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Correction DS n°4 

 

Exercice 1 : Equation différentielle de degré 3 

 

 Dans ce problème on se propose de résoudre l’équation différentielle suivante sur ℝ :  

(𝐸0) ∶  𝑦
′′′ + 5𝑦′′ + 9𝑦′ + 5𝑦 = 0 

On pose les trois fonctions suivantes définies sur ℝ par :  

𝑓1: 𝑡 ↦ 𝑒−𝑡, 𝑓2: 𝑡 ↦ 𝑒−2𝑡 cos(𝑡)  𝑒𝑡 𝑓3: 𝑡 ↦ 𝑒−2𝑡 sin(𝑡) 
1)  a) Montrer que 𝑓1 est solution de (𝐸0). 

  b) Montrer que 𝑓2 est solution de (𝐸0). 

On admet pour la suite de cet exercice que 𝑓3 est elle aussi solution de (𝐸0). 

2)  Montrer que pour tout 𝜆1, 𝜆2, 𝜆3 réels, la fonction 𝑡 ↦ 𝜆1𝑓1(𝑡) + 𝜆2𝑓2(𝑡) + 𝜆3𝑓3(𝑡) est-elle aussi solution de 

(𝐸0). 
 

Il reste à montrer la réciproque.  

 

3)  Soit 𝑦 une solution de (𝐸0). On pose  𝑧 = 𝑦′′ + 4𝑦′ + 5𝑦.  

a) Montrer que 𝑧 vérifie l’équation différentielle :  

𝑧′ + 𝑧 = 0 

b) En déduire que : 

∃𝜆 ∈ ℝ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑡 ∈ ℝ 𝑦′′(𝑡) + 4𝑦′(𝑡) + 5𝑦(𝑡) = 𝜆𝑒−𝑡 
c) En déduire que :  

∃(𝜆1, 𝜆2, 𝜆3) ∈ ℂ
3 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑦0 =  𝜆1𝑓1 + 𝜆2𝑓2 + 𝜆3𝑓3 

 

1)  a) Il suffit de dériver trois fois. On a :  

∀𝑡 ∈ ℝ, 𝑓1(𝑡) = 𝑒
−𝑡 ⟹ 𝑓1

′(𝑡) = −𝑒−𝑡 ⟹ 𝑓1
′′(𝑡) = 𝑒−𝑡 ⟹ 𝑓1

′′′(𝑡) = −𝑒−𝑡 
On a donc :  

∀𝒕 ∈ ℝ, 𝒇𝟏
′′′(𝒕) + 𝟓𝒇𝟏

′′(𝒕) + 𝟗𝒇𝟏
′ (𝒕) + 𝟓𝒇𝟏(𝒕) = 𝟎  

 b) Là encore de dériver trois fois. On a :  

∀𝑡 ∈ ℝ, 𝑓2(𝑡) = 𝑒
−2𝑡 cos(𝑡) ⟹ 𝑓2

′(𝑡) = 𝑒−2𝑡(−2 cos(𝑡) − sin(𝑡)) 

⟹ 𝑓2
′′(𝑡) = 𝑒−2𝑡(3 cos(𝑡) + 4 sin(𝑡)) 

⟹ 𝑓2
′′′(𝑡) = 𝑒−2𝑡(−2 cos(𝑡) − 11 sin(𝑡)) 

On a donc :  

∀𝒕 ∈ ℝ, 𝒇𝟐
′′′(𝒕) + 𝟓𝒇𝟐

′′(𝒕) + 𝟗𝒇𝟐
′ (𝒕) + 𝟓𝒇𝟐(𝒕) = 𝟎  

2) On pose :  

ℎ: 𝑡 ↦ 𝜆1𝑓1(𝑡) + 𝜆2𝑓2(𝑡) + 𝜆3𝑓3(𝑡) 
Par linéarité de la dérivation, on a :  

ℎ′: 𝑡 ↦ 𝜆1(𝑓1)′(𝑡) + 𝜆2(𝑓2)′(𝑡) + 𝜆3(𝑓3)′(𝑡) 

ℎ′′: 𝑡 ↦ 𝜆1(𝑓1)′′(𝑡) + 𝜆2(𝑓2)′′(𝑡) + 𝜆3(𝑓3)′′(𝑡) 

ℎ′′′: 𝑡 ↦ 𝜆1(𝑓1)′′′(𝑡) + 𝜆2(𝑓2)′′′(𝑡) + 𝜆3(𝑓3)′′′(𝑡) 

∀𝑡 ∈ ℝ, ℎ′′′(𝑡) + 5ℎ′′(𝑡) + 9ℎ′(𝑡) + 5ℎ(𝑡) = 

= 𝜆1(𝑓1)
′′′(𝑡) + 𝜆2(𝑓2)

′′′(𝑡) + 𝜆3(𝑓3)
′′′(𝑡) + 5(𝜆1(𝑓1)

′′(𝑡) + 𝜆2(𝑓2)
′′(𝑡) + 𝜆3(𝑓3)

′′(𝑡))

+ 9(𝜆1(𝑓1)′(𝑡) + 𝜆2(𝑓2)′(𝑡) + 𝜆3(𝑓3)′(𝑡)) + 5(𝜆1𝑓1(𝑡) + 𝜆2𝑓2(𝑡) + 𝜆3𝑓3(𝑡)) 

= 𝝀𝟏 (𝒇𝟏
′′′(𝒕) + 𝟓𝒇𝟏

′′(𝒕) + 𝟗𝒇𝟏
′ (𝒕) + 𝟓𝒇𝟏(𝒕))⏟                        

=𝟎

+ 𝝀𝟐 (𝒇𝟐
′′′(𝒕) + 𝟓𝒇𝟐

′′(𝒕) + 𝟗𝒇𝟐
′ (𝒕) + 𝟓𝒇𝟐(𝒕))⏟                        

=𝟎

+ 

+𝝀𝟑 (𝒇𝟑
′′′(𝒕) + 𝟓𝒇𝟑

′′(𝒕) + 𝟗𝒇𝟑
′ (𝒕) + 𝟓𝒇𝟑(𝒕))⏟                        

=𝟎

= 𝟎 

Ainsi ℎ est aussi solution de (𝐸0). 

