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Correction DS n°5 

 

Exercice 1 : Suite linéaire récurrente d’ordre 3 

 Dans tout cet exercice on pose la suite (𝑢𝑛) définie par :  

{

𝑢0 = 1
𝑢1 = 3
𝑢2 = 4

 𝑒𝑡 ∀𝑛 ∈ ℕ, 𝑢𝑛+3 = 3𝑢𝑛+1 − 2𝑢𝑛 

Le but de cet exercice est de déterminer une expression de 𝑢𝑛 en fonction de n.  

1)  a) On pose la suite matrice colonne :  

∀𝑛 ∈ ℕ, 𝑋𝑛 = (

𝑢𝑛
𝑢𝑛+1
𝑢𝑛+2

) 

Déterminer une matrice 𝐴 ∈ ℳ3(ℝ) telle que :  

𝑋𝑛+1 = 𝐴𝑋𝑛 

 b) Démontrer que :  

∀𝑛 ∈ ℕ, 𝑋𝑛 = 𝐴
𝑛𝑋0 

Remarque : Dans toutes les questions suivantes, le but est de calculer 𝐴𝑛.  

2) On pose :  

𝑃 = (
1 1 0
−2 1 1
4 1 2

) 

Montrer que 𝑃 ∈ 𝐺𝐿3(ℝ) et déterminer 𝑃−1. 

3) Démontrer que :  

𝑃−1𝐴𝑃 = (
−2 0 0
0 1 1
0 0 1

) 

On pose :  

𝑇 = (
−2 0 0
0 1 1
0 0 1

) 

4)  a) Démontrer que :  

∀𝑛 ∈ ℕ, 𝐴𝑛 = 𝑃𝑇𝑛𝑃−1 
b) Calculer 𝑇𝑛 pour tout entier naturel 𝑛. 

b) En déduire 𝑢𝑛 en fonction de n.  

 

1)  a) On a :  

𝑋𝑛+1 = (

𝑢𝑛+1
𝑢𝑛+2
𝑢𝑛+3

) = (
0 1 0
0 0 1
−2 3 0

)(

𝑢𝑛
𝑢𝑛+1
𝑢𝑛+2

) 

On pose alors :  

𝐴 = (
0 1 0
0 0 1
−2 3 0

) 

b) Par récurrence immédiate ou par itération du procédé. 

M1 : Par récurrence 

On pose :  

∀𝑛 ∈ ℕ,𝒫(𝑛) ∶ "𝑋𝑛 = 𝐴
𝑛𝑋0" 

Initialisation : 𝒏 = 𝟎 

On a :  

𝐴0𝑋0 = 𝐼3𝑋0 = 𝑋0 

Donc 𝒫(0) est vraie.  

Hérédité : Soit un entier naturel 𝑛. On suppose vraie la proposition 𝒫(𝑛). On a :  

𝑋𝑛+1 = 𝐴𝑋𝑛 = 𝐴 × 𝐴
𝑛𝑋0 = 𝐴

𝑛+1𝑋0 

Donc 𝒫(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

M2 : Par itération 
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𝑋𝑛 = 𝐴𝑋𝑛−1 

= 𝐴 × 𝐴𝑋𝑛−2 = 𝐴
2𝑋𝑛−2 

= 𝐴2 × 𝐴𝑋𝑛−3 = 𝐴
3𝑋𝑛−3 

= ⋮ 𝑒𝑛 𝑟é𝑖𝑡é𝑟𝑎𝑛𝑡 𝑙𝑒 𝑝𝑟𝑜𝑐é𝑑é 

= 𝑨𝒏𝑿𝟎 

2) On peut appliquer l’algorithme du pivot de Gauss :  

𝑃 → 𝐼3 𝑂𝑝é𝑟𝑎𝑡𝑖𝑜𝑛𝑠 é𝑙é𝑚𝑒𝑛𝑡𝑎𝑖𝑟𝑒𝑠 𝐼3 → 𝑃−1 

(
1 1 0
−2 1 1
4 1 2

) 
 

(
1 0 0
0 1 0
0 0 1

) 

(
1 1 0
0 3 1
0 −3 2

) 
𝐿2 ← 𝐿2 + 2𝐿1 

𝐿3 ← 𝐿3 − 4𝑙1 (
1 0 0
2 1 0
−4 0 1

) 

(
1 1 0
0 3 1
0 0 3

) 
𝐿3 ← 𝐿3 + 𝐿 

(
1 0 0
2 1 0
−2 1 1

) 

(
1 1 0
0 3 1
0 0 1

) 𝐿3 ←
1

3
𝐿3 

(

1 0 0
2 1 0

−
2

3

1

3

1

3

) 

(
1 1 0
0 3 0
0 0 1

) 
𝐿2 ← 𝐿2 − 𝐿3 

(

 
 

1 0 0
8

3

2

3
−
1

3

−
2

3

1

3

1

3 )

 
 

 

(
1 1 0
0 1 0
0 0 1

) 𝐿2 ←
1

3
𝐿2 

(

 
 

1 0 0
8

9

2

9
−
1

9

−
2

3

1

3

1

3 )

 
 

 

𝐼3 = (
1 0 0
0 1 0
0 0 1

) 
𝐿1 ← 𝐿1 − 𝐿2 

(

 
 
 

1

9
−
2

9

1

9
8

9

2

9
−
1

9

−
2

3

1

3

1

3 )

 
 
 

 

 

Ainsi 𝑃 ∈ 𝒢ℒ3(ℝ) et :  

𝑷−𝟏 =

(

 
 
 

𝟏

𝟗
−
𝟐

𝟗

𝟏

𝟗
𝟖

𝟗

𝟐

𝟗
−
𝟏

𝟗

−
𝟐

𝟑

𝟏

𝟑

𝟏

𝟑 )

 
 
 

 

Remarque : Un calcul facile permet de vérifier que :  

(
1 1 0
−2 1 1
4 1 2

)

(

 
 
 

1

9
−
2

9

1

9
8

9

2

9
−
1

9

−
2

3

1

3

1

3 )

 
 
 
= 𝐼3 

3) On a :  
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𝑃−1𝐴 =

(

 
 
 

1

9
−
2

9

1

9
8

9

2

9
−
1

9

−
2

3

1

3

1

3 )

 
 
 
(
0 1 0
0 0 1
−2 3 0

) =

(

 
 
 
−
2

9

4

9
−
2

9
2

9

5

9

2

9

−
2

3

1

3

1

3 )

 
 
 

 

Enfin on a :  

𝑃−1𝐴𝑃 =

(

 
 
 
−
2

9

4

9
−
2

9
2

9

5

9

2

9

−
2

3

1

3

1

3 )

 
 
 
(
1 1 0
−2 1 1
4 1 2

) = (
−𝟐 𝟎 𝟎
𝟎 𝟏 𝟏
𝟎 𝟎 𝟏

) = 𝑻 

4)  a) Là encore on peut le faire de deux façons.  

