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Fiche TD 16 : Dérivation  

 

Partie A : Dérivabilité en un point 

 
Exercice A.1 : Déterminer (a, b) ∈ ℝ2 de manière à ce que la fonction f définie sur ℝ+ par :  

f(x) = { √x si x ∈ [0; 1]

ax2 + bx + 1 si x > 1
 

Soit dérivable sur ]0;+∞[. 

 
On sait que :  

x ↦ √x ∈ 𝒟(]0; 1[) 
De même :  

x ↦ ax2 + bx + 1 ∈ 𝒟(]1. +∞[) 
On sait que f est dérivable en 1 si et seulement si :  

lim
x→1

f(x) − f(1)

x − 1
= ℓ 

On sait que :  

lim
x→1−

f(x) − f(1)

x − 1
=
1

2
 

De même on a :  

lim
x→1+

f(x) − f(1)

x − 1
= 2a + b 

De même on sait qu’une fonction dérivable en 1 est continue en 1. 

On doit donc aussi avoir la continuité en 1. 

On sait que :  

lim
x→1−

f(x) = 1 

lim
x→1+

f(x) = a + b + 1 

On doit donc avoir :  

{ 2a + b =
1

2
a + b + 1 = 1

 

On en déduit donc que f est dérivable sur ]0;+∞[ si et seulement si = (a; b) = (
1

2
; −

1

2
). 

 

Exercice A.2 : Etudier la dérivabilité de la fonction :  

f(x) = {sin(x) sin (
1

x
)  si x ≠ 0

0 sinon

  

 

On sait que :  

lim
x→0

sin(x) sin (
1

x
) = 0 

On peut le prouver avec le théorème des gendarmes car : 

∀x ∈ ℝ, x ≠ 0,−|sin(x)| ≤ |sin (
1

x
) sin(x)| ≤ |sin(x)| 

Donc f est déjà continue, ce qui est une condition nécessaire à la continuité de f.  

Il reste à voir que f est dérivable.  

On calcule :  

lim
x→0

f(x) − f(0)

x
= lim
x→0

sin(x) sin (
1
x)

x
 

Or on sait que :  
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lim
x→0

sin(x)

x
= 1 

Donc on cherche :  

lim
x→0

sin (
1

x
) 

Or x ↦ sin (
1

x
) n’est pas de limite en 0. On peut poser  

un =
1

2πn
 et vn =

1

2πn +
π
2

 

Donc f n’est pas dérivable en 0.  

On peut le voir sur la courbe de la fonction en remarquant que les variation de 𝑓 sont « chaotiques » à l’approche de 

0 :  

 

 
Exercice A.3 : On pose :  

f ∶  {
ℝ∗ → ℝ

x ↦ x2 sin (
1

x
)
 

a) Montrer que f est prolongeable par continuité en 0.  

b) Montrer que le prolongement est dérivable en 0 mais que la dérivée n’est pas continue.  

 
a) On sait que :  

∀x ∈ ℝ, x ≠ 0,−x2 ≤ |x2 sin (
1

x
)| ≤ x2 

On a donc d’après le théorème des gendarmes :  

lim
x→0

f(x) = 0 

b) On calcule :  

lim
x→0

f(x)

x
= lim
x→0

x sin (
1

x
) = 0 (comme précédemment avec le théorème des gendarmes!) 

Ainsi f est dérivable en 0 en posant f ′(0) = 0 

On calcule à présent f ′(x) en dehors de 0 :  
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∀x ∈ ℝ, x ≠ 0, f ′(x) = 2xsin (
1

x
) −

1

x2
x2 cos (

1

x
) = 2xsin (

1

x
) − cos (

1

x
) 

On en déduit que :  

lim
x→0

f ′(x) = lim
x→0

(2xsin (
1

x
) − cos (

1

x
)) = lim

x→0
cos (

1

x
) 

Or x ↦ cos (
1

x
) n’admet pas de limite en 0. On peut le prouver en posant :  

un =
1

2πn
 et vn =

1

2πn +
π
2

 

Donc f est dérivable en 0 mais f′ n’est pas continue. 

 
Exercice A.4 : Etudier la dérivabilité en 0 de :  

f(x) = {

x

ln(|x|)
cos (

1

x
)  si x ≠ 0

0 sinon

 

 
On peut étudier la continuité de f en 0 mais on peut aussi tout de suite étudier la dérivabilité tout de suite. 