 

3)  a) On pose :  

𝑧 = 𝑦′′ + 4𝑦′ + 5𝑦, 𝑙𝑎𝑙𝑜𝑟𝑠 𝑧′ = 𝑦′′′ + 4𝑦′′ + 5𝑦′ 
On a donc :  

𝑧′ + 𝑧 = 𝑦′′′ + 4𝑦′′ + 5𝑦′ + 𝑦′′ + 4𝑦′ + 5𝑦 = 𝑦′′′ + 5𝑦′′ + 9𝑦′ + 5𝑦 = 0 = 0 
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Car 𝑦 est solution de (𝐸0).  

 b) On sait que :  

𝑧′ + 𝑧 = 0 ⟺ ∃𝜆 ∈ ℝ, 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑡 ∈ ℝ, 𝑧(𝑡) = 𝜆𝑒−𝑡 
Ainsi on a :  

∃𝝀 ∈ ℝ, 𝒕𝒆𝒍 𝒒𝒖𝒆 ∀𝒕 ∈ ℝ, 𝒚′′ + 𝟒𝒚′ + 𝟓𝒚 = 𝝀𝒆−𝒕 
 c) On résout :  

𝑦′′ + 4𝑦′ + 5𝑦 = 𝜆𝑒−𝑡 
_ On commence par l’équation homogène : 𝑦′′ + 4𝑦′ + 5𝑦 = 0 

On résout :  

(𝐸𝑞): 𝑟
2 + 4𝑟 + 5 = 0 ⟺ 𝑟 ∈ {−2 − 𝑖;−2 + 𝑖} 

On en déduit donc que :  

𝑦′′ + 4𝑦′ + 5𝑦 = 0 ⟺ ∃(𝜆2, 𝜆3) ∈ ℝ
2 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑡 ∈ ℝ, 𝑦0(𝑡) = (𝜆2 cos(𝑡) + 𝜆3 sin(𝑡))𝑒

−2𝑡  
_ On cherche ensuite une solution particulière à 𝑦′′ + 4𝑦′ + 5𝑦 = 𝜆𝑒−𝑡 

On pose :  

𝑓𝐴: 𝑡 ↦ 𝐴𝑒−𝑡 
On a alors :  

∀𝑡 ∈ ℝ, 𝑓𝐴
′′ + 4𝑓𝐴

′ + 5𝑓𝐴 = 2𝐴𝑒
−𝑡 

Ainsi la fonction 𝑡 ↦
𝜆

2
𝑒−𝑡 est solution particulière de 𝑦′′ + 4𝑦′ + 5𝑦 = 𝜆𝑒−𝑡. 

_ On rassemble ensuite :  

𝑦′′ + 4𝑦′ + 5𝑦 = 𝜆𝑒−𝑡 ⟺ ∃(𝜆, 𝜆2, 𝜆3) ∈ ℝ
3 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑡 ∈ ℝ, 𝒚(𝒕) = (𝝀𝟐 𝐜𝐨𝐬(𝒕) + 𝝀𝟑 𝐬𝐢𝐧(𝒕))𝒆

−𝟐𝒕 +
𝝀

𝟐
𝒆−𝒕 

 c) Il suffit de poser 𝜆1 =
𝜆

2
 et on obtient :  

𝒚′′ + 𝟒𝒚′ + 𝟓𝒚 = 𝝀𝒆−𝒕⟺ ∃(𝝀𝟏, 𝝀𝟐, 𝝀𝟑) ∈ ℝ
𝟑 𝒕𝒆𝒍 𝒒𝒖𝒆 𝒚 = 𝝀𝟏𝒇𝟏 + 𝝀𝟐𝒇𝟐 + 𝝀𝟑𝒇𝟑 

 

Exercice 2 : Suite d’ordre 2 non linéaire 

 

Dans tout cet exercice on pose :  

{
 

 
u0 > 0
u1 > 0
λ > 0

un+2 = λ√un+1un

 

1)  Démontrer que :  

∀ n ∈ ℕ, un > 0 

2)  On pose la suite auxiliaire définie par :  

∀ n ∈ ℕ, vn = ln(un) 
Montrer que :  

∀ n ∈ ℕ, vn+2 =
vn+1
2

+
vn
2
+ ln (λ) 

3)  Soit α > 0. On pose la suite :  

∀ n ∈ ℕ,wn = αn 

Déterminer la valeur de α en fonction de λ pour que la suite (wn) vérifie :  

∀ n ∈ ℕ,wn+2 =
wn+1
2

+
wn
2
+ ln (λ) 

4)  On pose la suite auxiliaire définie par :  

∀ 𝑛 ∈ ℕ, 𝑥𝑛 = 𝑣𝑛 −𝑤𝑛 

a) Montrer que la suite (xn) vérifie la relation de récurrence :  

∀ 𝑛 ∈ ℕ, 𝑥𝑛+2 =
𝑥𝑛+1
2

+
𝑥𝑛
2

 

b) En déduire une expression de 𝑥𝑛 en fonction de n.  

c) En déduire une expression de 𝑢𝑛 en fonction de n.  

d) En déduire que si 𝜆 = 1 alors :  

𝑙𝑖𝑚 𝑢𝑛 = (𝑢1 × 𝑢0)
3
2 
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1) On pose :  

∀ n ∈ ℕ, Pn = "un > 0" 
ATTENTION : Il faut faire une récurrence double, c’est-à-dire supposer que Pn et Pn+1 est vraies pour avoir 

Pn+1 et Pn+2 vraies. Pour cela il faut initier P0 et P1 et supposer Pn et Pn+1 vraies dans l’hérédité.  

 

Initalisation : u0 > 0 et u1 > 0 donc P0 et P1 sont vraies. 

 

Hérédité : Soit n un entier naturel fixé. On suppose vraie Pn et Pn+1. On a :  

un+2 = λ√un+1un 

Or λ > 0 et un > 0, un+1 > 0 donc un+2 > 0 donc Pn+1 et Pn+2 sont vraies. 

