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Fiche TD 16 : Dérivation

Partie A : Dérivabilité en un point

Exercice A.1 : Déterminer (a,b) € R? de maniére a ce que la fonction f définie sur R par :
() :{ Vxsix €[0;1]
ax?+bx+1six>1
Soit dérivable sur ]0; +oo].

On sait que :
x = Vx € D(]0; 1)
De méme :
x+ ax? +bx+1 € D(1. +|)
On sait que f est dérivable en 1 si et seulement si :

i T~ _

x»1 x-—1

On sait que :
y fx)—f(1) 1
er{l— x—1 2
Demémeona:
f(x) — f(1
lim M =2a+b
x—-1% X —

De méme on sait qu'une fonction dérivable en 1 est continue en 1.
On doit donc aussi avoir la continuité en 1.
On sait que :
lim f(x) =1
X—1"
lim f(x) =a+b+1
x-1+
On doit donc avoir :
1
2at+b=
| 2ae0=s
a+b+1=1
1

On en déduit donc que f est dérivable sur ]0; +oo[ si et seulement si = (a; b) = G ;= 5).

Exercice A.2 : Etudier la dérivabilité de la fonction :

. 1y
f(x) = {sm(x) sin (;) six#0

0 sinon

On sait que :
1
lim sin(x) sin (—) =0
x—0 X
On peut le prouver avec le théoréme des gendarmes car :
1
Vx € R,x # 0, —|sin(x)| < |sin (—) sin(x)
X
Donc f est déja continue, ce qui est une condition nécessaire a la continuité de f.

1l reste a voir que f est dérivable.
On calcule :

< |sin(x)|

: et
f(x) — £f(0 sin(x) sin (=
M COE (OJ )
x—0 X x—0 X
Or on sait que :
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sin(x
lim ) =1
Xx-0 X

1
lim sin (—)
X—0 X

Or x » sin G) n’est pas de limite en 0. On peut poser

1 1

u, = —etvy, = ——
2mn 21m+%

Donc on cherche :

Donc f n’est pas dérivable en 0.
On peut le voir sur la courbe de la fonction en remarquant que les variation de f sont « chaotiques » a 1’approche de

0:
H 0.02 n

ﬂ =@ X ) n“

xT

-0.0B5 -0foz2 0o

L

Exercice A.3 : On pose :
R* - R
{ 2 . 1
X P X“sin (—)
X
a) Montrer que f est prolongeable par continuité en 0.

b) Montrer que le prolongement est dérivable en 0 mais que la dérivée n’est pas continue.

a) On sait que :
1

x? sin (—)| < x?
X

limf(x) =0
X—0

VX ER,x# 0,—x% <

On a donc d’apres le théoréme des gendarmes :

b) On calcule :

f(x) 1
lirr(l)— = lirr(l) X sin (—) = 0 (comme précédemment avec le théoréme des gendarmes!)
X— X X— X

Ainsi f est dérivable en 0 en posant f'(0) = 0
On calcule a présent f'(x) en dehors de 0 :




1 1 1 1 1
Vx € R,x # 0,f'(x) = 2xsin (—) — —x” cos (—) = 2xsin (—) — cos (—)
x/ X X X X
On en déduit que :
1 1 1
limf’'(x) = lim <2xsin (—) — cos (—)) = lim cos (—)
x—0 x—0 X X x—0 X

1 _
Orx = cos (;) n’admet pas de limite en 0. On peut le prouver en posant :
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1 R 1
T om ST 2nn+%
Donc f est dérivable en 0 mais f' n’est pas continue.
Exercice A.4 : Etudier la dérivabilité en 0 de :
X 1
— —)six#0
f(x) = {ln(lxl) cos (x) St
0 sinon

On peut étudier la continuité de f en 0 mais on peut aussi tout de suite étudier la dérivabilité tout de suite.
On calcule :

X

) 1 1
lim— = lim——-—co ( )
x50 x xooIn(x])
Or on sait que :
1
vx € R, -1 < cos(;) <1

On en déduit donc que :

1
- _os(y)
X ;) = =
QD] = TGl = 1 _
D)

Or on sait que :
1

lim——-—=20
x=0 [In(|x[)]|

01 N,
X‘L%T‘Xli%mcos(_)_

On en déduit donc que :

Donc f est dérivable en 0 donc sur R.

Exercice A.5 : Déterminer les limites suivantes :
cos(x) — 1 - In(x) e*—1
_ m—— = lim—

x-0 sin(x)

L, =lim
17 x50 X x-1x—1"’

X
. f(x) —1(0)
= lim—
x-0 X
=f'(0
= sin(0)
=0

In(x) ) -f(1) 1
LZ_;l(l—rgx—l_)lcl—rE x—1 _f(l)_I_l
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oef=1 ref-1 X
Lz = lim = lim (—x )

x-0sin(x) x-0\ X sin(x)
e*—1 X
= lim( ) X lim( - )
x>0\ X x—0 \sin(x)
=1

Partie B : Opération sur les fonctions dérivées

Exercice B.1 : On pose :

R—-R
f:{ e X
X

1+e7*
1) Démontrer que f réalise une bijection de R dans un intervalle I a préciser.
2) Etudier la dérivabilité de sa réciproque.