Par récurrence immédiate ou par itération du procédé. 

M1 : Par récurrence 

On pose :  

∀𝑛 ∈ ℕ,𝒫(𝑛) ∶ "𝐴𝑛 = 𝑃𝑇𝑛𝑃−1" 

Initialisation : 𝒏 = 𝟎 

On a :  

{
𝐴0 = 𝐼3

𝑃𝑇0𝑃−1 = 𝑃𝑃−1 = 𝐼3
 

Donc 𝒫(0) est vraie.  

Hérédité : Soit un entier naturel 𝑛. On suppose vraie la proposition 𝒫(𝑛). On a :  

𝐴𝑛+1 = 𝐴 × 𝐴𝑛 = 𝑃𝑇𝑃−1 × 𝑃⏟    
=𝐼3

𝑇𝑛𝑃−1 = 𝑃𝑇𝑛+1𝑃−1 

Donc 𝒫(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

M2 : Par itération 

𝐴𝑛 = 𝐴 × 𝐴 ×…× 𝐴 

= 𝑃𝑇𝑃−1 × 𝑃⏟    
=𝐼3

𝑇 𝑃−1 × 𝑃⏟    
=𝐼3

…𝑃−1 × 𝑃⏟    
=𝐼3

𝑇𝑃−1 

= 𝑃𝑇𝑛𝑃−1 

 b) Là encore on peut le faire de trois façons différentes. 

M1 : Par conjecture et récurrence 

𝑇 = (
−2 0 0
0 1 1
0 0 1

) ⟹ 𝑇2 = (
(−2)2 0 0
0 1 2
0 0 1

) ⟹ 𝑇3 = (
(−2)3 0 0
0 1 3
0 0 1

) 

On peut conjecturer que :  

𝑇𝑛 = (
(−2)𝑛 0 0
0 1 𝑛
0 0 1

) 

On pose :  

∀𝑛 ∈ ℕ,𝒫(𝑛) ∶ "𝑇𝑛 = (
(−2)𝑛 0 0
0 1 𝑛
0 0 1

) " 

Initialisation : 𝒏 = 𝟎 

On a :  

{

𝑇0 = 𝐼3

(
(−2)𝑛 0 0
0 1 𝑛
0 0 1

) = (
(−2)0 0 0
0 1 0
0 0 1

) = 𝐼3
 

Donc 𝒫(0) est vraie.  

Hérédité : Soit un entier naturel 𝑛. On suppose vraie la proposition 𝒫(𝑛). On a :  
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𝑇𝑛 = (
(−2)𝑛 0 0
0 1 𝑛
0 0 1

) 

On a :  

𝑇𝑛+1 = 𝑇 × 𝑇𝑛 = (
−2 0 0
0 1 1
0 0 1

)(
(−2)𝑛 0 0
0 1 𝑛
0 0 1

) = (
(−𝟐)𝒏+𝟏 𝟎 𝟎

𝟎 𝟏 𝒏 + 𝟏
𝟎 𝟎 𝟏

) 

Donc 𝒫(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

M2 : Avec le binôme de Newton 

On a :  

𝑇 = (
−2 0 0
0 1 1
0 0 1

) = (
−2 0 0
0 1 0
0 0 1

) + (
0 0 0
0 0 1
0 0 0

) = 𝐷 + 𝑁 

Vérifions que 𝐷 𝑒𝑡 𝑁 commutent afin d’utiliser le binôme de Newton.  

𝐷𝑁 = (
−2 0 0
0 1 0
0 0 1

)(
0 0 0
0 0 1
0 0 0

) = (
0 0 0
0 0 1
0 0 0

) 

𝑁𝐷 = (
0 0 0
0 0 1
0 0 0

)(
−2 0 0
0 1 0
0 0 1

) = (
0 0 0
0 0 1
0 0 0

) 

On peut donc appliquer le binôme :  

∀𝑛 ∈ ℕ, 𝑇𝑛 = (𝐷 +𝑁)𝑛 =∑(
𝑛
𝑘
)𝑁𝑘𝐷𝑛−𝑘

𝑛

𝑘=0

 

Or on a :  

𝑁 = (
0 0 0
0 0 1
0 0 0

) ⟹ 𝑁2 = (
0 0 0
0 0 0
0 0 0

) 

On a donc :  

∀𝑛 ∈ ℕ, 𝑇𝑛 = (𝐷 + 𝑁)𝑛 =∑(
𝑛
𝑘
)𝑁𝑘𝐷𝑛−𝑘

𝑛

𝑘=0

= 𝐷𝑛 + (
𝑛
1
)𝐷𝑛−1𝑁 

De plus 𝐷 est diagonale donc :  

∀𝒏 ∈ ℕ,𝑫𝒏 = (
(−𝟐)𝒏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

) 

On a donc :  

∀𝒏 ∈ ℕ, 𝑻𝒏 = 𝑫𝒏 + (
𝒏
𝟏
)𝑫𝒏−𝟏𝑵 = (

(−𝟐)𝒏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

) + 𝒏(
(−𝟐)𝒏+𝟏 𝟎 𝟎

𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

)(
𝟎 𝟎 𝟎
𝟎 𝟎 𝟏
𝟎 𝟎 𝟎

) = (
(−𝟐)𝒏 𝟎 𝟎
𝟎 𝟏 𝒏
𝟎 𝟎 𝟏

) 

M3 : Par opération élémentaire 

On a :  

𝑇 = (
−2 0 0
0 1 1
0 0 1

) 

On peut voir que la multiplication par 𝑇 à droite. On aurait alors :  

𝐶1 ← −2𝐶1, 𝐶2 ← 𝐶2 𝑒𝑡 𝐶3 ← 𝐶2 + 𝐶3 

On aurait alors en multipliant par T lui-même 𝑛 fois :  

𝐶1 ← (−2)𝑛𝐶1, 𝐶2 ← 𝐶2, 𝐶3 ← 𝑛𝐶2 + 𝐶3 
On a alors :  

∀𝒏 ∈ ℕ, 𝑻𝒏 = (
(−𝟐)𝒏 𝟎 𝟎
𝟎 𝟏 𝒏
𝟎 𝟎 𝟏

) 

 b) On a :  