 

Conclusion : P0 est vraie et Pn est héréditaire donc d’après le principe de récurrence :  

∀ 𝒏 ∈ ℕ, 𝒖𝒏 > 𝟎 

 

2) On pose :  

∀ n ∈ ℕ, vn = ln(un) 
On a alors :  

𝑣𝑛+2 = 𝑙𝑛(𝑢𝑛+2) = 𝑙𝑛(𝜆√𝑢𝑛+1𝑢𝑛) = 𝑙𝑛(𝜆) + 𝑙𝑛(√𝑢𝑛) + 𝑙𝑛(√𝑢𝑛+1) = 𝑙𝑛(𝜆) +
1

2
𝑙𝑛(𝑢𝑛) +

1

2
𝑙𝑛(𝑢𝑛+1) 

=
𝑣𝑛+1
2

+
𝑣𝑛
2
+ 𝑙𝑛 (𝜆) 

On a donc bien :  

∀ 𝒏 ∈ ℕ, 𝒗𝒏+𝟐 =
𝒗𝒏+𝟏
𝟐

+
𝒗𝒏
𝟐
+ 𝒍𝒏 (𝝀) 

 

 

3) On pose :  

∀ 𝑛 ∈ ℕ,𝑤𝑛 = 𝛼𝑛 

On a alors :  

𝑤𝑛+2 − (
𝑤𝑛+1
2

+
𝑤𝑛
2
+ 𝑙𝑛(𝜆)) = 0 

⟺ 𝛼(𝑛 + 2) −
1

2
𝛼(𝑛 + 1) −

1

2
𝛼𝑛 − 𝑙𝑛(𝜆) = 0 

⟺
3

2
𝛼 = 𝑙𝑛(𝜆) 

⟺ 𝜶 =
𝟐

𝟑
𝒍𝒏(𝝀) 

 

 

4) On pose :  

∀ 𝑛 ∈ ℕ, 𝑥𝑛 = 𝑣𝑛 −𝑤𝑛 

a) On a :  

𝑥𝑛+2 = 𝑣𝑛+2 −𝑤𝑛+2 

=
𝑣𝑛+1
2

+
𝑣𝑛
2
+ 𝑙𝑛(𝜆) − (

𝑤𝑛+1
2

+
𝑤𝑛
2
+ 𝑙𝑛(𝜆)) 

=
1

2
(𝑣𝑛+1 −𝑤𝑛+1) +

1

2
(𝑣𝑛 −𝑤𝑛) 

=
𝑥𝑛+1
2

+
𝑥𝑛
2

 

On a donc bien :  

∀ 𝒏 ∈ ℕ, 𝒙𝒏+𝟐 =
𝒙𝒏+𝟏
𝟐

+
𝒙𝒏
𝟐

 

 

b) On a une suite linéaire récurrence d’ordre 2 :  

𝑥𝑛+2 =
𝑥𝑛+1
2

+
𝑥𝑛
2
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On résout l’équation caractéristique :  

𝑟2 −
1

2
𝑟 −

1

2
= 0 

On a :  

𝛥 =
1

4
+
4

2
=
9

4
> 0 

On a donc :  

𝑟2 −
1

2
𝑟 −

1

2
= 0 ⟺

{
 
 

 
 
𝑟1 =

1
2 −

3
2

2
= −

1

2

𝑟2 =

1
2
+
3
2

2
= 1

 

On en déduit donc que :  

∀ 𝒏 ∈ ℕ, 𝒙𝒏+𝟐 =
𝒙𝒏+𝟏
𝟐

+
𝒙𝒏
𝟐
⟺ ∃(𝜷; 𝜹) ∈ ℝ𝟐, 𝒙𝒏 = 𝜷(−

𝟏

𝟐
)
𝒏

+ 𝜹 

c) On sait que :  

∀ 𝑛 ∈ ℕ, 𝑥𝑛 = 𝑣𝑛 −𝑤𝑛 = 𝑙𝑛(𝑢𝑛) −
2

3
𝑙𝑛(𝜆) 𝑛 = 𝑙𝑛 (

𝑢𝑛

𝜆
2
3
𝑛
) 

⟹ ∀ 𝑛 ∈ ℕ, 𝑢𝑛 = 𝜆
2
3
𝑛𝑒𝑥𝑛 = 𝜆

2
3
𝑛𝑒
𝛽(−

1
2
)
𝑛
+𝛿
  

On sait de plus que :  

{
𝑢0 = 𝑒

𝛿+𝛽

𝑢1 = 𝜆
2
3𝑒𝛿−

1
2
𝛽

 

⟹{

𝛿 + 𝛽 = 𝑙𝑛(𝑢0)

𝛿 −
1

2
𝛽 = 𝑙𝑛 (

𝑢1

𝜆
2
3

)
 

⟹
3

2
𝛿 = 𝑙𝑛 (√𝑢0 ×

𝑢1

𝜆
2
3

) 

⟹ 𝛿 =
2

3
𝑙𝑛 (√𝑢0 ×

𝑢1

𝜆
2
3

) = 𝑙𝑛(𝑢0

1
3  ×

𝑢1

2
3

𝜆
) 

De même on a :  

𝛽 = 𝑙𝑛(𝑢0) − 𝛿 = 𝑙𝑛(𝑢0) − 𝑙𝑛(𝑢0

1
3  ×

𝑢1

2
3

𝜆
) = 𝑙𝑛(

𝜆𝑢0

2
3

𝑢1

2
3

) 

On a alors :  

∀ 𝑛 ∈ ℕ, 𝑢𝑛 = 𝜆
2
3
𝑛𝑒

𝛽(−
1
2
)
𝑛
+𝛿

 

= 𝜆
2
3
𝑛𝑒

𝑙𝑛(
𝜆𝑢0

2
3

𝑢1

2
3

)(−
1
2
)
𝑛
+𝑙𝑛(𝑢0

1
3 ×
𝑢1

2
3

𝜆
)

 

= 𝜆
2
3
𝑛(
𝜆𝑢0

2
3

𝑢1

2
3

)

(−
1
2
)
𝑛

×(𝑢0

1
3  ×

𝑢1

2
3

𝜆
) 

= 𝝀
𝟐
𝟑
𝒏+(−

𝟏
𝟐
)
𝒏

× 𝒖𝟎

𝟏
𝟑
 +
𝟐
𝟑
 (−
𝟏
𝟐
)
𝒏

× 𝒖𝟏

𝟐
𝟑
−
𝟐
𝟑
(−
𝟏
𝟐
)
𝒏

 

d) Si λ = 1, on en déduit donc que :  

𝑙𝑖𝑚 𝑢𝑛 = 𝑢0

1
3
 +
2
3
 (−
1
2
)
𝑛

× 𝑢1

2
3
−
2
3
(−
1
2
)
𝑛
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Or on sait que :  

𝑙𝑖𝑚 (−
1

2
)
𝑛

= 0 𝑐𝑎𝑟 − 1 < −
1

2
< 1 

Donc par composée :  

𝒍𝒊𝒎𝒖𝒏 = 𝒖𝟎

𝟏
𝟑𝒖𝟏

𝟐
𝟑 

 

Exercice 3 : Une partie d’un oral Centrale MP 

 

Le but de cet exercice est de calculer :  

𝐼 = ∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

0

𝑑𝑡 

1)  a) Montrer que :  

∀𝑡 ∈ [0; √3],
2𝑡

1 + 𝑡2
∈ [0; 1]  

 b) En déduire que l’intégrale est bien définie.  

