y) = f(x) × f(y) 

c)∀(x; y) ∈ ℝ2, f (
x + y

2
) = √f(x)f(y) 

 

a)  

 1er cas : On raisonne sur ℕ. 

On pose la proposition suivante :  

∀x ∈ ℝ,∀n ∈ ℕ, Pn: "f(x
n) = f(x)n" 

Initialisation : f(0 × x) = f(0) = f(0 + 0) = f(0) + f(0) = 2f(0) ⟹ f(0) = 0 = 0 × f(x) 

Donc P0 est vraie.  

 

Hérédité : Soit n ∈ ℕ fixé. On suppose vrai Pn. On a alors :  

f(nx) = nf(x) 
De plus on a : 

f((n + 1)x) = f(nx) + f(x) = nf(x) + f(x) = (n + 1)f(x) 

Donc Pn+1 est vraie. 

 

Conclusion : P0 est vraie et Pn héréditaire donc d’après le principe de récurrence :  

∀x ∈ ℝ,∀n ∈ ℕ, f(nx) = nf(x) 
On a donc en particulier :  

∀n ∈ ℕ, f(n) = nf(1) 
 

 2ième cas : On étend sur ℤ 

∀x ∈ ℝ, f(x + (−x)) = f(x − x) = f(0) = f(x) + f(−x) 

⟹ ∀x ∈ ℝ, f(−x) = −f(x) 
Donc f est impaire. 

On a donc :  

∀n ∈ ℤ−, f(−n) = −nf(1) = −f(n) 
On en déduit donc que :  

∀n ∈ ℤ, f(n) = nf(1) 

 3ième cas : on étend sur ℚ 

On a : 

∀x ∈ ℚ, ∃(a, b) ∈ ℤ × ℕ∗, x =
a

b
 

On a alors :  

f(a) = af(1) = f (b ×
a

b
) = b × f (

a

b
)  car b ∈ ℕ 

On a donc :  

f (
a

b
) =

a

b
f(1) 

 4ième cas : On prolonge sur ℝ 

On utilise la densité de ℚ dans ℝ. C’est-à-dire que :  

∀x ∈ ℝ, ∃(xn) ∈ ℚ
ℕ tel que :  

lim
n
xn = x 
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Autrement dit tout nombre irrationnel est limite d’une suite de rationnels. Il suffit de prendre par exemple la suite des 

décimale de x.  

 Soit x ∈ ℝ. On sait qu’il existe (xn) ∈ ℚ
ℕ tel que :  

lim
n
xn = x 

 Or on sait que :  

∀n ∈ ℕ, f(xn) = xnf(1) 
Par continuité de f sur ℝ on en déduit que : 

lim
n
f(xn) = f(x) = xf(1) 

On en déduit donc que :  

∀x ∈ ℝ, f(x) = xf(1) 
Donc les seules fonctions continues qui vérifient :  

∀(x; y) ∈ ℝ2, f(x + y) = f(x) + f(y) 
Sont les fonctions linéaires :  

f: x ↦ ax, où a = f(1) 
 

b) On constate que si 𝑓(0) = 0 alors :  

∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑓(𝑥 + 0) = 𝑓(𝑥)𝑓(0) = 0 

On suppose à présent que 𝑓(0) ≠ 0. 

On a donc :  

𝑓(0) = 𝑓(0 + 0) = 𝑓(0)2 ⟹ 𝑓(0)(𝑓(0) − 1) = 0 

Comme 𝑓(0) ≠ 0, 𝑓(0) = 1. 

De plus on sait que :  

∀x ∈ ℝ, f(x − x) = f(0) = f(x)f(−x) ≠ 0 

On en déduit que :  

f(0) ≠ 0 ⟺ ∀x ∈ ℝ, f(x) ≠ 0 

De plus on a :  

∀x ∈ ℝ, f(x) = f (
x

2
+
x

2
) = f (

x

2
)
2

> 0 

 1er cas : On raisonne sur ℕ∗. 
On pose la proposition suivante :  

∀x ∈ ℝ,∀n ∈ ℕ, Pn: "f(nx) = f(x)
n " 

Initialisation : ∀x ∈ ℝ,  f(0) = 1 = f(x)0 

Donc P0 est vraie.  

 

Hérédité : Soit n ∈ ℕ fixé. On suppose vraie Pn. On a alors :  

f(nx) = f(x)𝑛 

De plus on a : 

f((n + 1)x) = f(nx) × f(x) = f(x)n × f(x) = f(x)𝑛+1 

Donc Pn+1 est vraie. 