𝑋𝑛 = 𝐴
𝑛𝑋0 = 𝑃𝑇

𝑛𝑃−1 (
1
3
4
) 
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On a :  

𝑋𝑛 = 𝑃𝑇
𝑛𝑃−1 = (

1 1 0
−2 1 1
4 1 2

)(
(−2)𝑛 0 0
0 1 𝑛
0 0 1

)

(

 
 
 

1

9
−
2

9

1

9
8

9

2

9
−
1

9

−
2

3

1

3

1

3 )

 
 
 
(
1
3
4
)

= (

(−2)𝑛 1 𝑛

(−2)𝑛+1 1 𝑛 + 1

(−2)𝑛+2 1 𝑛 + 2

)

(

 
 
 

1

9
−
2

9

1

9
8

9

2

9
−
1

9

−
2

3

1

3

1

3 )

 
 
 
(
1
3
4
)

= (

(−2)𝑛 + 8 − 6𝑛

9

(−2)𝑛+1 + 2 + 3𝑛

9

(−2)𝑛 − 1 + 3𝑛

9 )(
1
3
4
) 

On en déduit donc que :  

∀𝑛 ∈ ℕ, 𝑢𝑛 =
(−2)𝑛 + 8 − 6𝑛

9
+ 3 ×

(−2)𝑛+1 + 2 + 3𝑛

9
+ 4 ×

(−2)𝑛 − 1 + 3𝑛

9
 

∀𝒏 ∈ ℕ, 𝒖𝒏 =
𝟏𝟎 + 𝟏𝟓𝒏 − (−𝟐)𝒏

𝟗
 

Remarque : Nous n’avons pas besoin de calculer les deux lignes des matrices car nous ne voulons que le premier 

terme de 𝑋𝑛, à savoir 𝑢𝑛.  

 

Exercice 2 : Mines-sup 2005 

 Dans toute cette partie on pose :  

{

v0 = 3

∀n ∈ ℕ∗, vn+1 =
vn

ln(vn)
 

1) Montrer que ∀n ∈ ℕ, vn ≥ e 

2) En déduire que (vn) converge et déterminer sa limite. 

3) Montrer que :  

∀𝑥 ≥ 𝑒, 0 ≤ 𝑓′(𝑥) ≤
1

4
 

Avec :  

𝑓: {

[𝑒; +∞[→ ℝ

𝑥 ↦
𝑥

𝑙𝑛(𝑥)
 

4) Enoncé l’inégalité des accroissements finis. 

5) Montrer que :  

∀𝑛 ∈ ℕ, |𝑣𝑛 − 𝑒| ≤
1

4𝑛
 

6) Sachant que 45 > 1000, déterminer un entier n1 à partir duquel vn est une valeur approchée de e à 10−12.  

 

1) On pose la fonction :  

𝑓: {

[𝑒; +∞[→ ℝ

𝑥 ↦
𝑥

𝑙𝑛(𝑥)
 

On sait que f ∈ 𝒞1([e;+∞[) et :  

∀𝑥 ∈ [𝑒, +∞[, 𝑓′(𝑥) =
𝑙𝑛(𝑥) − 1

𝑙𝑛2(𝑥)
≥ 0 

On en déduit donc que f est croissante sur [e;+∞[.  
Montrons par récurrence que :  
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∀n ∈ ℕ,𝒫(n): "vn ≥ e" 
Initialisation : n = 0. v0 = 3 > e ⟹ 𝒫(0) est vraie. 

Hérédité : Soit n un entier naturel n fixé. On suppose vraie 𝒫(n). On a alors :  

𝑣𝑛 ≥ 𝑒 ⟹ 𝑓(𝑣𝑛) ≥ 𝑓(𝑒) 𝑐𝑎𝑟 𝑓 𝑒𝑠𝑡 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒 𝑠𝑢𝑟 [𝑒, +∞[⟹ vn+1 ≥ e 
Donc 𝒫(n + 1) est vraie. 

Conclusion : 𝒫(0) est vraie et 𝒫(n) est héréditaire donc d’après le principe de récurrence :  

∀𝒏 ∈ ℕ, 𝒗𝒏 ≥ 𝒆 

2) On sait que la suite (vn) est monotone car 𝑓 est croissante sur [e;+∞[ et l’intervalle [e;+∞[ est stable par f. 

De plus on sait que :  

𝑣1 − 𝑣0 =
𝑣0(1 − 𝑙𝑛 (𝑣0)) 

𝑙𝑛(𝑣0)
=

3

𝑙𝑛(3)
× (1 − 𝑙𝑛(3)) < 0 

On en déduit donc que (vn) est décroissante, minorée par e donc elle converge. 

De plus on sait que lim
n
vn = ℓ vérifie l’équation f(x) = x. 

Or on sait que :  
𝑥

𝑙𝑛(𝑥)
= 𝑥 ⟺ 𝑙𝑛(𝑥) = 1 ⟺ 𝑥 = 𝑒 

On en déduit donc que :  

𝒍𝒊𝒎
𝒏
𝒗𝒏 = 𝒆 

3) On sait que :  

∀𝑥 ∈ [𝑒; +∞[, 𝑓′(𝑥) =
𝑙𝑛(𝑥) − 1

𝑙𝑛2(𝑥)
 

Cette fonction est dure à calculer. Etudions la dérivée seconde :  

∀𝑥 ≥ 𝑒, 𝑓′′(𝑥) =

𝑙𝑛2(𝑥)
𝑥 −

2 𝑙𝑛(𝑥)
𝑥

(𝑙𝑛(𝑥) − 1)

𝑙𝑛4(𝑥)
=
2 − 𝑙𝑛(𝑥)

𝑥𝑙𝑛3(𝑥)
 

On sait que :  

2 − 𝑙𝑛(𝑥) ≥ 0 ⟺ 𝑥 ≤ 𝑒2 
On a donc le tableau de variation suivant :  

 
De plus on sait que : f ′(e) = 0 et :  

𝑙𝑖𝑚
𝑥→+∞

𝑓′(𝑥) = 𝑙𝑖𝑚
𝑥→+∞

𝑙𝑛(𝑥) − 1

𝑙𝑛2(𝑥)
= 𝑙𝑖𝑚
𝑥→+∞

1

𝑙𝑛(𝑥)
= 0 

On a de plus :  

𝑓′(𝑒2) =
1

4
 

On en déduit donc que :  

∀𝒙 ≥ 𝒆, 𝟎 ≤ 𝒇′(𝒙) ≤
𝟏

𝟒
 

5) On sait d’après la question 3) que f est 
1

4
−lipschitzienne (donc contractante). On en déduit donc que :  

