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Chapitre 16 : Dérivation 

Partie B : Propriétés des fonctions dérivables 

 

I) Théorème de Rolle 
 

a) Extrema locaux 
 

Définition : Soit f ∶ I → ℝ. On dit que f admet un maximum local en a s’il existe δ > 0 et a ∈ I tel que :  

∀𝑥 ∈]𝑎 − 𝛿; 𝑎 + 𝛿 [∩ 𝐼, 𝑓(𝑥) ≤ 𝑓(𝑎) 

De même on dit que f admet un minimum local en a s’il existe δ > 0 et a ∈ I tel que :  

∀𝑥 ∈]𝑎 − 𝛿; 𝑎 + 𝛿 [∩ 𝐼, 𝑓(𝑥) ≥ 𝑓(𝑎) 
 

Exemple I.a.1 : Montrer que la fonction 𝑓 ∶ 𝑥 ↦ 𝑥3 − 3𝑥2 − 9𝑥 + 1 

définie sur ℝ admet un maximum local et un minimum local.  

 

 

Propriété I.a.2 (condition nécessaire à l’existence d’un extremum 

local) : Soit 𝑓: I → ℝ dérivable et a ∈ I
o

. Si f admet un extremum 

local en a, alors 𝑓′(𝑎) =  0.  

 

Remarque : La condition est nécessaire mais pas suffisante. Pour 

déterminer les extrema locaux de f, on peut étudier les points 

intérieurs à Df qui annulent la dérivée (avec le tableau de variation par 

exemple) puis les points à la frontière de I.  

Exemple I.a.3 : Etudier les extrema de 𝑓 ∶ 𝑥 ↦ (𝑥(𝑥 − 1)2)
1

3 
 

b) Théorème de Rolle 
 

Propriété I.b.1 (Théorème de Rolle) : Soient (a; b) ∈ ℝ2 et 𝑓 ∶ [𝑎; 𝑏] → ℝ. On suppose que :  

 𝑓 est continue sur [a; b] 
 𝑓 est dérivable sur ]a; b[ 
 𝑓(𝑎) = 𝑓(b).  

Alors il existe c ∈]a; b[ tel que 𝑓′(𝑐) = 0. 
 

 

Remarque : 𝑓′(𝑐) = 0 n’est pas nécessairement unique.  

 

Application I.b.2 : Soient (a; b) ∈ ℝ2 et 𝑓: [𝑎; 𝑏] → ℝ de 

classe C3 et qui s’annule trois fois sur [a; b]. Montrer qu’il 

existe c ∈]a; b[ tel que 𝑓(2)(𝑐) = 0. 

 

 
 

II) Accroissements finis et fonctions lipchitziennes 
 

a) Egalité des accroissements finis  

 

Propriété II.a.1 (Théorème des accroissements finis) : Soient (a; b) ∈ ℝ2 et f: [a; b] → ℝ. On suppose que :  

 f est continue sur [a ; b]  

 f est dérivable sur ]a; b[.  
Alors il existe c ∈]a; b[ tel que :  

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

 

Interprétation géométrique : Le Théorème des accroissements finis signifie que si f est une fonction continue sur 

le segment [a; b], dérivable sur ]a; b[, alors il existe au moins une tangente à son graphe qui soit parallèle à la corde 

(AB), où A(a; f(a)) et B(b; f(b)). 
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Interprétation cinétique : Considérons un point mobile se déplaçant sur un axe et supposons que la position soit une 

fonction dérivable du temps. Ce théorème nous dit qu’il existe un instant  c où la vitesse instantanée f ′(c) est égale à 

la vitesse moyenne sur le trajet 
f(b)−f(a)

b−a
. 

 

Application II.a.2 (recherche d’une limite) : Déterminer :  

𝑙𝑖𝑚
𝑥→1

𝑠𝑖𝑛(𝑥) − 𝑠𝑖𝑛 (
1
𝑥)

𝑒𝑥 − 𝑒
1
𝑥

 

 

Application II.a.3 (démontrer une inégalité) : Démontrer que :  

∀𝑥 > 0,
1

1 + 𝑥
≤ 𝑙𝑛(1 + 𝑥) − 𝑙𝑛(𝑥) ≤

1

𝑥
 

 

Propriété II.a.4 (Théorème de la limite dérivée) : Soit f: I → ℝ une fonction continue et dérivable sur I\{a}. Si 𝑓′ : 
I\{a}→ ℝ admet une limite ℓ (finie ou infinie) quand x → a, alors :  

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
→⏟

𝑥→𝑎

ℓ 

 

Application II.a.5 : On pose f définie sur ]0; +∞[ par 𝑓 ∶ 𝑥 ↦ 𝑥2 𝑙𝑛(𝑥). Montrer que f peut se prolonger en une 

fonction f̃ de classe C1 sur ℝ+. 
 