1) Il suffit de calculer la dérivée et les limites de f.

Ona:

—e XA +e ) +eXe ™™
(14 e7x)?

0

feD(R)etvVx € R,f'(x) =

—X

—e
=<
(1+eX)?
Donc f est strictement décroissante et continue donc elle réalise une bijection de R dans ] lim f(x); liT f(x) [
X——00 X—+00

On sait que :
e ¥ 1

x1—1>r—noo T+ex x1—1>r—noo 1+ e

Demémeona:
lim —— =0
im =
x>+ 1 + e™X

On a la courbe suivante :

On sait que si f est dérivable et bijective et que la fonction f'(x) ne s’annule pas alors f~1 est dérivable :
1

VX € R, (f_l)’(X) = m

On peut chercher f~1 si 1’on veut.
Soit y € ]0; 1[. On résout :
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Exercice B.2 : On pose f(x) = In(1 + e7%)
1) Etudier le domaine de définition de f.
2) La fonction est-elle de classe C* ?

3) Démontrer que f admet un unique point fixe o et déterminer un encadrement de o d’amplitude 1.

4) Démontrer que :
1
vx =0, |f(x) — qf Szlx—al

5) Etudier la convergence de la suite :
{ Ug >0
Upyq = ln(l + e_un)

1) On sait que :
VxER,1+e*>0

On en déduit donc que Dy = R
2) On sait que :

x e* e C”(R)

X —x € C®(R)

x~ 1+x€C”(R)
x ~ In(x) € C®(R™)
Par composée on en déduit donc que f € C”(R).
3) Il suffit d’étudier les variations de g:x — f(x) —x.Ona g € D(R) et :
—X

vx ER,g'(x) = -1<0

1+eX
On en déduit donc que g est bijective car continue et strictement monotone.
Regardons les limites de g :
Ona:
Vx € R gx) =In(1+e*)—x=In(e™*(1 +€¥)) —x = —2x+In(1 + €¥)
Or on sait que :
lim(1+eX) =1

X i — i [— —
{ lin} Inx) =0 : Xlll_n g(x) xhr—n 2X = 400
X— =0 —>—00

Deplusona:
“{{1 1+e =1
X—+00 R _ ; ) _
lirri In(x) =0 = xl—l)Too f(x) = 0 (par composée) = Xl_lanoo g(x) = —o
X—

Donc f réalise une bijection de R dans ]0; +oo[ .

y=lUn(1+e™")




On en déduit donc d’aprés le théoréme de la bijection qu’il existe un unique o € R tel que f(a) = o :

r | —00 o +o0

glx)| - -
+00

g

™~

—

On sait que f(0) = In(2) > 0etf(1) =In(1+e 1) <In(e) =1
On en déduit donc que :

0<ax<l1
4) 11 suffit de voir que :

1
sup [f'(x)| = —f'(0) = 5
xeERY 2
On en déduit que f est % —lipschitzienne sur R*.

On a donc :
1
vx = 0, |f(x) — qf Szlx—al
5) On sait que f est continue sur R. Donc les suites convergentes définies par :
{ Ug eER
Uy = In(1 4+ e7n)
Convergent vers un point fixe de f, soit a.
Or on sait que :
1
vx = 0, |f(x) — qf Szlx—al

De plus on sait que f(R*) © R* car f est strictement décroissante et
£(0) = In(2) > 0

xl—igi-noo fx) =0
xr 0 v =400
fa) - -
In(2)
I
\ ;

On a donc par une récurrence immédiate que :
vn € N,u, >0caruy >0
On a donc :

1
vn € N, |f(u,) — a] < > [u, — af

1
= VneN,|u,,; —qf Szlun—al

On en déduit donc par récurrence la aussi immédiate que :
n

1
=>VnEN,|un—0(|S<§> lupg —a

On adonc:

1 n
0 < lim|u, — «f Slim(—) lup — «
n n \2

Or on sait que :

1\" 1
lim(—> lup —al =0car- €] — 1;1]
n \2 2
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On a donc :
limlu, —a| =0
n
Ce qui est équivalent a dire que :
limu, =«
n

Donc (u,) converge vers «.

Exercice B.3 : Soit f la fonction définie par :

R—->R
f: {X'_){1+xsix20
e*six <0
Montrer que f € C1(R) et f & C2(R).

11 faut voir que f est dérivable sur R et de dérivée continue.