 

Conclusion : P1 est vraie et Pn héréditaire donc d’après le principe de récurrence :  

∀x ∈ ℝ, ∀n ∈ ℕ∗, f(nx) = f(x)𝑛 

On a donc en particulier :  

∀n ∈ ℕ, f(n) = f(1)𝑛 

 2ième cas : On étend sur ℤ 

∀x ∈ ℝ, f(x + (−x)) = f(x − x) = f(0) = f(x) × f(−x) = 1 

⟹ ∀x ∈ ℝ, f(−x) =
1

f(x)
 

On a donc :  

∀n ∈ ℤ−, f(n) =
1

f(−n)
=

1

f(1)−n
= f(1)n 

On en déduit donc que :  
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∀n ∈ ℤ, f(n) = f(1)n 

 3ième cas : on étend sur ℚ 

On a : 

∀x ∈ ℚ, ∃(a, b) ∈ ℤ × ℕ∗, x =
a

b
 

On a alors :  

f(a) = f(1)a = f (b ×
a

b
) = f (

a

b
)
b

 car b ∈ ℕ 

On a donc :  

f (
a

b
) = f(1)

a
b 

 4ième cas : On prolonge sur ℝ 

On utilise la densité de ℚ dans ℝ. C’est-à-dire que :  

∀x ∈ ℝ, ∃(xn) ∈ ℚ
ℕ tel que :  

lim
n
xn = x 

Autrement dit tout nombre irrationnel est limite d’une suite de rationnels. Il suffit de prendre par exemple la suite des 

décimale de x.  

 Soit x ∈ ℝ. On sait qu’il existe (xn) ∈ ℚ
ℕ tel que :  

lim
n
xn = x 

 Or on sait que :  

∀n ∈ ℕ, f(xn) = f(1)
xn = exn ln(f(1)) car f(1) > 0 

Par continuité de f sur ℝ on en déduit que : 

lim
n
f(xn) = f(x) = e

x ln(f(1)) = f(1)x 

On en déduit donc que :  

∀x ∈ ℝ, f(x) = f(1)x 
Donc les seules fonctions continues qui vérifient :  

∀(x; y) ∈ ℝ2, f(x + y) = f(x) × f(y) 
Sont les fonctions linéaires puissances:  

f: x ↦ ax, où a = f(1) ≥ 0 

 

c) On sait que :  

∀x ∈ ℝ, f(x) = f (
x

2
+
x

2
) = f (

x + x

2
) = √f(x)f(x) = |f(x)| 

On en déduit donc que :  

∀x ∈ ℝ, f(x) ≥ 0 

Si f(0) = 0 on a alors :  

∀x ∈ ℝ, f (
x

2
) =  f (

x + 0

2
) = √f(x)f(0) = 0 

On suppose à présent qu’il existe x ∈ ℝ, tel que f(x) = 0. 

On a alors :  

f(0) = f (
x − x

2
) = √f(x) × f(−x) = 0 

On en déduit donc que :  

 {
f(0) = 0 ⟺ ∀x ∈ ℝ, f(x) = 0
f(0) ≠ 0 ⟺ ∀x ∈ ℝ, f(x) > 0

 

On se place dans le cas où f(0) > 0. 

On a donc :  

∀x ∈ ℝ, f(x) > 0 

On pose : 

∀x ∈ ℝ, h(x) = ln(f(x)) 

On a alors :  

∀(x, y) ∈ ℝ2, h (
x + y

2
) = ln(f (

x + y

2
)) 
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= ln (√f(x)f(y)) 

=
1

2
ln(f(x)) +

1

2
ln(f(y)) 

=
h(x) + h(y)

2
 

On pose :  

∀x ∈ ℝ, g(x) = h(x) − f(0) 
On a alors :  

∀(x, y) ∈ ℝ2, g (
x + y

2
) = h (

x + y

2
) − h(0) 

=
1

2
h(x) +

1

2
h(y) − h(0) 

=
1

2
(h(x) − h(0)) +

1

2
(h(y) − h(0)) 

=
g(x) + g(y)

2
 

On a donc : 

∀(x, y) ∈ ℝ2, {
g (
x + y

2
) =

g(x) + g(y)

2
g(0) = 0

 

On a alors :  

∀x ∈ ℝ, g (
x + 0

2
) =

1

2
g(x) = g (

x

2
) 

On remarque que :  

∀(x, y) ∈ ℝ2, g(x + y) = 2g (
x + y

2
) = 2 ×

g(x) + g(y)

2
= g(x) + g(y) 

On utilise ensuite le résultat que l’on a vu précédemment au a) :  

∀x ∈ ℝ, g(x) = xg(1) 
On a donc :  

∀x ∈ ℝ, f(x) = g(x) + f(0) = xg(1) + f(0) 
On a donc :  

∃(a, b) ∈ ℝ2, h(x) = ax + b 

On en déduit donc que :  

∃(a, b) ∈ ℝ2, ∀x ∈ ℝ, f(x) = λeax, λ > 0 

 

 