Remarque : Ainsi si ℓ ∈ ℝ alors f est dérivable en a et 𝑓′(𝑎) = ℓ. 

 

b) Monotonie 

 

Proposition II.b.1 : Soit f une fonction définie et dérivable sur un intervalle I de ℝ. On a alors :  

_ 𝑓 est constante sur I si et seulement si 𝑓′(x) = 0 sur I. 

_ 𝑓 est croissante (resp décroissante) sur I si et seulement si f ′(x) ≥ 0 (resp ≤ 0) sur I. 
 

Application II.b.2 : Démontrer que :  

∀𝑥 ∈ ℝ, 2 𝑎𝑟𝑐𝑡𝑎𝑛 (√𝑥2 + 1 − 𝑥) + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) =
𝜋

2
  

 

Remarque : On peut avoir un réel 𝑐 tel que 𝑓′(𝑐) = 0 et avoir une fonction strictement croissante. Il faut juste qu’il 

existe un voisinage autour de c où 𝑓′ ne s’annule pas.  
 

c) Inégalité des accroissements finis 

 

Propriété II.c.1 (Inégalité des accroissements finis) : Soit f ∶ [a; b] → ℝ. On suppose que :  

 f est continue sur [a; b] 
 f est dérivable sur ]a; b[ 
 ∃ (m; M) ∈ ℝ2 tel que ∀x ∈]a; b[, m ≤ f ′(x) ≤ M 

On a alors :  

𝑚(𝑏 − 𝑎) ≤ 𝑓(𝑏) − 𝑓(𝑎) ≤ 𝑀(𝑏 − 𝑎) 
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Application II.c.2 : Démontrer que :  

∀𝑥 > 0, 𝑒𝑥 − 1 ≤ 𝑥𝑒𝑥 

 

d) Fonctions lipchitziennes  

 

Définition : Une fonction f: I → ℝ est dite lipchitzienne sur I s’il existe un nombre k ≥ 0, tel que :  

∀(𝑥, 𝑥′) ∈ 𝐼2, |𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝑘|𝑥 − 𝑥′| 
On dira que f est k-lipchitzienne sur I.  

 

Exemple II.d.1 : Montrer que les fonctions x ↦ |x| et x ↦ sin(x) sont 1-lipchitiziennes.  

 

Exemple II.d.2 : Montrer que x ↦ √x n’est pas lipchitzienne.  

 

Propriété II.d.3 : Les fonctions k-lipchitziennes sont continues sur I.  

 

Propriété II.d.4 : Soit f ∶ I → ℝ. On suppose que :  

 𝑓 est continue sur I 

 𝑓 est dérivable sur I 
Alors on a l’équivalence :  

∀x ∈ I, |𝑓′(x)| ≤ k ⟺ 𝑓 est k − lipchitzienne sur I 
 

Application II.d.5 : Démontrer que la fonction cosinus est 1-lipchitzienne sur ℝ. 

 

d) Applications aux suites récurrentes d’ordre 1 : 𝐮𝐧+𝟏 = 𝐟(𝐮𝐧) 

 

Définition : Soit f ∶ I → ℝ. On dit que f est contractante si elle est k-lipchitzienne, k ∈ [0; 1[. 
 

Propriété II.d.1 (convergence des fonctions contractantes) : Soit f: I → I une fonction contractante. Si f admet un 

point fixe ℓ sur I, alors ce dernier est unique et toute suite définie par u0 ∈ I et un+1 = f(un) converge vers ℓ.  

 

Application II.d.2 : Etudier la convergence de :  

{
𝑢0 = 1

𝑢𝑛+1 = 𝑒−𝑢𝑛−1 

e) Convexité 
 

Remarque : Pour bien comprendre la notion de convexité, il faut d’abord connaître l’expression des coordonnées des 

points d’un segment [𝐴𝐵] du plan. 
 