Ona:
X
lim OO T i OO
Xx—-0~ X x—0~ X x—-0*t X
Donc f est dérivable en 0 donc sur R.
Deplusona:
R - R
f' {XH{lsiXZ 0
e*six<0
On a alors :

Xll)rgl_ f'(x) =f'(0) = XIL%L f'(x)

On en déduit que f' est continue sur R. Donc f est bien de classe C* sur R, f € C1(R)

Cependant on a :

) -fO)  e*—1 _ '(x) —(0)
lim —— == lim =1+# lim ——— =
x—0~ X x—0~ X x—-0% X

On en déduit donc que f n’est pas deux fois dérivable en 0 donc que f n’est pas de classe C? sur R : f & C%(R).

0

Exercice B.4 : Soit f une fonction dérivable sur R.

1) Montrer que f est paire si et seulement si f’est impaire.

2) Montrer que si f est impaire, alors ' est paire. Que dire de la réciproque ?

3) Montrer que si f est périodique, alors f" est périodique. Que dire de la réciproque ?

1) C’est une équivalence.

e 1%cas:=
Soit f une fonction dérivable paire.
On a donc :

vx € R, f(—x) = f(x)
On a donc :
vx € R, —f'(—x) = f'(x) = Vx € R, f'(—x) = —f'(x)

Donc " est impaire.

o 2imecaq: f impaire

On pose :
g(x) = f(—x) — f(x)
On a donc :
Vx ER,f'(—x) +f'(x) =0
On a donc :

X
VX € ]R%,ff’(—t) +f(t)dt=c,ceR
0
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= [-f(=0]5 + [fOIf =cceR
= —f(—x) + f(0) + f(x) — f(0) =c,ce R
= f(—x) =f(x) + ¢
On a de plus :
f(0)=f(0)+c=c=0
On a donc :
vx € R, f(—x) = f(x)

On en déduit donc que :
f est paire si et seulement si f’est impaire.
2) Soit f une fonction dérivable impaire.
On a donc :

vx € R, f(—x) = —f(x)
On a donc :

vx € R, —f'(—x) = —f'(x) = Vx € R, f'(—x) = f'(x)

Donc f est paire.
La réciproque est fausse. On pose pour contre-exemple : f(x) = sin(x) + 1.
On a donc :

vx € R, f'(x) = cos(x)
Donc f' est paire.
Cependant f n’est pas impaire :

vx € R, f(—x) = sin(—x) + 1 = —sin(x) + 1

f(-5)=sin(-3)+1=0
s T =
f(z) = sm(E) +1=2
Donc f n’est pas impaire.

3) Soit f une fonction T-périodique. On a alors :
vx € R f(x+ T) = f(x)

On a alors :

On a donc :

vx € R f'(x+T) =f'(x)
Donc f' est T-périodique.
La réciproque est fausse.
11 suffit de poser :

vx € R, f(x) = sin(x) + x
Ona:

lim f(x) = +o0

X—+00
Donc f n’est pas bornée donc f n’est pas périodique.
Cependant on a :
vx € R, f'(x) = cos(x) + 1
On a alors :
Vx € R, f'(x + 2m) = cos(x + 2m) + 1 = cos(x) + 1 = f'(x)
Donc " est 2 —périodique.

Exercice B.5 : Déterminer les extrema de f(x) = x* + x> + 1 sur R.

11 suffit de dériver f. On a :
Vx € R, f'(x) = 4x3 + 3x?
On résout :
ffx)=0=4x3+3x*=0
& x?(4x+3)=0



Page 9 sur 22

x=0
ou
<) 3
Ty
Donc si f admet des extrema locaux ou globaux, ¢’est seulement aux points A(O ; f(O)) et B G i f G))

Mais ce n’est pas une condition suffisante.
On étudie le signe de f'(x)
On sait de plus que :
1 1
lim (x*+x3+1) = lim x* (1 +—+—4) =+
x—t 0 X X

X—+00

On a les variations suivantes :

r | =00 -3 0 +00
4
f(x) — ¢] + #] +
+o0 +00
256
Donc f admet un minimum global en x = —0,75 qui vaut :

f< 3)_445
4) ~ 256

On a la courbe de f.

Partie C : Dérivée n-iéme

Exercice C.1 : Calculer la dérivée n-iéme de :
£ { R-R
x b (x2 +1)e3

On utilise la formule de Leibnitz :
On sait que :

n_— n ksn-k
vn €N, (fg)" = E (k)f g
On pose :
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VxE R, g(x) =x?+1
= VxER,g'(x) =2x
=VxeERg'(x) =2
> VxER,Vn>=>3,gMkx) =0
De plus on pose :
vx € R, h(x) = e3¥
On a donc :
vn € N,Vx € R, h®™(x) = 3"e3%

On a donc :
n

n
Vx € R,vn € N,n > 2,f™ = (gh)™ = Z (k) fkgn-k
k=0
n n n
= Vx€R,Vn€ N,n> 2 f®(x) = (0) X 30(x2 + 1)e3* + (1) x 2x3M"1e3% + (2) X 2 X 3N~2e3¥