 

Pour calculer 𝐼, nous allons déjà calculer :  

𝐼1 = ∫arcsin (
2𝑡

1 + 𝑡2
)

1

0

𝑑𝑡 

2)  a) Démontrer que :  

∀𝑡 ∈ [0; 1], ∃! 𝑥 ∈ [0;
𝜋

2
]  𝑡𝑒𝑙 𝑞𝑢𝑒 𝑡 = tan (

𝑥

2
) 

 b) Démontrer que :  

∀𝑥 ∈ [0; 𝜋[,
2 tan (

𝑥
2
)

1 + [tan (
𝑥
2)]

2 = sin(𝑥) 

 c) En déduire que :  

∫arcsin (
2𝑡

1 + 𝑡2
)

1

0

𝑑𝑡 = ∫
𝑥

2
(1 + tan2 (

𝑥

2
)) 𝑑𝑥

𝜋
2

0

 

3)  a) Montrer à l’aide d’une IPP que :  

∫
𝑥

2
(1 + tan2 (

𝑥

2
)) 𝑑𝑥

𝜋
2

0

=
𝜋

2
−∫ tan (

𝑥

2
)𝑑𝑥

𝜋
2

0

 

 b) En déduire la valeur de 𝐼1. 

4) Démontrer que :  

∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

0

𝑑𝑡 =
𝜋

√3
 

 

1) On peut le faire de deux façons différentes. 

M1 : Etude des variations 

On pose :  

𝑓: 𝑡 ↦
2𝑡

1 + 𝑡2
 

 

On a 𝑓 dérivation sur [0; √3] comme quotient de fonctions dérivables. De plus on a :  

∀𝑡 ∈ [0;√3], 𝑓′(𝑡) =
2(1 + 𝑡2) − 4𝑡2

(1 + 𝑡2)2
= 2

1 − 𝑡2

(1 + 𝑡2)2
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On a donc le tableau de variation suivant :  

 
On en déduit donc que :  

∀𝑡 ∈ [0; √3],
2𝑡

1 + 𝑡2
∈ [0; 1] 

 

M2 : Plus rapide 

∀𝑡 ∈ [0; √3],
2𝑡

1 + 𝑡2
≥ 0 

De plus on a :  

∀𝑡 ∈ [0; √3], 1 −
2𝑡

1 + 𝑡2
=
1 + 𝑡2 − 2𝑡

1 + 𝑡2
=
(1 − 𝑡)2

1 + 𝑡2
≥ 0 

Ainsi on a :  

∀𝑡 ∈ [0; √3],
2𝑡

1 + 𝑡2
≤ 1  

Ainsi on a :  

∀𝑡 ∈ [0; √3],
2𝑡

1 + 𝑡2
∈ [0; 1] 

 b) On sait que l’ensemble de définition et de continuité de arcsin est [−1; 1]. Or on a vu précédemment que :  

∀𝑡 ∈ [0; √3],
2𝑡

1 + 𝑡2
≤ 1 

Ainsi : 

𝒈: 𝒕 ↦ 𝐚𝐫𝐜𝐬𝐢𝐧 (
𝟐𝒕

𝟏 + 𝒕𝟐
) ∈ 𝓒𝟎([𝟎;√𝟑]) 

Donc l’intégrale est bien définie.  

2)  a) On pose :  

ℎ: 𝑥 ↦ tan (
𝑥

2
)  𝑝𝑜𝑢𝑟 𝑥 ∈ [0;

𝜋

4
] 

On a alors ℎ dérivable sur [0;
𝜋

2
] et :  

∀𝑥 ∈ [0;
𝜋

4
] , ℎ′(𝑥) =

1

2 cos2 (
𝑥
2)
> 0 

Ainsi ℎ est croissante sur [0;
𝜋

2
]. De plus on a :  

ℎ(0) = 0 𝑒𝑡 ℎ (
𝜋

2
) = tan (

𝜋

4
) = 1 

On a donc :  

_ ℎ continue sur [0;
𝜋

2
] 

_ ℎ strictement croissante sur [0;
𝜋

2
] 

_ {
ℎ(0) = 0 

ℎ (
𝜋

2
) = 1

 

Donc d’après le théorème de la bijection :  

ℎ réalise une bijection de [0;
𝜋

2
] dans [0; 1]. 

On a donc :  

∀𝒕 ∈ [𝟎; 𝟏], ∃! 𝒙 ∈ [𝟎;
𝝅

𝟐
]  𝒕𝒆𝒍 𝒒𝒖𝒆 𝒕 = 𝐭𝐚𝐧(

𝒙

𝟐
) 
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 b) On a :  

∀𝑥 ∈ [0; 𝜋[,
2 𝑡𝑎𝑛 (

𝑥
2)

1 + [𝑡𝑎𝑛 (
𝑥
2
)]
2 =

2𝑠𝑖𝑛 (
𝑥
2
)

𝑐𝑜𝑠 (
𝑥
2)

1 +
𝑠𝑖𝑛2 (

𝑥
2
) 

𝑐𝑜𝑠2 (
𝑥
2)

= 2 𝑠𝑖𝑛 (
𝑥

2
) 𝑐𝑜𝑠 (

𝑥

2
) = 𝑠𝑖𝑛 (2 ×

𝑥

2
) = 𝑠𝑖𝑛(𝑥) 

 c) On pose le changement de variable :  

𝑡 = tan (
𝑥

2
) 

 Les nouvelles bornes :  

{
𝑥 = 0 ⟹ 𝑡 = 0

𝑥 =
𝜋

2
⟹ 𝑡 = 1 

 Calcul du 𝒅𝒕 
𝑂𝑛 𝑎 ∶  

𝑡 = tan (
𝑥

2
) ⟹

𝑑𝑡

𝑑𝑥
=
1

2
(1 + tan2 (

𝑥

2
)) ⟹ 𝑑𝑡 =

1

2
(1 + tan2 (

𝑥

2
)) 𝑑𝑥 

 On remplace :  

∫arcsin (
2𝑡

1 + 𝑡2
)

1

0

𝑑𝑡 = ∫ arcsin(
2 tan (

𝑥
2
)

1 + (tan (
𝑥
2))

2)

𝜋
2

0

1

2
(1 + tan2 (

𝑥

2
)) 𝑑𝑥 

= ∫ arcsin(sin(𝑥))

𝜋
2

0

1

2
(1 + tan2 (

𝑥

2
)) 𝑑𝑥 

Or on sait que :  

∀𝑥 ∈ [0;
𝜋

2
] , arcsin(𝑠𝑖𝑛(𝑥)) = 𝑥 

On a donc :  