∀(𝑥, 𝑦) ∈ [𝑒. +∞[, |𝑓(𝑦) − 𝑓(𝑥)| ≤
1

4
|𝑦 − 𝑥|  

On en déduit donc que :  

∀𝑛 ∈ ℕ, |𝑓(𝑣𝑛) − 𝑓(𝑒)| ≤
1

4
|𝑣𝑛 − 𝑒| ⟹ ∀𝑛 ∈ ℕ, |𝑣𝑛+1 − 𝑒| ≤

1

4
|𝑣𝑛 − 𝑒| 

⟹ ∀𝒏 ∈ ℕ, |𝒗𝒏 − 𝒆| ≤ (
𝟏

𝟒
)
𝒏

|𝟑 − 𝒆| ≤ (
𝟏

𝟒
)
𝒏

 (𝒓é𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒆 𝒊𝒎𝒎é𝒅𝒊𝒂𝒕𝒆) 

6) On a :  
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45 > 1000⟹ 420 > 1012⟹ |𝑣20 − 𝑒| ≤ 10
−12 

On peut donc en déduire que v20 est une valeur approchée de e à 10−12 
 

Problème 1 : Mines-sup 2007 

Dans tout ce problème on pose :  

∀𝑡 > 0, 𝑓(𝑡) = 𝑒−
1
𝑡  𝑒𝑡 𝑔(𝑡) =

𝑓(𝑡)

𝑡
 

Partie A : Etude de 𝐟 et 𝐠. 

1)  a) Montrer que (f, g) ∈ 𝒞∞(]0;+∞[).  
 b) Démontrer que :  

∀𝑡 > 0, 𝑡𝑓′(𝑡) = 𝑔(𝑡) 
2)  a) Démontrer que g est prolongeable par continuité sur ℝ+. Nous le noterons dans toute la suite g. 

 b) Démontrer que g est dérivable en 0 et déterminer g′(0). 

3) Soit H la primitive de t ↦ g (
1

t
) s’annulant en 1. Calculer H.  

 

Partie B : Une suite implicite 

Soit n ≥ 3. On introduit l’équation (𝐸𝑛) ∶ 𝑓(𝑡) =
𝑡

𝑛
 d’inconnue t > 0. 

1)  a) Montrer que (En) admet une unique solution dans ]0; 1[ que l’on notera αn.  

(On montrerait identiquement que (En) admet une unique solution sur ]1;+∞[. On ne demande pas de le faire !). On 

note βn cette solution.  

 b) Montrer que (αn) et (βn) sont monotones.  

 c) Et-il possible que l’une des deux suites convergent vers ℓ > 0 ? En déduire leur limite. 

 

Partie C : Etude qualitative d’une équation différentielle 

On considère maintenant une application y solution de (E): x2y′ + y = x2 sur ℝ+ et de classe 𝒞∞. Nous allons, sans 

aucun calcul explicite de y, déterminer la suite des y(n)(0) = un à partir de (E). 

1) Que vaut u0 = y(0) ? 

2)  a) En dérivant (E), calculer 𝑢(1) = 𝑦′(0) et 𝑢2 = 𝑦
′′(0). 

 b) Peut-on avoir y de la forme 𝑥 ↦ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ? (Avec (𝑎, 𝑏, 𝑐) ∈ ℝ3). 
3) Soit n un entier naturel. 

 a) On suppose ici que n ≥ 3. Prouver à l’aide de la formule de Leibniz que :  

∀𝑥 ≥ 0, 𝑥2𝑦(𝑛+1)(𝑥) + (1 + 2𝑛𝑥)𝑦𝑛(𝑥) + 𝑛(𝑛 − 1)𝑦(𝑛−1)(𝑥) = 0 

 b) En déduire une relation de récurrence entre un et un−1.  

 c) Donner une formule explicite de un en utilisant les factorielles, valable pour n ≥ 2. 

 

Partie A :  

1)  a) On a :  

𝑡 ↦
1

𝑡
∈ 𝒞∞(]0;+∞[) 

𝑡 ↦ 𝑒𝑡 ∈ 𝒞∞(ℝ) 

Par composée et produit, (𝒈, 𝒇) ∈ (𝓒∞(]𝟎;+∞[))
𝟐
. 

 b) On a :  

∀𝑡 > 0, 𝑓′(𝑡) =
1

𝑡2
𝑒−

1
𝑡 =

1

𝑡
×
𝑓(𝑡)

𝑡
=
1

𝑡
𝑔(𝑡) 

On en déduit donc que :  

∀𝒕 > 𝟎, 𝒕𝒇′(𝒕) = 𝒈(𝒕) 
2)  a) On a :  

lim
𝑡→0+

1

𝑡
𝑒−

1
𝑡 = lim

𝑋→+∞

𝑋

𝑒𝑋
= 0 (𝑝𝑎𝑟 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑎𝑟é𝑒) 

On peut donc prolonger 𝑔 par continuité en 0 en posant 𝑔(0) = 0. 

 b) On a :  
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lim
𝑡→0+

𝑔(𝑡) − 𝑔(0)

𝑡
= lim
𝑡→0+

𝑒−
1
𝑡

𝑡2
= lim
𝑋→+∞

𝑋2

𝑒𝑋
= 0 (𝑝𝑎𝑟 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑎𝑟é𝑒) 

On en déduit donc que g est dérivable en 0 g′(0) = 0. 

3) On a :  

ℎ(𝑡) = 𝑔 (
1

𝑡
) = 𝑡𝑒−𝑡  

On peut le faire de différentes façons.  

Méthode 1 : Par IPP 

On a :  

𝑯(𝒕) = ∫𝒙𝒆−𝒙
𝒕

𝟏

𝒅𝒕 = [−𝒙𝒆−𝒙]𝟏
𝒕 +∫𝒆−𝒙

𝒕

𝟏

𝒅𝒕 = 𝒆−𝟏 − 𝒕𝒆−𝒕 − 𝒆−𝒕 + 𝒆−𝟏 =
𝟐

𝒆
− (𝟏 + 𝒕)𝒆−𝒕 

Méthode 2 : Par instinct 

On pose :  

𝐻(𝑡) = (𝑎𝑡 + 𝑏)𝑒−𝑡 ⟹𝐻′(𝑡) = (𝑎 − 𝑎𝑡 − 𝑏)𝑒−𝑡 

Ainsi 𝐻 est une primitive de 𝑡 ↦ 𝑔 (
1

𝑡
) si et seulement si :  

{
𝑎 − 𝑏 = 0
−𝑎 = 1

⟹ 𝐻(𝑡) = (−1 − 𝑡)𝑒−𝑡 + 𝑐 

Représente l’ensemble des primitives de 𝑡 ↦ 𝑔 (
1

𝑡
). 