Or on sait que :
(n—1)
(=20 =n()="5—
On en déduit que :

vx € R, Vn € N,n > 2,f®(x) = (37(x? + 1) + 2n x 3" *x + 3% 2n(n — 1))
=3"2(9x2 + 6nx + n(n — 1) + 9)e3*
De plus :
fO(x) = (x2 + 1)e3*
fD(x) = (3x2 + 2x + 3)e3*
f@(x) = (9x2 4 12x + 11)e3*
On en déduit que les égalités restent vraies. On a donc :
vx € R,vn € N,n > 2,f™(x) = 3"2(9x2 4 6nx + n(n — 1) + 9)e3*

Exercice C.2 : On pose :

VneN,VxeRf[x =x"(1+x)"
1) Déterminer de deux manicres différentes le terme dominant de f,ﬁn).
2) En déduire la valeur de :

1) Méthode 1 : 1l suffit de développer :
vneNVxeRf,x) =x"(1+x)"

. (z () )
(%)

-3

0

n
k

n

On a donc :

n) (n+Kk)!

k
Kk

n
V(n,K) ENLk<nVxeR ™) = z (
k=0

Méthode 2 : On utilise la formule de Leibnitz.

On pose :

8n X P X"
hy:x - (1+x)"
On sait que (g,, hy) € (C°°(]R))2 et:

G _n

V(n, k) € szk < n, VX € ]R' gn k! K

X1’1




Page 11 sur 22

n!
v(n,k) € N,k <n,vx € Rh{ = g (L +0n

n

n -
Vx €R, fr(ln)(x) = Z ( )ggk) hE,“ k)

k
k=0
= 0y n! n!
— ten=k__ " k
_Z(k)k!x TR
k=0
2) 1l suffit de voir que fén) est un polyndéme de degré n.

Or on sait que deux polyndmes sont égaux si et seulement si les termes devant chaque mondme sont égaux.
Regardons le terme de degré n, appelé ay,.
Dans le membre de gauche on a :
(2n)!
n!

vVn €N, a, =

Dans le membre de droite on peut voir que le polyndome (1 + x)¥ est de degré k et le terme de degré k est 1. On a

donc :
n n

mena, =Y (g =n Y (6 -1 ()

=0 k=0 k=0

vn € N'k; (E)Z - (nz!r;l)!! - (2nn>

On en déduit donc que :

Exercice C.3 : Calculer la dérivée n-iéme de :
. { R—-R
X - cos3(x)

Il faut linéariser :

- 03
elX + e-lX
Vx € R, (cos(x))? = (T)

1 ) ) ) )
— g X (e31x + 3elX 4 371X 4 e—31x)

1 3
= Zcos(BX) + Zcos(x)

De plus on pose :
g:x = cos(X)
On sait que g est de classe C* sur R et :

s
Vx € R,g'(x) = —sin(x) = cos (X + E)

g" (x) = —cos(x) = cos(x + ),
(3)(x) = sin(x) = 3m
g'¥(x) = sin(x) = cos(x + >
On peut conjecturer que :

vneN,Vx e R g™ (x) = ( o
, ,gW(x) = cos x+2

On démontre cela par récurrence.
Initialisation : Pourn = 0,on a:

OxXm
vVx € R,g®(x) = cos(x) = cos (X + )

Donc la proposition est vraie pour n = 0.
Hérédité : Soit n un entier naturel fixé. On suppose que :

M (x) = o
VxER,g™(x) cos(x+2)

On a donc :
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nT
(n+1) = —gi —
VXER,g (x) sm(x+ 2)
Or on sait que :
Vx € R,cos (X + E) = —sin(x)
2

On a donc :

nT nm T n+ 1)m
vx € R, gV (x) = —sin(x+7) = cos(x+7+§) = cos(x+%>

Donc la proposition est héréditaire.
Conclusion : La proposition est vraie pour n = 0 et est héréditaire donc :

M) (y) = om
Vx € R,Vn €N, g™ (x) =cos(x+ >

On en déduit donc que :

vneEN,Vx € R, f™W(x) = 3:}—ncos(3x+nz—n) +—cos(x+E)

Exercice C.4 : Calculer la dérivée n-iéme de :
. { R->R
X - e¥sin(x)

C’est une question du DS 2 de la promo 2019-2020.
On raisonne par récurrence. Pour tout entier naturel n on pose la proposition P(n) suivante :

n T
P(n): "vx € R, f™(x) = 22eXsin (X + nz) !
Initialisation : Pour n=0 :
0 i
22e*sin (X +0Xx Z) = e*sin(x) = f(x)
Donc P(0) est vraie.
Hérédité : Soit n un entier naturel fixé. On suppose vraie P(n). On a donc :

n T
vx € R, f™(x) = 2ZeXsin (X + nz)

o T n T
= vx € R, f0+(x) = 2Ze*sin (x+ nZ) + 22e* cos (X+ n—)

[ v

= Z%eX [ sin (x + nZ) + cos (X + ng) |
ﬁsin(x+nx%+%> /

ol T
=22ze sm(x+(n+1)xz)

Donc P(n+1) est vraie.
Conclusion : P(0) est vraie et P(n) est héréditaire donc d’apres le principe de récurrence, P(n) est toujours vraie.