∫𝐚𝐫𝐜𝐬𝐢𝐧(𝐬𝐢𝐧(𝒙))

𝝅
𝟐

𝟎

𝟏

𝟐
(𝟏 + 𝐭𝐚𝐧𝟐 (

𝒙

𝟐
))𝒅𝒙 = ∫

𝒙

𝟐

𝝅
𝟐

𝟎

(𝟏 + 𝐭𝐚𝐧𝟐 (
𝒙

𝟐
))𝒅𝒙 

3)  a) On a par intégration par partie :  

∫
𝑥

2
(1 + tan2 (

𝑥

2
)) 𝑑𝑥

𝜋
2

0

= [𝑥 × tan (
𝑥

2
)]
0

𝜋
2
−∫ tan (

𝑥

2
)𝑑𝑥

𝜋
2

0

=
𝝅

𝟐
−∫ 𝐭𝐚𝐧(

𝒙

𝟐
)𝒅𝒙

𝝅
𝟐

𝟎

 

 b) On a de plus :  

∫ tan (
𝑥

2
)𝑑𝑥

𝜋
2

0

= ∫
sin (

𝑥
2)

cos (
𝑥
2)
𝑑𝑥

𝜋
2

0

= −2 ×∫
−
1
2 × sin (

𝑥
2)

cos (
𝑥
2)

𝑑𝑥

𝜋
2

0

= −2 [ln (|𝑐𝑜𝑠 (
𝑥

2
)|)]

0

𝜋
2
= −2 ln(

√2

2
) 

= ln(2) 
On en déduit donc que :  

∫𝐚𝐫𝐜𝐬𝐢𝐧 (
𝟐𝒕

𝟏 + 𝒕𝟐
)

𝟏

𝟎

𝒅𝒕 =
𝝅

𝟐
− 𝐥𝐧(𝟐) 

4) On a :  

𝐼 = ∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

0

𝑑𝑡 = ∫arcsin (
2𝑡

1 + 𝑡2
)

1

0

𝑑𝑡 + ∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

1

𝑑𝑡 

Il reste à calculer  
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𝐼2 = ∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

1

𝑑𝑡 

De la même façon que précédemment en posant le changement de variable :  

𝑡 = tan (
𝑥

2
) 

 Les bornes 

{
𝑥 =

2𝜋

3
⟹ 𝑡 = √3

𝑥 =
𝜋

2
⟹ 𝑡 = 1

 

 Le calcul du 𝒅𝒕 ∶  

𝑡 = tan (
𝑥

2
) ⟹ 𝑑𝑡 =

1

2
(1 + tan2 (

𝑥

2
))𝑑𝑥 

 sOn remplace :  

∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

1

𝑑𝑡 = ∫ arcsin(sin(𝑥))

2𝜋
3

𝜋
2

1

2
(1 + tan2 (

𝑥

2
))𝑑𝑥 

Or on sait que :  

∀𝑥 ∈ [
𝜋

2
;
2𝜋

3
] , sin(𝑥) = sin(𝜋 − 𝑥)  𝑒𝑡 𝜋 − 𝑥 ∈ [

𝜋

3
;
𝜋

2
] 

On en déduit donc que :  

∀𝑥 ∈ [
𝜋

2
;
2𝜋

3
] , arcsin(sin(𝑥)) = arcsin(sin(𝜋 − 𝑥)) = 𝜋 − 𝑥  

On a donc :  

∫ arcsin (
2𝑡

1 + 𝑡2
)

√3

1

𝑑𝑡 = ∫
𝜋 − 𝑥

2

2𝜋
3

𝜋
2

(1 + tan2 (
𝑥

2
))𝑑𝑥 

De la même façon que précédemment :  

∫
𝜋 − 𝑥

2

2𝜋
3

𝜋
2

(1 + tan2 (
𝑥

2
))𝑑𝑥 = [(𝜋 − 𝑥) tan (

𝑥

2
)]
𝜋
2

2𝜋
3
+∫ tan (

𝑥

2
)𝑑𝑥

2𝜋
3

𝜋
2

 

=
𝜋

3
× √3 −

𝜋

2
− 2 [ln (|𝑐𝑜𝑠 (

𝑥

2
)|)]

𝜋
2

2𝜋
3

 

=
𝜋

√3
−
𝜋

2
− 2(ln (

1

2
) − ln (

√2

2
)) 

=
𝜋

√3
−
𝜋

2
+ ln(2) 

On en déduit donc que :  

∫ 𝐚𝐫𝐜𝐬𝐢𝐧 (
𝟐𝒕

𝟏 + 𝒕𝟐
)

√𝟑

𝟎

𝒅𝒕 = 𝑰𝟏 +
𝝅

√𝟑
−
𝝅

𝟐
+ 𝐥𝐧(𝟐) =

𝝅

√𝟑
 

 

Problème irrationnalité de 𝝅 

 

 Après avoir démontré l’irrationalité de √2 dans le cours, de 𝑒 et de ln(2) dans les précédents devoirs, je vous 

propose ici de démontrer l’irrationnalité de 𝜋. Pour ce faire nous allons utiliser le dernier résultat vu dans le DS n°3 :  

lim
𝑛
∑

1

𝑘2

𝑛

𝑘=1

=
𝜋2

6
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 Pour cela nous allons montrer que 𝜋2 est irrationnel. 

Partie A : Etude d’une fonction polynomiale particulière. 

On pose :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,𝑃𝑛(𝑥) =
𝑥𝑛(1 − 𝑥)𝑛

𝑛!
 

1)  Déterminer les valeurs de (𝑎𝑛, 𝑎𝑛+1, … , 𝑎2𝑛) ∈ ℤ
2 tel que :  

𝑃𝑛(𝑥) =
1

𝑛!
∑𝑎𝑛+𝑘

𝑛

𝑘=0

𝑥𝑛+𝑘 =
1

𝑛!
∑𝑎𝑗𝑥

𝑗

2𝑛

𝑗=𝑛

 

2)  On pose :  

∀ℓ ∈ ℕ, ∀𝑥 ∈ ℝ,𝑄ℓ(𝑥) = 𝑥
ℓ 

 a) Démontrer que :  

∀𝑘 ∈ ℕ, ∀𝑥 ∈ ℝ,
𝑑𝑘

𝑑𝑥𝑘
(𝑄ℓ(𝑥)) = 𝑄ℓ

(𝑘)(𝑥) {

ℓ!