On a ensuite que 𝐻(1) = 0 ⟹ 𝑐 =
2

𝑒
. 

Ainsi :  

∀𝒕 > 𝟎,𝑯(𝒕) =
𝟐

𝒆
− (𝟏 + 𝒕)𝒆−𝒕 

Partie B :  

1)  a) Soit 𝑛 ∈ ℕ. On a :  

𝑓(𝑡) =
𝑡

𝑛
⟺ 𝑔(𝑡) =

1

𝑛
 

Etudions les variations de 𝑔 ∈ 𝒞∞(]0;+∞[). 

On a :  

∀𝑡 > 0, 𝑔′(𝑡) =
𝑡 × 𝑓′(𝑡) − 𝑓(𝑡)

𝑡2
=
𝑒−

1
𝑡 (
1
𝑡
− 1)

𝑡2
=
(1 − 𝑡)𝑒−

1
𝑡

𝑡3
 

De plus on a :  

lim
𝑡→0+

𝑔(𝑡) =0 

lim
𝑡→+∞

𝑔(𝑡) = lim
𝑡→+∞

𝑒−
1
𝑡

𝑡2
= lim
𝑡→+∞

1

𝑡2
= 0 

On a alors :  

 
De plus on sait que :  

∀𝑛 ≥ 3, 𝑛 > 𝑒 ⟹
1

𝑛
<
1

𝑒
 

On a donc :  

 𝑔 continue sur [0; 1] 

 𝑔 strictement croissante sur [0; 1] 
D’après le théorème de la bijection :  



Page 9 sur 14 
 

∀𝑦 ∈ [0;
1

𝑒
] , ∃! 𝑡 ∈ [0; 1] 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑔(𝑡) = 𝑦 

Comme :  

∀𝒏 ≥ 𝟑,
𝟏

𝒏
∈ [𝟎;

𝟏

𝒆
] ⟹ ∀𝒏 ≥ 𝟑, ∃!𝜶𝒏 ∈ [𝟎; 𝟏] 𝒕𝒆𝒍 𝒒𝒖𝒆 𝒈(𝜶𝒏) =

𝟏

𝒏
 

Par le même raisonnement on a :  

∀𝒏 ≥ 𝟑, , ∃! 𝜷𝒏 ∈ [𝟏;+∞[ 𝒕𝒆𝒍 𝒒𝒖𝒆 𝒈(𝜷𝒏) =
𝟏

𝒏
  

 b) On a : 

∀𝑛 ≥ 3,
1

𝑛 + 1
<
1

𝑛
⟹ ∀𝑛 ≥ 3, 𝑔(𝛼𝑛+1) < 𝑔(𝛼𝑛) ⟹ ∀𝑛 ≥ 3, 𝛼𝑛+1 < 𝛼𝑛 

Car 𝑔 est croissante sur [0; 1] donc (𝛼𝑛) est décroissante. 

De même on a :  

∀𝑛 ≥ 3,
1

𝑛 + 1
<
1

𝑛
⟹ ∀𝑛 ≥ 3, 𝑔(𝛽𝑛+1) < 𝑔(𝛽𝑛) ⟹ ∀𝑛 ≥ 3, 𝛽𝑛 < 𝛽𝑛+1 

Car 𝑔 est décroissante sur [1;+∞[ donc (𝛽𝑛) est croissante. 

 c) La suite (𝛼𝑛) est décroissante minorée par 0 donc elle converge vers un réel ℓ ≥ 0. Supposons que ℓ > 0. 

On a alors par continuité de 𝑔 sur ]0;+∞[ :  

lim
𝑛→∞

𝑔(𝛼𝑛) = 𝑔 (lim
𝑛
𝛼𝑛) ⟹ lim

𝑛→∞

1

𝑛
= 𝑔(ℓ) ⟹ 0 = 𝑔(ℓ) 

Or on sait que :  

∀𝑡 > 0, 𝑔(𝑡) =
1

𝑡
𝑒−

1
𝑡 ≠ 0 

On en déduit donc que 𝓵 = 𝟎. 

De même on a (𝜂𝑛) est croissante donc soit elle converge vers ℓ′ ≥ 1, soit elle tend vers +∞. Si 𝛽𝑛 → ℓ′ alors par 

continuité :  

lim
𝑛→∞

𝑔(𝛽𝑛) = 𝑔(ℓ′) ⟹ lim
𝑛→∞

1

𝑛
= 𝑔(ℓ′) ⟹ 0 = 𝑔(ℓ′) ⟹ ℓ′ = 0 (𝑎𝑏𝑠𝑢𝑟𝑑𝑒 𝑐𝑎𝑟 ∀𝑛 ≥ 3, 𝛽𝑛 ≥ 1) 

Ainsi 𝜷𝒏 → +∞. 

Partie C :  

1) On a :  

(E): x2y′ + y = x2 ⟹ 02 × 𝑦′(0) + 𝑦(0) = 02 ⟹ 𝑦(0) = 0 = 𝑢0  
2)  a) On a :  

∀𝑥 ≥ 0, x2y′ + y = x2 ⟹ 2𝑥𝑦′(𝑥) + 𝑥2𝑦′′(𝑥) + 𝑦′(𝑥) = 2𝑥 ⟹ 𝑦′(0) = 0 = 𝑢1 
De même on a :  

2𝑥𝑦′(𝑥) + 𝑥2𝑦′′(𝑥) + 𝑦′(𝑥) = 2𝑥 ⟹ 2𝑦′(𝑥) + 4𝑥𝑦′′(𝑥) + 𝑥2𝑦(3)(𝑥) + 𝑦′′(𝑥) = 2 ⟹ 𝑦′′(0) = 2 = 𝑢2 

 b) Si on pose :  

𝑦: 𝑥 ↦ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 
On a alors :  

𝑦(0) = 𝑐, 𝑦′(0) = 𝑏 𝑒𝑡 𝑦′′(0) = 2𝑎 

Si 𝑦 solution de (𝐸) sir ℝ+, alors :  

𝒄 = 𝒃 = 𝟎 𝒆𝒕 𝒂 = 𝟏 

Or 𝑦(𝑥) = 𝑥2 n’est pas solution de (𝐸).  