Partie D : Théoréme de Rolle et accroissement fini

Exercice D.1 : Soient n un entier naturel et (a,b) € R2. Démontrer que le polynéme P,(X) = X" + aX + b s’annule
au plus trois fois sur R.

On raisonne par I’absurde. On suppose qu’il existe au moins quatre racines de P, :
{ X1 <Xy <Xz <Xy
Ph(x1) = Py (x2) = Pa(x3) = Py(X4)
P, est de classe C* donc dérivable donc on peut appliquer le théoréme de Rolle.
X1 < X5 < X3

306, 11%) € bl o D sl {pr oy s = piry = o
n n n
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On applique encore le théoréme de Rolle a Py, :
EI(XII" XIZI) € ]Xll; XIZ[ X ]XIZ; X,3 [, {Pr;, (X’ll)X:L: ;r;’X(ZXé’) =0
Or on sait que :
vx € R,PY(X) = n(n — 1)X"2
Donc P’ admet seulement une racine, qui est 0.
Donc P, (X) = X™ + aX + b s’annule au plus trois fois sur R.

Exercice D.2 : On pose le polyndme P,:X = ((1 — t2)™)® est un polyndme de degré n dont toutes les racines sont
réelles comprises dans [-1 ;1].

On sait que :
Qu:t~ (1 —t?)™ est un polyndome de degré 2n. On le dérive n fois, on obtient un polynome de degré n. Les valeurs -
1 et 1 sont des racines d’ordre n de Q,,, donc :
Q) = Q) == P (W) =0
On a la méme chose avec —1.
De plus on sait que :
Qn(l) = Qn(_l) =0
On peut donc appliquer le théoréme de Rolle :
dce]-1;1[,Qu(c) =0
On a donc :
{Qh(C) = Q=D =Qn(1) =0
-1<c<1
On peut donc appliquer de nouveau de théoréme de Rolle pour Q" :

3(cy;c2 €] = Le[x Je; 1, Qulcr) = Qulczx) =0
On réitére le procédé par récurrence. On obtient alors pour Q;n_l) n+1 racines :
1< <<cyu1 <1
On applique encore le théoréme de Rolle n fois.
On obtient alors par construction n racines pour P, = Q;n). Comme un polyndme de degré n a au plus n racines, on a
toutes les racines de len) .
Donc : P,: X = ((1 — t2)™)™ est un polynéme de degré n dont toutes les racines sont réelles comprises dans [-1 ;1].

Exercice D.3 : Résoudre I’équation différentielle suivantes sur R :
xy =2y =(x—1)(x+1)3

On résout I’équation homogene :
(Eg):xy' =2y =0
On résout cela sur |0; +oo[ puis sur |—oo; 0[.
(Eg):xy' —2y =10
On résout sur |0; +oo[:
2
y' — v = 0 = ILER, Vx> 0,y,(x) = 1e2n® = )x2
On résout sur |—oo; 0 :
! _E — — 2In(—-x) — 2
y Xy—O@HuER,Vx<O,yO(X)—ue = px
On doit a présent déterminer une solution particuliére de 1’équation
xy =2y =(x—1(x+1)3
On sait que :
VXER, (x—1Dx+1)3=x-1Dx>+3x>+3x+1)
=x*+2x3-2x-1
On cherche alors une solution particuliere de :
xy' =2y =x*+2x3 —2x -1
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Onposey(x) = ax* +bx3 + cx? +dx+ e
On a alors :
xy' — 2y = 2ax* + bx3 —dx —2e = x* +2x3 — 2x — 1
On en déduit donc que :
_1, 3 1
yp(X) _EX +2x +2x+§
On en déduit donc que :

2 3 21 2. 1, 3 1
vy ——y=x-1DE+1)3 < INER, Vx> 0,y,(x) = 2e2"® = x +§X + 2x +2x+§
X

;2 3 21n(x) 2. 1, 3 1
y -y = x-1DE+1)’=IFueR Vx> 0,y;(x) = pe = ux +§x + 2x +2x+§
Orona:

Jim y'o() =2 = lim y', (%)
On peut donc prolonger les solutions de cette équation différentielle sur R en posant :
1 1
2 M2+Eﬁ+2ﬁ+2x+§$xzo
y' - =y = (= Dx+ D © 3% € R?y(x) = . )
ux? + §X4 + 2x3 + 2x + 5 sinon

Exercice D.4 : a) Montrer que :
1 1
. < — < —
vx €]0; +00[,X T1s In(x+1) —In(x) < "

b) En déduire que :
x+1

x + 1\* x+1
VXE]O;+00[,(T> SeS( " )