(ℓ − 𝑘)!
𝑥ℓ−𝑘𝑠𝑖 𝑘 ∈ ⟦0; ℓ⟧

0 𝑠𝑖 𝑘 ≥ ℓ + 1

 

 b) En déduire que :  

∀𝑖 ∈ ℕ, 𝑃𝑛
(𝑖)(0) = {

0 𝑠𝑖 𝑖 ≤ 𝑛 − 1
0 𝑠𝑖 𝑖 > 2𝑛

𝑎𝑖 ×
𝑖!

𝑛!
 𝑠𝑖 𝑖 ∈ ⟦𝑛; 2𝑛⟧

 

 c) En déduire que :  

∀𝑖 ∈ ℕ, 𝑃𝑛
(𝑖)(0) ∈ ℤ 

 d) En déduire que :  

∀𝑖 ∈ ℕ, 𝑃𝑛
(𝑖)(1) ∈ ℤ 

(Indice : On pourra remarquer que  𝑷𝒏(𝑿) = 𝑷𝒏(𝟏 − 𝑿))  
 

Partie B : Irrationnalité de 𝝅 

 Dans les questions suivantes on veut montrer que 𝜋2 est un irrationnel et l’on va raisonner par l’absurde. On 

suppose que :  

∃(𝑎, 𝑏) ∈ ℕ2, 𝑏 ≠ 0, 𝑡𝑒𝑙 𝑞𝑢𝑒 𝜋2 =
𝑎

𝑏
 

1) On pose :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,𝐹𝑛(𝑥) = 𝑏
𝑛 (∑(−1)𝑘𝜋2𝑛−2𝑘𝑃𝑛

(2𝑘)(𝑥)

𝑛

𝑘=0

) 

a) Montrer que 𝐹𝑛(0) et 𝐹𝑛(1) sont des entiers. 

b) On pose :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,𝑔𝑛(𝑥) = 𝐹𝑛
′(𝑥) sin(𝜋𝑥) − 𝜋𝐹𝑛(𝑥) cos(𝜋𝑥)  

De même on pose :  

∀𝑛 ∈ ℕ, 𝐴𝑛 = 𝜋∫𝑎
𝑛𝑃𝑛(𝑥) sin(𝜋𝑥) 𝑑𝑥

1

0

 

Montrer que :  

∀𝑛 ∈ ℕ, , ∀𝑥 ∈ ℝ,𝑔𝑛
′ (𝑥) = 𝜋2𝑎𝑛𝑃𝑛(𝑥) sin(𝜋𝑥) 

Puis montrer que :  

∀𝑛 ∈ ℕ, 𝐴𝑛 ∈ ℤ 

2) On pose la suite :  

𝑢𝑛 =
𝑎𝑛

𝑛!
 (𝑜ù 𝑎 = 𝜋 × 𝑏 𝑑é𝑓𝑖𝑛𝑖𝑒 𝑝𝑟é𝑐é𝑑𝑒𝑚𝑚𝑒𝑛𝑡) 

 a) Montrer que :  

lim
𝑛

𝑢𝑛+1
𝑢𝑛

= 0 

 b) En déduire que la suite (𝑢𝑛) est décroissante à partir d’un certain rang. 

 c) Montrer que (𝑢𝑛) converge.  
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 d) En déduire que lim
𝑛
𝑢𝑛 = 0 

 e) En déduire que :  

∃𝑛0 ∈ ℕ, 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ≥ 𝑛0,
𝑎𝑛

𝑛!
≤
1

2
 

3) Montrer que :  

∀𝑥 ∈ [0; 1], 0 ≤ 𝑃𝑛(𝑥) ≤
1

𝑛!
 

 a) Démontrer que :  

∀𝑛 ≥ 𝑛0, 𝐴𝑛 ∈]0; 1[ 

 b) En déduire que 𝜋2 est irrationnel. 

 c) En déduire que 𝜋 est irrationnel.  

 

Partie A : Etude d’une fonction polynomiale particulière 

1)  On sait que :  

∀𝑛 ∈ ℕ, (1 − 𝑥)𝑛 =∑(
𝑛
𝑘
) (−𝑥)𝑘

𝑛

𝑘=0

⟹ ∀𝑛 ∈ ℕ, 𝑃𝑛(𝑥) =
1

𝑛!
∑ (

𝑛
𝑘
) (−1)𝑘𝑥𝑛+𝑘

𝑛

𝑘=0

 

On en déduit donc que : 

∀𝒏 ∈ ℕ, ∀ 𝒌 ∈ ⟦𝒏; 𝟐𝒏⟧, 𝒂𝒏+𝒌 = (
𝒏
𝒌
) (−𝟏)𝒌 ∈ ℤ 

 

2)  a) On peut ici faire une récurrence mais cela est un peu lourd à écrire. On peut sinon décomposer le calcul :  

On a :  

∀ℓ ∈ ℕ, ∀𝑥 ∈ ℝ,𝑄ℓ(𝑥) = 𝑥
ℓ 

On a donc :  

𝑑

𝑑𝑥
(𝑄ℓ(𝑥)) = ℓ𝑥

ℓ−1 =
ℓ!

(ℓ − 1)!
𝑥ℓ−1 

De même on a :  

𝑑2

𝑑𝑥2
(𝑄ℓ(𝑥)) =

ℓ!

(ℓ − 1)!
× (ℓ − 1)𝑥ℓ−2 =

ℓ!

(ℓ − 2)!
𝑥ℓ−2 

Tant que 𝑘 ≤ ℓ on peut réitérer le procédé :  

𝒅𝒌

𝒅𝒙𝒌
(𝑸𝓵(𝒙)) = 𝓵 × (𝓵 − 𝟏) × …× (𝓵 − 𝒌 + 𝟏)𝒙

𝓵−𝒌 =
𝓵!