3)  a) En dérivant 𝑛 fois (𝐸) pour 𝑛 ≥ 3 on a :  

𝑑𝑛

𝑑𝑥𝑛
(x2y′ + y) =

𝑑𝑛

𝑑𝑥𝑛
(x2) ⟹ 

Or on a :  

∀𝑛 ≥ 3,
𝑑𝑛

𝑑𝑥𝑛
(x2) = 0 

De plus on a grâce à Leibniz :  

𝑑𝑛

𝑑𝑥𝑛
(x2y′ + y) =

𝑑𝑛

𝑑𝑥𝑛
(x2y′) +

𝑑𝑛

𝑑𝑥𝑛
(y) = (

𝑛
0
) 𝑥2

𝑑𝑛

𝑑𝑥𝑛
(y′) + (

𝑛
1
)2𝑥

𝑑𝑛−1

𝑑𝑥𝑛−1
(y′) + (

𝑛
2
) 2

𝑑𝑛−1

𝑑𝑥𝑛−1
(y′) +

𝑑𝑛

𝑑𝑥𝑛
(y) 

= 𝑥2𝑦(𝑛+1) + 2𝑛𝑥𝑦(𝑛)(𝑥) + 𝑛(𝑛 − 1)𝑦(𝑛−1)(𝑥) + 𝑦(𝑛)(𝑥) 
On en déduit donc que :  
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∀𝑛 ≥ 3,
𝑑𝑛

𝑑𝑥𝑛
(x2y′ + y) =

𝑑𝑛

𝑑𝑥𝑛
(x2) ⟹ 𝑥2𝑦(𝑛+1)(𝑥) + (1 + 2𝑛𝑥)𝑦𝑛(𝑥) + 𝑛(𝑛 − 1)𝑦(𝑛−1)(𝑥) = 0 

 b) En prenant 𝑥 = 0 dans l’équation précédente on a :   

𝒖𝒏 + 𝒏(𝒏 − 𝟏)𝒖𝒏−𝟏 = 𝟎 

 c) On peut le faire de deux façons. Soit en réitérant le procédé, soit par récurrence. Cependant ici nous n’avons 

pas d’hypothèse de récurrence. Il faut en trouver une !  

On sait que :  

∀𝑛 ≥ 3, 𝑢𝑛 + 𝑛(𝑛 − 1)𝑢𝑛−1 = 0 

On a donc :  

{

𝑢3 = −3 × 2𝑢2 = −3 × 2
2

𝑢4 = −4 × 3𝑢3 = 4 × 3
2 × 22

𝑢5 = −5 × 4𝑢4 = 5 × 4
2 × 32 × 22

  

On peut donc conjecturer que :  

∀𝒏 ∈ ℕ, 𝒏 ≥ 𝟐,𝒖𝒏 = (−𝟏)
𝒏 × 𝒏! × (𝒏 − 𝟏)! =

(−𝟏)𝒏

𝒏
× (𝒏!)𝟐 

Montrons le par récurrence.  

Initialisation : 𝒏 = 𝟐  
On a :  

𝑢2 = 2 

(−1)2

2
× (2!)2 = 2 

Donc la conjecture est vraie pour 𝑛 = 2 

Hérédité : Soit 𝑛 un entier fixé. On suppose la conjecture vraie pour ce 𝑛.  

On a :  

𝑢𝑛+1 = −(𝑛 + 1)𝑛𝑢𝑛 (𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 3)𝑐)) 

= −(𝑛 + 1)𝑛 ×
(−1)𝑛

𝑛
× (𝑛!)2 (𝐻𝑅𝑛) 

=
(−1)𝑛+1

𝑛 + 1
((𝑛 + 1)!)

2
 

Donc la conjecture est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

Méthode 2 : Par itération 

𝑢𝑛 = −𝑛(𝑛 − 1)𝑢𝑛−1 

= 𝑛(𝑛 − 1)2(𝑛 − 2)𝑢𝑛−2 

= −𝑛(𝑛 − 1)2(𝑛 − 2)2(𝑛 − 3)𝑢𝑛−3 

= ⋮ 𝑝𝑎𝑟 𝑖𝑡é𝑟𝑎𝑡𝑖𝑜𝑛 

= (−1)𝑛 × 𝑛 × (𝑛 − 1)2 × … .× 32 × 2 × 𝑢2 

Or 𝑢2 = 2 donc on a :  

∀𝒏 ≥ 𝟐, 𝒖𝒏 = (−𝟏)
𝒏 × 𝒏 × [(𝒏 − 𝟏)!]𝟐 

 

Problème 2 : Irrationnalité de 𝒆 

 Le but de ce problème est d’établir que 𝑒 ∉ ℚ par une autre méthode que celle donnée en DS au PCSI 

génération 2023-2024 (étant donné que vous êtes bien plus fort qu’eux…).   

Partie A : Une suite qui converge vers 𝒆 

 Dans toute cette partie on pose :  

∀𝑛 ∈ ℕ, 𝐼𝑛 = ∫
ln(𝑥)𝑛

𝑥2
𝑑𝑥

𝑒

1

 

1) Démontrer que 𝐼𝑛 est bien définie pour tout entier naturel 𝑛. 

2) Calculer 𝐼0.  

3) On pose :  
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𝑔: {

[1, 𝑒] → ℝ

𝑥 ↦
1 + ln(𝑥)

𝑥

 

En calculant la dérivée de 𝑔, déterminer la valeur de 𝐼2. 

4)  a) Démontrer que :  

∀𝑛 ∈ ℕ, 𝐼𝑛+1 = −𝑒
−1 + (𝑛 + 1)𝐼𝑛 

  b) En déduire que :  

∀𝑛 ∈ ℕ, 𝐼𝑛 = 𝑛!(1 − 𝑒
−1 ×∑

1

𝑘!

𝑛

𝑘=0

) 

6)  a) Démontrer que :  

∀𝑛 ∈ ℕ, 𝐼𝑛 = ∫𝑡
𝑛𝑒−𝑡𝑑𝑡

1

0

 

 b) En déduire que :  

∀𝑛 ∈ ℕ, 0 ≤ 𝐼𝑛 ≤
1

𝑛 + 1
 

 c) En déduire que :  

lim
𝑛→+∞

∑
1

𝑘!

𝑛

𝑘=0

= 𝑒 

Partie B : 𝑒 ∈ ℝ\ℚ 

 Dans toute cette partie on pose :  

∀𝑛 ∈ ℕ, 𝑏𝑛 = 𝑛!∑
1

𝑘!

𝑛

𝑘=0

 

1) Démontrer que :  

∀𝑛 ∈ ℕ, 𝑏𝑛 ∈ ℕ 

2) Déduire des résultats de la partie A que :  

∀𝑛 ∈ ℕ, 0 ≤ 𝑛! 𝑒 − 𝑏𝑛 ≤
𝑒

𝑛 + 1
 

3) En raisonnant par l’absurde, démontrer que 𝑒 est irrationnel.  