¢) Montrer que :
1" 1 n+1
u <el< u

vn € N¥,
n! n!

a) On sait que :

x+1 1
vx > 0,In(x+ 1) —In(x) = ln( " ) = ln(l +;)
On pose :
fix > In(1+x) —x
On sait que f est dérivable et :

1
vx = 0,f’ =——1= <0
* ) 1+x 1+x

Or on sait que :
f(0)=0
On en déduit donc que :
vx > 0,f(x) < 0= In(1 +x) <x

On a donc :

1 1
Vx €]0; +oo[,In <1 + —) <-
x/ T x

On peut faire de méme en posant :
1

1
Xl—>11’1(1+—)—
X x+1

Ou on peut utiliser la croissance de I’intégrale :
x+1

1
vx > 0,f ;dt =In(x+ 1) — In(x)

X

De plus on sait que :
1

x+1

1
vt € [X;X+1],;2
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On a donc :
X+1 X+1
1 1
VX>0,f —dth —dt
t x+1
X X
1
=1 +1)-—1 > —
n(x+1) —In(x) ——]
b)Ona:
1 1
Vx> 0,——<In(x+1)—Inx) <-
x+1 X
1
:>x+12ﬁ2x
In )

X
x+1 x+1
:>(x+1)1n( " )lexln( )

— e(x+1)ln(X+1) >

x+1 x+1
= () ses ()
X X

¢) On en déduit donc que :

1+k\S 1+ k\<H?

vn € N*, vk € [1; n]],(T> <e< (T)

On a donc :
1+k
e [T <[ Jo o[
k=1

On a donc :

n n 1 n 1

k=1 k=1 k=1 k=1

n-1 n 1 n-1 n 1

k=1

= (1+n)" X nkklxn—<en<(1+n)“+1xnkk nkk+1

1
$(1+n)nxug><ﬁ£en£(l+n)n+ Xl}:!ix

n+ 1" n+ 1)1
ﬁVnEN*,(T)Se“S%

Exercice D.5 : Montrer que :
X
Vx> 0,—— < In(1 <
X = —g) n(l+x)<x

On a déja démontré a I’exercice D.5 que :

1 1\ 1
vx €]0; +oo[,X+ 1 < ln<1+—) S;

On pose :

On adonc:
1
VX > 0,—— < In(1+X) <X
X+1

X
S VX>0—— <In(1+X) <X
Xr1=hd+X <
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Remarque : On peut aussi utiliser I’inégalité des accroissements finis :
On pose :
f:xHIn(1+x)
Soit x € R*. On sait que :
e fest continue sur [0; x|
e fest dérivable sur |0; x|

De plus on sait que :
1
vx > 0,f'(x) = ——

1+x
De plus on sait que :

<f)<1

1
vt € [0;x], <
[ X]1+x

On en déduit donc que :
1

Vx =0,
1+x

x—0)<f(x)—f(0)<1(x—-0)
On a donc :

X
VXZO,H—1SIH(1+X)SX

Exercice D.6 : Montrer que :

_X _X
v(x,y) € [0;1[%,x <Yy, y y

\/ﬁ < arcsin(y) — arcsin(x) < \/(1?}'2)

On peut aussi utiliser I’inégalité des accroissements finis :
On pose :
f:x ¥ arcsin(x)
Soit (x,y) € [0; 1[2,x < y. On sait que :
e fest continue sur [X;y]
o fest dérivable sur |x; y[

De plus on sait que :

1
vx € [0;1[%,f'(x) =
[0; 1] —
De plus on sait que :
1 1
vt € [0;x], <f'(t) <
V1 —x? 1—-y?
On en déduit donc que :
1 y—X
v(xy) € [0;1[% v —x <) —fx) £ ——
—x? VA —y?)
On a donc :
2 y—Xx : . y—Xx
V(x,y) € [0; 1[%,x < y,————— < arcsin(y) — arcsin(x) <

(1—-x%) VA =y?)
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Partie E : Application aux suites u,,, = f(u,)

Exercice E.1 : Etudier la convergence de la suite définie par :
Ug eER

1
Upeqp =2+ Esin(un)

On pose :
fixe—2+ %sin(x)
On sait que :
vx € R f(x) =2+ %sin(x)
On a donc :

1
vx € R, f'(x) = Zcos(x)

On en déduit donc que :
1
suplf' ()] = 5
XER
On en déduit donc que f est % —lipschitzienne :

1
v y) € R () —f()] < 5 Ix —yl

Il faut a présent montrer que f admet un point fixe.
On pose :

g:xmf(x) —x
g est dérivable sur R et :

1
VxER,g'(x) = Ecos(x) —-1<0

Donc g est strictement décroissante sur R. Comme g est continue, elle réalise une bijection de R dans g(R).
Or on sait que :
g(0)=2etg(2m) =2-21<0
On en déduit dons qu’il existe un unique a € R tel que f(a) = a.
De plus on sait que :