(𝓵 − 𝒌)!
𝒙𝓵−𝒌 

(Récurrence immédiate sur ⟦0; ℓ⟧). 
Enfin on a :  

𝒅𝓵

𝒅𝒙𝓵
(𝑸𝓵(𝒙)) = 𝓵! 𝑒𝑠𝑡 𝑢𝑛𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

On en déduit donc que :  

∀𝒌 > 𝓵,
𝒅𝒌

𝒅𝒙𝒌
(𝑸𝓵(𝒙)) = 𝟎 

 b) On a :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ, 𝑃𝑛(𝑥) =
1

𝑛!
∑𝑎𝑗𝑥

𝑗

2𝑛

𝑗=𝑛

 

On en déduit donc par linéarité de la dérivation :  

∀𝑖 ∈ ℕ, ∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,
𝑑𝑖

𝑑𝑥𝑖
(𝑃𝑛(𝑥)) =

𝑑𝑖

𝑑𝑥𝑖
(
1

𝑛!
∑𝑎𝑗𝑥

𝑗

2𝑛

𝑗=𝑛

) 

=
1

𝑛!
∑𝑎𝑗

𝑑𝑖

𝑑𝑥𝑖
(𝑥𝑗)

2𝑛

𝑗=𝑛

 

Or on sait que :  
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∀𝑗 ∈ ⟦𝑛; 2𝑛⟧, ∀𝑖 ≥ 2𝑛 + 1,
𝑑𝑖

𝑑𝑥𝑖
(𝑥𝑗) = 0 

Donc :  

∀𝑖 ≥ 2𝑛 + 1, 𝑃𝑛
(𝑖)(𝑥) = 0 𝑑𝑜𝑛𝑐 𝑃𝑛

(𝑖)(0) = 0  

De plus on a :  

∀𝑖 ∈ ⟦0; 𝑛 − 1⟧, ∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,
𝑑𝑖

𝑑𝑥𝑖
(𝑃𝑛(𝑥)) =

1

𝑛!
∑

𝑎𝑗𝑗!

(𝑗 − 𝑖)!
𝑥𝑗−𝑖

2𝑛

𝑗=𝑛

 

=
𝑥

𝑛!
∑

𝑎𝑗𝑗!

(𝑗 − 𝑖)!
𝑥𝑗−𝑖−1

2𝑛

𝑗=𝑛

 (𝑎𝑣𝑒𝑐 𝑗 − 𝑖 − 1 ≥ 0) 

On a donc :  

∀𝑖 ∈ ⟦0; 𝑛 − 1⟧, 𝑃𝑛
(𝑖)(0) = 0 

Enfin si :  

𝑖 ∈ ⟦𝑛; 2𝑛⟧, ∀𝑥 ∈ ℝ,
𝑑𝑖

𝑑𝑥𝑖
(𝑃𝑛(𝑥)) =

1

𝑛!
∑

𝑎𝑗𝑗!

(𝑗 − 𝑖)!
𝑥𝑗−𝑖 

2𝑛

𝑗=𝑖

 

=
1

𝑛!
× 𝑎𝑖 × 𝑖! 

∀𝒊 ∈ ⟦𝒏; 𝟐𝒏⟧, (𝑷𝒏)
(𝒊)(𝟎) = 𝒂𝒊 × 𝒊 × …× (𝒏 + 𝟏) 

c) On sait que :  

∀𝒊 ∈ ⟦𝒏; 𝟐𝒏⟧, 𝒂𝒊 ∈ ℤ⟹ ∀𝒊 ∈ ⟦𝒏; 𝟐𝒏⟧, 𝒂𝒊 × 𝒊 × …× (𝒏 + 𝟏) ∈ ℤ 

 d) On a :  

∀𝑛 ∈ ℤ, 𝑃𝑛(𝑥) =
𝑥𝑛(1 − 𝑥)𝑛

𝑛!
⟹ 𝑃𝑛(1 − 𝑥) =

(1 − 𝑥)𝑛𝑥𝑛

𝑛!
= 𝑃𝑛(𝑥) 

On en déduit donc que :  

∀ℓ ∈ ⟦𝑛; 2𝑛⟧, (𝑃𝑛)
(ℓ)(𝑋) = (−1)ℓ(𝑃𝑛)

(ℓ)(1 − 𝑋) 

⟹ ∀𝓵 ∈ ⟦𝒏; 𝟐𝒏⟧, (𝑷𝒏)
(𝓵)(𝟏) = (−𝟏)𝓵(𝑷𝒏)

(𝓵)(𝟎) ∈ ℤ  

 

Partie B : Irrationnalité de 𝝅 

 

1)  a) On a :  

∀𝑛 ∈ ℕ, 𝐹𝑛(0) = 𝑏
𝑛 (∑(−1)𝑘𝜋2𝑛−2𝑘𝑃𝑛

(2𝑘)(0)

𝑛

𝑘=0

) = 𝑏𝑛 (∑(−1)𝑘(𝜋2)𝑛−𝑘𝑃𝑛
(2𝑘)(0)

𝑛

𝑘=0

) 

= 𝑏𝑛 (∑(−1)𝑘 (
𝑎

𝑏
)
𝑛−𝑘

𝑃𝑛
(2𝑘)(0)

𝑛

𝑘=0

) = ∑(−1)𝑘𝑎𝑛−𝑘 × 𝑏𝑘 × 𝑃𝑛
(2𝑘)(0)

𝑛

𝑘=0

 

Or on sait que :  

(𝑎, 𝑏) ∈ ℤ2  
De même on sait que : 

∀𝑛 ∈ ℕ, ∀ 𝑘 ∈ ⟦0; 𝑛⟧, (−1)𝑘𝑃𝑛
(2𝑘)(0) ∈ ℤ 

Ainsi on en déduit que :  

∀𝑛 ∈ ℕ, ∀ 𝑘 ∈ ⟦0; 𝑛⟧, (−1)𝑘𝑎𝑛−𝑘 × 𝑏𝑘 × 𝑃𝑛
(2𝑘)(0) ∈ ℤ 

⟹∀𝑛 ∈ ℕ, 𝑭𝒏(𝟎) ∈ ℤ 

De même comme 𝑃𝑛
(2𝑘)(1) ∈ ℤ ⟹ ∀𝑛 ∈ ℕ, 𝑭𝒏(𝟏) ∈ ℤ 

b) On a :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ, 𝑔′𝑛(𝑥) = 𝐹𝑛
′′(𝑥) sin(𝜋𝑥) + 𝜋𝐹𝑛

′(𝑥) cos(𝜋𝑥) − 𝜋𝐹′𝑛(𝑥) cos(𝜋𝑥) + 𝜋
2𝐹𝑛(𝑥) sin(𝜋𝑥) 

= (𝐹𝑛
′′(𝑥) + 𝜋2𝐹𝑛(𝑥)) sin(𝜋𝑥)  

Or on sait que :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,𝐹𝑛(𝑥) = 𝑏
𝑛 (∑(−1)𝑘𝜋2𝑛−2𝑘𝑃𝑛

(2𝑘)(𝑥)

𝑛

𝑘=0

) 
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⟹ 𝐹′′𝑛(𝑥) = 𝑏
𝑛 (∑(−1)𝑘𝜋2𝑛−2𝑘𝑃𝑛

(2𝑘+2)(𝑥)

𝑛

𝑘=0

) 