 

Partie A :  

1) Pour tout 𝑛 ∈ ℕ, on a par produit :  

𝒙 ↦
𝐥𝐧(𝒙)𝒏

𝒙𝟐
∈ 𝓒𝟎([𝟏; 𝒆]) 

Donc 𝐼𝑛 est bien définie pour tout 𝑛 entier naturel.  

2) On a :  

𝑰𝟎 = ∫
𝐥𝐧(𝒙)𝟎

𝒙𝟐
𝒅𝒙

𝒆

𝟏

= ∫
𝟏

𝒙𝟐
𝒅𝒙

𝒆

𝟏

= [−
𝟏

𝒙
]
𝟏

𝒆

= 𝟏 − 𝒆−𝟏 

3) On pose :  

𝑔: 𝑥 ↦
1 + ln(𝑥)

𝑥
 𝑠𝑢𝑟 [1; 𝑒] 

On a alors 𝑔 ∈ 𝒞1([1; 𝑒]) et :  

∀𝑥 ∈ [1; 𝑒], 𝑔′(𝑥) =
1 − 1 − ln(𝑥)

𝑥2
= −

ln(𝑥)

𝑥2
 

On en déduit donc que :  

𝑰𝟏 = ∫
𝐥𝐧(𝒙)𝟏

𝒙𝟐
𝒅𝒙

𝒆

𝟏

= [−𝒈(𝒙)]𝟏
𝒆 = 𝒈(𝟏) − 𝒈(𝒆) = 𝟏 − 𝟐𝒆−𝟏 

4)  a) On a :  
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𝐼𝑛+1 = ∫
ln(𝑥)𝑛+1

𝑥2
𝑑𝑥

𝑒

1

= [−
1

𝑥
× ln𝑛+1(𝑥)]

1

𝑒

+ (𝑛 + 1)∫
ln(𝑥)𝑛

𝑥2

𝑒

1

𝑑𝑥 = −𝑒−1 + (𝑛 + 1)𝐼𝑛 

 b) On peut le faire de deux façons. Le plus simple étant de le faire par récurrence vu qu’ils nous donnent le 

résultat ! Je commence par cela.  

Méthode 1 : Par récurrence 

On pose :  

∀𝑛 ∈ ℕ,𝒫(𝑛): "𝐼𝑛 = 𝑛!(1 − 𝑒
−1 ×∑

1

𝑘!

𝑛

𝑘=0

) " 

Initialisation : 𝑛 = 0 

On a d’après la question 2) :  

𝐼0 = 1 − 𝑒
−1 

Or on sait que :  

0! (1 − 𝑒−1 ×∑
1

𝑘!

0

𝑘=0

) = 1 −
𝑒−1

0!
= 1 − 𝑒−1 

Donc 𝒫(0) est vraie.  

Hérédité : Soit 𝑛 un entier naturel fixé. On suppose vraie 𝒫(𝑛). On a alors :  

𝐼𝑛+1 = −𝑒
−1 + (𝑛 + 1)𝐼𝑛 (𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 4)𝑎)) 

= −𝑒−1 + (𝑛 + 1)𝑛! (1 − 𝑒−1 ×∑
1

𝑘!

𝑛

𝑘=0

) (ℎ𝑦𝑝𝑜𝑡ℎè𝑠𝑒 𝑑𝑒 𝑟é𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒) 

= −𝑒−1 + (𝑛 + 1)! (1 − 𝑒−1 ×∑
1

𝑘!

𝑛

𝑘=0

) = (𝑛 + 1)! [(−
𝑒−1

(𝑛 + 1)!
) + 1 − 𝑒−1 ×∑

1

𝑘!

𝑛

𝑘=0

]

= (𝑛 + 1)! [1 − 𝑒−1 ×∑
1

𝑘!

𝑛+1

𝑘=0

] 

Donc 𝒫(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

Méthode 2 : Par itération 

On a d’après la question 4) a) :   

∀𝑛 ∈ ℕ, 𝐼𝑛 = 𝑛𝐼𝑛−1 − 𝑒
−1 

= 𝑛[(𝑛 − 1)𝐼𝑛−2 − 𝑒
−1] − 𝑒−1 = 𝑛(𝑛 − 1)𝐼𝑛−2 − [𝑛 + 1]𝑒

−1 

= 𝑛(𝑛 − 1)[(𝑛 − 2)𝐼𝑛−3 − 𝑒
−1] − [𝑛 + 1]𝑒−1 =

𝑛!

(𝑛 − 3)!
𝐼𝑛−3 − [

𝑛!

(𝑛 − 2)!
+

𝑛!

(𝑛 − 1)!
+
𝑛!

𝑛!
] 𝑒−1 

=
𝑛!

(𝑛 − 3)!
[(𝑛 − 3)𝐼𝑛−4 − 𝑒

−1] − [
𝑛!

(𝑛 − 2)!
+

𝑛!

(𝑛 − 1)!
+
𝑛!

𝑛!
] 𝑒−1

=
𝑛!

(𝑛 − 4)!
𝐼𝑛−4 − 𝑛! [

1

(𝑛 − 3)!
+

1

(𝑛 − 2)!
+

1

(𝑛 − 1)!
+
1

𝑛!
] 𝑒−1 

= ⋮ 
= ⋮ (𝑒𝑛 𝑟é𝑖𝑡é𝑟𝑎𝑛𝑡 𝑙𝑒 𝑝𝑟𝑜𝑐é𝑑é 𝑜𝑛 𝑜𝑏𝑡𝑖𝑒𝑛𝑡) 

=
𝑛!

0!
𝐼0 − 𝑛! [

1

1!
+
1

2!
+ ⋯+

1

𝑛!
] 𝑒−1 

= 𝑛! (1 − 𝑒−1) − 𝑛! (∑
1

𝑘!

𝑛

𝑘=1

)𝑒−1 

= 𝑛! [1 − 𝑒−1 − (∑
1

𝑘!

𝑛

𝑘=1

)𝑒−1] 

Or on sait que :  

1 =
1

0!
 

On a donc :  
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∀𝒏 ∈ ℕ, 𝑰𝒏 = 𝒏! [𝟏 −
𝒆−𝟏

𝟎!
− (∑

𝟏

𝒌!

𝒏

𝒌=𝟏

)𝒆−𝟏] = 𝒏! [𝟏 − (∑
𝟏

𝒌!

𝒏

𝒌=𝟎

)𝒆−𝟏] 

6)  a) On effectue un changement de variable.  