1
Vu, € R,Vn € N, |f(u,) — f(a)]| < Elun —qf

1
= VneN,|uy,q — S§|un—0‘|

On en déduit donc par récurrence la aussi immédiate que :
n

1
ﬁVnEN,lun—aIS(E) lupg —a

On a donc :

1 n
0 < lim|u, — «f Slim(—) lup — «
n n \2

Or on sait que :

I\ 1

hrrln <§> lug —al =0 car €]l —-1;1]
On a donc :

limlu, —al =0
n
Ce qui est équivalent a dire que :
limu, =«
n

Donc (u,) converge vers «.
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Exercice E.2 : Etudier la convergence de la suite définie par :
{ up ER
Uny1 = cos(up)

On remarque que :
Yu, € R,u; = cos(uy) € [—1; 1]
On peut donc supposer que u, € [—1;1].
On sait que cos est 1-lipschitzienne car :
vx € R, |sin(x)| <1
Oubienona:

y y y
V(x,y) € R, x < y,f —dt < fsin(t) dt < fdt
X X X
y y
= V(x,y) € R?, fsin(t) < fdt
X X

= VY(x,y) € R?,|cos(y) — cos(x)| < |y — x|
Or on sait que :
vn € N*,u, € [-1;1]
Or on sait que :
vx € [-1;1],]sin(x) | <sin(1) < 1
On en déduit donc que :
V(x,y) € [-1;1]%, |cos(x) — cos(y)| < sin(1) [x —y|
De plus on sait que :
Ala € [—1;1],cos(a) = a
Qui se démontre avec un TVI avec la fonction x — cos(x) — x
On a donc :
vn € N*, |cos(u,) — cos(a)| < sin(1) |u, — af
On en déduit donc par récurrence la aussi immédiate que :

1 n-1
— Vn €N, |u, —of < <e‘z) lu, — af

Or on sait que :
lim(sin(1))" !|u; — «| = 0 carsin(1) €] — 1; 1]
n

On a donc :
limlu, —a| =0
n

Ce qui est équivalent a dire que :

limu, =
n
Donc (u,,) converge vers Q.
Exercice E.3 : On définit :
uy =1
{un+1 =e™n

1) Montrer que :
1
Vvn € N,u, € [E, 1]

2) Démontrer que (u,) converge. On note ¥ sa limite.
3) Déterminer une valeur approchée de £ a 1073, On détaillera le procédé utilisé.

1) On peut démontrer cela par récurrence. On pose :

1
vn€N,P, ="y, € [—;1] "
e

Initialisation : n = 0. uy = 1 donc P, est vraie.
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Hérédité : Soit n un entier naturel fixé. On suppose que :

1
. <u, <1
1
= -1<—-u,<—-
e
_1
—el<eWm<ee<
Donc P, est vraie.

Conclusion : P, est vraie et P, héréditaire donc d’apres le principe de récurrence :

vn € N,u, € E; 1]
2) On pose :
VX € E; 1],f(x) =e ¥
On sait que :
VX € E; 1],f’(x) =—eX<0

1
= VX E [E;l],f”(x) =e*>0
On en déduit donc que f’ est croissante sur E; 1] et négative donc :

1 1
VX € [g ;1],|f’(x)| <ee<l1
On en déduit donc que :
1 z 1
veuy) € <51 160 - f)l < e el -yl
A présent on pose :
gx e f(x) —x
On sait que :
1
Vx € [E ;1],g’(x) =—eX*-1<0
On en déduit donc que g est décroissante sur E ; 1].
Orona:
1 11 1 01 1
g(—):e e——=—1——>0car—< 1
e e = e e
ee
De méme :

g(l)=el-1<0car—1<0
Donc g est continue, strictement décroissante et change de signe.
Doncona:

Ja € E;l],g(a)=0

1
= 3Ja € [E ;1],f((x) =a
De plus on sait que :

1
vn € N*, |f(uy) — f(a)| < e e|u, — af
On en déduit donc par récurrence la aussi immédiate que :

n

1
= Vn€eN, |u, —a| < (e_é) [uy — af
Or on sait que :

_L\" _1
(e e) [ug —a| =0care e €] —1;1
n
On a donc :

limlu, —al =0
n
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Ce qui est équivalent a dire que :
limu, =«
n

Donc (u,) converge vers a.