De plus on sait que deg(𝑃𝑛) = 2𝑛 ⟹ 𝑃𝑛
(2𝑛+2)(𝑋) = 0ℝ[𝑋] 

On a donc :  

∀𝑥 ∈ ℝ,𝐹′′𝑛(𝑥) = 𝑏
𝑛 (∑(−1)𝑘𝜋2𝑛−2𝑘𝑃𝑛

(2𝑘+2)(𝑥)

𝑛−1

𝑘=0

) 

= 𝑏𝑛 (∑(−1)𝑘−1𝜋2𝑛−2𝑘+2𝑃𝑛
(2𝑘)(𝑥)

𝑛

𝑘=1

) 

De plus on a :  

𝜋2𝐹𝑛(𝑥) = 𝑏
𝑛 (∑(−1)𝑘𝜋2𝑛−2𝑘+2𝑃𝑛

(2𝑘)(𝑥)

𝑛

𝑘=0

) 

On a donc :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ ℝ,𝑔′𝑛(𝑥) = (𝐹𝑛
′′(𝑥) + 𝜋2𝐹𝑛(𝑥)) sin(𝜋𝑥)

= 𝑏𝑛 (∑(−1)𝑘−1𝜋2𝑛−2𝑘+2𝑃𝑛
(2𝑘)(𝑥)

𝑛

𝑘=1

+∑(−1)𝑘𝜋2𝑛−2𝑘+2𝑃𝑛
(2𝑘)(𝑥)

𝑛

𝑘=0

)sin(𝜋𝑥) 

= 𝑏𝑛𝜋2𝑛+2𝑃𝑛(𝑥) sin(𝜋𝑥) = 𝜋
2𝑎𝑛𝑃𝑛(𝑥) sin(𝜋𝑥)  

De plus on a :  

𝐴𝑛 = 𝜋∫𝑎
𝑛𝑃𝑛(𝑥) sin(𝜋𝑥)𝑑𝑥

1

0

=
1

𝜋
∫𝜋2𝑎𝑛𝑃𝑛(𝑥) sin(𝜋𝑥)𝑑𝑥

1

0

=
1

𝜋
∫𝜋2𝑎𝑛𝑃𝑛(𝑥) sin(𝜋𝑥) 𝑑𝑥

1

0

=
1

𝜋
∫𝑔𝑛

′ (𝑥)𝑑𝑥

1

0

 

⟹ 𝑨𝒏 =
𝟏

𝝅
(𝒈𝒏(𝟏) − 𝒈𝒏(𝟎)) =

𝟏

𝝅
(𝝅𝑭𝒏(𝟏) + 𝝅𝑭𝒏(𝟎)) = 𝑭𝒏(𝟏) − 𝑭𝒏(𝟎) ∈ ℤ 

D’après la question 2) a).  

 

2)  a) On sait que : 

∀𝒏 ∈ ℕ,
𝒖𝒏+𝟏
𝒖𝒏

=
𝒂

𝒏 + 𝟏
→ 𝟎 

 b) On sait que :  

∀𝜖 > 0, ∃𝑛1(𝜖) ∈ ℕ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ≥ 𝑛0, 0 ≤
𝑢𝑛+1
𝑢𝑛

≤ 𝜖 

On en déduit donc avec 𝜖 = 1 :  

∃𝑛1 ∈ ℕ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ≥ 𝑛1, 0 ≤
𝑢𝑛+1
𝑢𝑛

≤ 1 

∀𝑛 ≥ 𝑛1,
𝑢𝑛+1
𝑢𝑛

≤ 1 ⟹ ∀𝒏 ≥ 𝒏𝟏, 𝒖𝒏+𝟏 ≤ 𝒖𝒏  

Donc on en déduit donc que (𝒖𝒏) est décroissante à partir d’un certain rang. 

 c) (𝑢𝑛) est décroissante et minorée par 0 donc (𝑢𝑛) converge vers ℓ, ℓ ≥ 0 

De plus si ℓ ≠ 0 on en déduit donc que :  
𝑢𝑛+1
𝑢𝑛

→ 1 

Cela est impossible. On en déduit donc que :  

𝒖𝒏 → 𝟎 

 d) On sait que :  

∀𝜖 > 0, , ∃𝑛0(𝜖) ∈ ℕ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ≥ 𝑛0, 0 ≤ 𝑢𝑛 ≤ 𝜖 

En posant 𝜖 =
1

2
 on obtient :  

∃𝒏𝟎 ∈ ℕ, 𝒕𝒆𝒍 𝒒𝒖𝒆 ∀𝒏 ≥ 𝒏𝟎,
𝒂𝒏

𝒏!
≤
𝟏

𝟐
 

3)  a) On a par une étude de fonction que :  
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∀𝑥 ∈ [0; 1], 0 ≤ 𝑥(1 − 𝑥) ≤
1

4
 

On en déduit donc que :  

∀𝒏 ∈ ℕ, 𝑷𝒏(𝒙) ∈ [𝟎;
𝟏

𝟒𝒏 × 𝒏!
] ⊂ [𝟎;

𝟏

𝒏!
] 

b) On sait que :  

𝐴𝑛 = 𝜋∫𝑎
𝑛𝑃𝑛(𝑥) sin(𝜋𝑥) 𝑑𝑥

1

0

 

De plus on a :  

0 < 𝑃𝑛(𝑥) <
1

𝑛!
 𝑒𝑡 sin(𝜋𝑥) ≥ 0 ∀𝑥 ∈ [0; 1] 

⟹ 0 < 𝑎𝑛𝑃𝑛(𝑥) sin(𝜋𝑥) <
𝑎𝑛

𝑛!
sin(𝜋𝑥) 

⟹ 0 < 𝜋∫𝑎𝑛𝑃𝑛(𝑥) sin(𝜋𝑥)𝑑𝑥

1

0

< 2 ×
𝑎𝑛

𝑛!
 

Or on sait que :  

∀𝑛 ≥ 𝑛0,
𝑎𝑛
𝑛!
≤
1

2
 

On en déduit donc que :  

∀𝒏 ≥ 𝒏𝟎, 𝟎 < 𝑨𝒏 < 𝟏 

d) On a démontré que :  

∀𝑛 ≥ 𝑛0, {
𝐴𝑛 ∈]0; 1[
𝐴𝑛 ∈ ℤ

 

Cela est impossible donc 𝜋2 est irrationnel. 

De même par contraposée on sait que 𝜋 rationnel implique 𝜋2 rationnel (il suffit d’écrire 𝜋2 comme le quotient des 

carrées de la fraction rationnelle de 𝜋). Donc 𝝅 est irrationnel.   

 