Propriété II.e.1 (écriture paramétrique d’un segment) :  

On a :  

[𝐴𝐵] = {𝑀(𝒕𝑥𝐴 + (𝟏 − 𝒕)𝑥𝐵; 𝒕𝑦𝐴 + (𝟏 − 𝒕)𝑦𝐵) ;   𝒕 ∈ [0; 1]}  
 

Définition (fonction convexe) : On dit qu’une fonction 𝑓: 𝐼 → ℝ est convexe sur 𝐼 si et seulement si :  

∀(𝑎; 𝑏) ∈ 𝐼2, ∀𝑡 ∈ [0; 1], 𝑓(𝑡𝑎 + (1 − 𝑡)𝑏) ≤ 𝑡𝑓(𝑎) + (1 − 𝑡)𝑓(𝑏) 

 

Remarque : On a alors l’interprétation géométrique 

suivante :  

 

Exemple II.e.2 : Montrer que 𝑥 ↦ |𝑥| est convexe sur 

ℝ. 
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Proposition II.e.3 (Inégalité des trois pentes) : Soit une fonction 𝑓: 𝐼 → ℝ convexe sur 𝐼 et (𝑎, 𝑏) ∈ 𝐼2 vérifiant 𝑎 <

𝑏. On a :  

∀𝑥 ∈]𝑎; 𝑏[,
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
≤

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
≤

𝑓(𝑏) − 𝑓(𝑥)

𝑏 − 𝑥
 

 

Proposition II.e.4 (Convexité et dérivées) : Soit 𝑓: 𝐼 → ℝ une fonction dérivable. On a alors :  

1) 𝑓 est convexe si et seulement si 𝑓′ est croissante. 

2) Si 𝑓 est deux fois dérivable,𝑓 est convexe si et seulement si 𝑓′′(𝑥) ≥ 0 

3) Si 𝑓 est deux fois dérivable, on dit que 𝑎 est un point d’inflexion si 𝑓′′(𝑎) = 0 et 𝑓′′(𝑥) change de signe en 𝑎. 

 

Proposition II.e.5 (convexité et tangentes) : Soient 𝑎 ∈ 𝐼 et une fonction 𝑓: 𝐼 → ℝ convexe sur 𝐼, dérivable en 𝑎. On 

a alors :  

∀𝑥 ∈ 𝐼, 𝑓(𝑥) ≥ 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) 

 

Application II.e.6 : Démontrer les inégalités suivantes : 

1) ∀𝑥 ∈ ℝ, 𝑒𝑥 ≥ 1 + 𝑥                             2) ∀𝑥 ∈ [0;
𝜋

2
] ,

2𝑥

𝜋
≤ sin (𝑥) ≤ 𝑥   

 

III) Les fonctions à valeurs complexes 
 

Définition : Soit f ∶ I → ℂ. On dit que f est dérivable en un point a ∈ I si 
f(x)−f(a)

x−a
 admet une limite quand x → a. On 

appelle alors dérivée de f en a et on note f ′(a) cette limite.  

De même on dit que f est dérivable sur I si elle est dérivable en tout point de I.  
 

Propriété III.1 : f ∶ I → ℂ dérivable en a ∈ I si et seulement si ℜ(f) et ℑ(f) sont dérivables en a et :  

𝑓′(𝑎) = ℜ(𝑓)′(𝑎) + 𝑖ℑ(𝑓)′(𝑎) 

 

Exemple III.2 : Déterminer la fonction dérivée de 𝑥 ↦ 𝑒𝑖𝑥 sur ℝ. 

 

Application III.3 : Calculer la dérivée n-ième de :  

𝑓 ∶  {
ℝ → ℝ

𝑥 ↦ 𝑒𝑥 𝑠𝑖𝑛(𝑥)
 

 

Propriété III.4 (Inégalité des accroissements finis sur ℂ) : Soit f ∈ C1([a; b]; ℂ). On a :  

∃M ≥ 0, ∀x ∈]a; b[, |f ′(x)| ≤ M ⟹ |f(b) − f(a)| ≤ M|b − a| 

 

Propriété III.5 : Soit une fonction dérivable f ∶ I → ℂ :  

∀𝑥 ∈ 𝐼, |𝑓′(𝑥)| ≤ 𝑘 ⟹ 𝑓 𝑒𝑠𝑡 𝑘 − 𝑙𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑖𝑧𝑖𝑒𝑛𝑛𝑒 

 

Application III.6 : Une fonction f ∶ I → ℂ dérivable sur I telle que 𝑓′ = 0 est constante sur I.  

 

Voici un tableau qui récapitule les points communs et différences entre une fonction à valeur réelle et une fonction à 

valeurs complexes :  

 