3) Pour avoir une valeur approchée, on peut faire un programme Python avec la dichotomie pour déterminer une
valeur approchée de a a 1073 :

def exe3(epsilon):

import math

a=[e]

b=[1]

i=e

while (b[i]-a[i])>epsilon :
m=(a[i]+b[i])/2
if math.cos(m)>m:
| a.append(m)
: b.append(b[i])
else:
| a.append(a[i])

b.append(m)

i=i+1

return (a[i],b[i])

On obtient alors :

k¥* Console de processus distant Réinitialisée ***
>>> exe3(1e**(-4))

(0.73907470703125, ©.7391357421875)

>>>

On a donc :

a =~ 0,739 (arrondi a 1073)
r3

15

05 1 1.4 2 2.5 3

IPartie F : Convexitd

Exercice F1 : Montrer que :

V() €11+l n (22 2 Y@ nG)

(On pourra étudier la convexité de x — — In(In(x)))
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On pose f:x = —In(In(x)) sur ]1; +oo[.
Onaf € C?(J1;4oo[) et:
, 1 . 1 1 In(x) +1
vx €]L; oo, f1(x) = ~ xin(x) = Vx €]l +oo, f1() = x2 In(x) * x2In2(x) T xZx In2(x)
On en déduit donc que f est convexe.

Ainsiona:
V(x,y) € |1; +oo[2, f (x er y) S erf W _ (m (x er y))  _In(n(x)) ; In(In(x))

+ In(1 + In(l + In(In(x))+In(In(x)) +
= In <ln (x 5 y)> > n(in(x)) 5 n(in()) = In (%) > e 2 = In (x 5 y) > \/In(x) In(y)

>0

Exercice F2 : Montrer que :

V(x,y,a,b) € ]0; +oo[* xin (Z) + yln (%) > (x+y) ln(

)
a b

On pose f:x = xIn(x) sur ]0; +oo[.
Onaf € C?(J1;4oo[) et :
1
Vx> 0,f'(x)=In(x)+1= f"(x) = p >0
On en déduit que f est convexe sur |0; +oof.
On a donc d’apres I’inégalité de convexité :

vt € [0;1],V(X,Y) € ]0;+o[2, g(tX + (1 —)Y) < tg(X) + (1 —t)g(Y)

On pose ensuite :
a

a+b

X
X=—,Y=Xett=
a b
On a alors :

b 'y

( a xx+ xy)l ( xx+ X )< e xl (x)+ b 1 (y)
a+b a a+b b na+b a a+b b _a+bana a n
On en déduit alors 1’inégalité demandée |

Exercice F3 (Ingélaité de Jensen) :
1) Soit f:1 — R une fonction convexe. Montrer que :
V(xq1, . Xp) €I V(A4, ..., 4,) € (R, 0na :

Zn:/lk =1= f(Zn: Akxk> < Zn: A f (ex)
k=1 k=1 k=1

2) En déduire que :
n % 1 n
V(xll ﬂxn) € (R+)nf <1_[ xk) < E <Z xk)
k=1 k=1
1) I faut faire une récurrence sur les (4, ..., 4,) € (RH)™.
Initialisation : On a
fx1) < fx1)

C’est trivial !
Remarque (pour n = 2, ¢’est I’inégalité de convexité !)
Hérédité : On suppose que :

n n n
V(xq, o, X)) €™MV (A4, ..., 4y) € (R 0na: Z A =1= f(z Akxk> < Z A f Cex)
k=1 k=1 k=1

On pose :




(X1) ooy X, Xn4q) € I™ et (Aq, .., Apyq) € (R 0na - Z A =1
k=1

SiA,y; =1alorsk €{1,..n},A, =0alorsona:
n+1 n+1
f (Z Am) = fGtnen) = . Af ()
k=1 k=1

Ak
1=2n41

On pose ensuite A,,1 # let:
Vk € {1, ...n},ﬁk =
On a alors :

n n
1 1
Vk € {1,..n}, B, > 0 et Zﬁk - Zak - -2, =1
=1 1= 2n41 1—=2n41

k=1
On applique alors 1’inégalité de convexité avec:

n
t=Apt1,X = Xpyqp €ty = Z BrXk
k=1
Ona:

f An+lxn+1+(1—an+1)< ﬁm) san+1f<xn+1)+<1—an+1)f(z Bm)
k=1

- k=1

n n
= f| An+1Xn+1 + (Z Akxk) < A f (o) +F (Z Akxk>
k=1 k=1

On peut donc appliquer I’hypothese de récurrence :

f <§n: Akxk> < zn: Aief (%)

k=1
On obtient alors :

n+1 n+1
f <Z Akxk> =< Z A f (i)
k=1 k=1

Conclusion : On conclut d’aprés le principe de récurrence.
2) ler cas : Tous les x;, sont strictement positifs

On sait que :

V(xq, oo, %) € (RT)™, A(yy, ..., V) € R tel que x), = €Yk
On applique I’inégalité ci-dessus avec la fonction x = e* qui est convexe et (A4, ...,4,) = (%, ,%)
On a alors :

n
1 1
Y(yy, ..., Yn) € R, en1ttn) < —(Z ey’<>

n
k=1
1
n ﬁ 1 n
— V(X ., Xy) € (RT,, (1_[ xk> <= (Z xk)
k=1 k=1
2iéme cas : Il existe au moins un des x; nul.
On a alors :
X = -
[ [) =o=z( 2=
k=1 k=1

CQFD
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