On pose :  

𝑥 = 𝑒𝑡 ⟺ 𝑡 = ln(𝑥)  

 On change les bornes 

{
𝑥 = 1 ⟹ 𝑡 = 0
𝑥 = 𝑒 ⟹ 𝑡 = 1

 

 Calcul du 𝒅𝒙 

On a :  

𝑥 = 𝑒𝑡 ⟹ 𝑑𝑥 = 𝑒𝑡𝑑𝑡 

 Changement de l’intégrale 

𝐼𝑛 = ∫
ln(𝑥)𝑛

𝑥2
𝑑𝑥

𝑒

1

= ∫
[𝑙𝑛(𝑒𝑡)]𝑛

𝑒2𝑡
𝑒𝑡𝑑𝑡

1

0

= ∫𝑡𝑛𝑒−𝑡𝑑𝑡

1

0

 

 b) On a :  

∀𝑡 ∈ [0; 1], 0 ≤ 𝑒−𝑡 ≤ 1 

⟹∀𝑛 ∈ ℕ, ∀ 𝑡 ∈ [0; 1], 0 ≤ 𝑡𝑛𝑒−𝑡 ≤ 𝑡𝑛  (𝑐𝑎𝑟 𝑡𝑛 ≥ 0 𝑠𝑢𝑟 [0; 1]) 
Par croissance de l’intégrale on a :  

0 ≤ ∫𝑡𝑛𝑒−𝑡𝑑𝑡

1

0

≤ ∫𝑡𝑛𝑑𝑡

1

0

 

Or on a :  

∫𝑡𝑛𝑑𝑡

1

0

=
1

𝑛 + 1
 

On a donc :  

∀𝒏 ∈ ℕ, 𝟎 ≤ 𝑰𝒏 ≤
𝟏

𝒏 + 𝟏
 

 c) On sait que :  

lim
𝑛

1

𝑛 + 1
= 0 

Donc d’après le théorème des gendarmes, on en déduit donc que :  

lim
𝑛
𝐼𝑛 = 0 

De plus on sait que :  

∀𝑛 ∈ ℕ, 𝐼𝑛 = 𝑛! [1 − (∑
1

𝑘!

𝑛

𝑘=0

) 𝑒−1] 

Comme :  

lim
𝑛
𝑛! =  +∞ 

On en déduit donc que :  

lim
𝑛
1 − (∑

1

𝑘!

𝑛

𝑘=0

)𝑒−1 = 0 

On a donc :  

𝐥𝐢𝐦
𝒏→+∞

∑
𝟏

𝒌!

𝒏

𝒌=𝟎

= 𝒆 

Partie B :  

1) On a :  

∀𝑛 ∈ ℕ, 𝑏𝑛 = 𝑛!∑
1

𝑘!

𝑛

𝑘=0

=∑
𝑛!

𝑘!

𝑛

𝑘=0

 

De plus on a :  
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∀𝑘 ∈ ⟦0; 𝑛⟧,
𝑛!

𝑘!
= 𝑛 × (𝑛 − 1) × (𝑛 − 2) × …× (𝑘 + 1) ∈ ℕ  

On en déduit donc que :  

∀𝒏 ∈ ℕ, 𝒃𝒏 ∈ ℕ 

2) On sait que :  

∀𝑛 ∈ ℕ, 0 ≤ 𝐼𝑛 ≤
1

𝑛 + 1
 

De plus on sait que :  

∀𝑛 ∈ ℕ, 𝐼𝑛 = 𝑛! [1 − (∑
1

𝑘!

𝑛

𝑘=0

) 𝑒−1] 

On en éduit donc que :  

∀𝑛 ∈ ℕ, 0 ≤  𝑛! [1 − (∑
1

𝑘!

𝑛

𝑘=0

)𝑒−1] ≤
1

𝑛 + 1
 

Or 𝑒 > 0 donc en multipliant les termes de la double inégalité par 𝑒 on obtient : 

⟹∀𝑛 ∈ ℕ, 0 ≤  𝑒 × 𝑛! − 𝑏𝑛 ≤
𝑒

𝑛 + 1
 

3) On raisonne par l’absurde en supposant que 𝑒 ∈ ℚ. On a :  

𝑒 ∈ ℚ ⟺ ∃(𝑝, 𝑞) ∈ ℤ2 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑒 =
𝑝

𝑞
 

On a alors :  

∀𝑛 ∈ ℕ, 0 ≤
𝑝

𝑞
× 𝑛! − 𝑏𝑛 ≤

𝑒

𝑛 + 1
⟹ ∀𝑛 ∈ ℕ, 0 ≤ 𝑝 × 𝑛! − 𝑞 × 𝑏𝑛 ≤ 𝑞 ×

𝑒

𝑛 + 1
 

Or on sait d’après la question 1 de la partie B que :  

∀𝑛 ∈ ℕ, 𝑏𝑛 ∈ ℕ 

On en déduit donc que :  

∀𝑛 ∈ ℕ, 𝑝 × 𝑛! − 𝑞 × 𝑏𝑛 

De plus on a :  

lim
𝑛
𝑞 ×

𝑒

𝑛 + 1
= 0 

On en déduit donc que :  

∃𝑁0 ∈ ℕ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑛 ≥ 𝑁0, 𝑞 ×
𝑒

𝑛 + 1
< 1 

Ainsi on a :  

∀𝑛 ≥ 𝑁0, 𝑝 × 𝑛! − 𝑞 × 𝑏𝑛 ∈ ℕ ∩ [0; 1[ 
On a donc :  

∀𝑛 ≥ 𝑁0, 𝑝 × 𝑛! − 𝑞 × 𝑏𝑛 = 0 

Donc la suite 𝑢𝑛 =  𝑝 × 𝑛! − 𝑞 × 𝑏𝑛 est nulle à partir d’un certain rang.  

On a donc :  

∀𝑛 ≥ 𝑁0,
𝑏𝑛
𝑛!
=
𝑝

𝑞
 

Or on sait que :  

∀𝑛 ∈ ℕ,
𝑏𝑛
𝑛!
= ∑

1

𝑘!

𝑛

𝑘=0

 

On pose :  

∀𝑛 ∈ ℕ, 𝑣𝑛 =∑
1

𝑘!

𝑛

𝑘=0

 

On a :  

𝑣𝑛+1 − 𝑣𝑛 =
1

(𝑛 + 1)! 
> 0 

Ainsi la suite (𝑣𝑛) est strictement croissante donc ne peut pas être stationnaire à partir d’un certain rang. On obtient 

une contradiction. Donc l’hypothèse 𝑒 ∈ ℚ est fausse.  

Donc : 𝒆 ∉ ℚ  