On calcule :  

lim
x→0

f(x)

x
= lim
x→0

1

ln(|x|)
cos (

1

x
) 

Or on sait que :  

∀x ∈ ℝ∗, −1 ≤ cos (
1

x
) ≤ 1 

On en déduit donc que :  

∀x ∈ ℝ∗, −
1

|ln(|x|)|
≤
cos (

1
x
)

|ln(|x|)|
≤

1

1
|ln(|x|)|

 

Or on sait que :  

lim
x→0

1

|ln(|x|)|
= 0 

On en déduit donc que :  

lim
x→0

f(x)

x
= lim
x→0

1

ln(|x|)
cos (

1

x
) = 0 

Donc f est dérivable en 0 donc sur ℝ. 

 
Exercice A.5 : Déterminer les limites suivantes :  

L1 = lim
x→0

cos(x) − 1

x
; L2 = lim

x→1

ln(x)

x − 1
; L3 = lim

x→0

ex − 1

sin(x)
 

 

L1 = lim
x→0

cos(x) − 1

x
 

= lim
x→0

f(x) − f(0)

x
 

= f ′(0) 

= sin(0) 

= 0 

 

L2 = lim
x→1

ln(x)

x − 1
= lim
x→1

f(x) − f(1)

x − 1
= f ′(1) =

1

1
= 1 
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L3 = lim
x→0

ex − 1

sin(x)
= lim
x→0

(
ex − 1

x
×

x

sin(x)
) 

= lim
x→0

(
ex − 1

x
) × lim

x→0
(

x

sin(x)
) 

= 1 

 

Partie B : Opération sur les fonctions dérivées 

 
Exercice B.1 : On pose :  

f ∶  {
ℝ → ℝ

x ↦
e−x

1 + e−x
 

1) Démontrer que f réalise une bijection de ℝ dans un intervalle I à préciser.  

2) Etudier la dérivabilité de sa réciproque.  

 
1) Il suffit de calculer la dérivée et les limites de f. 

On a :  

f ∈ 𝒟(ℝ) et ∀x ∈ ℝ, f ′(x) =
−e−x(1 + e−x) + e−xe−x

(1 + e−x)2
 

=
−e−x

(1 + e−x)2
< 0 

Donc f est strictement décroissante et continue donc elle réalise une bijection de ℝ dans ] lim
x→−∞

f(x) ; lim
x→+∞

f(x)[. 

On sait que :  

lim
x→−∞

e−x

1 + e−x
= lim
x→−∞

1

1 + ex
= 1 

De même on a :  

lim
x→+∞

e−x

1 + e−x
= 0 

On a la courbe suivante : 

 
On sait que si f est dérivable et bijective et que la fonction f ′(x) ne s’annule pas alors f−1 est dérivable :  

∀x ∈ ℝ, (f−1)′(x) =
1

f ′(f−1(x))
 

On peut chercher f−1 si l’on veut. 

Soit y ∈ ]0; 1[. On résout :  

f(x) = y ⟺
e−x

1 + e−x
= y 

⟺ e−x(1 − y) = y 

⟺ x = − ln (
y

1 − y
) = ln (

y − 1

y
) 

 



Page 5 sur 22 
 

 
Exercice B.2 : On pose f(x) = ln(1 + e−x) 

1) Etudier le domaine de définition de f. 

2) La fonction est-elle de classe C∞ ? 

3) Démontrer que f admet un unique point fixe α et déterminer un encadrement de α d’amplitude 1.  

4) Démontrer que :  

∀x ≥ 0, |f(x) − α| ≤
1

2
|x − α| 

5) Etudier la convergence de la suite :  

{
u0 > 0

un+1 = ln(1 + e
−un)

 

 
1) On sait que :  

∀x ∈ ℝ, 1 + e−x > 0 

On en déduit donc que 𝒟f = ℝ 

2) On sait que :  

x ↦ ex ∈ 𝒞∞(ℝ) 

x ↦ −x ∈ 𝒞∞(ℝ) 

x ↦ 1 + x ∈ 𝒞∞(ℝ) 

x ↦ ln(x) ∈ 𝒞∞(ℝ+∗) 
Par composée on en déduit donc que f ∈ 𝒞∞(ℝ). 

3) Il suffit d’étudier les variations de g: x ↦ f(x) − x. On a g ∈ 𝒟(ℝ) et :  

∀x ∈ ℝ, g′(x) =
−e−x

1 + e−x
− 1 < 0 

On en déduit donc que g est bijective car continue et strictement monotone.  

Regardons les limites de g :  

On a :  

∀x ∈ ℝ, g(x) = ln(1 + e−x) − x = ln(e−x(1 + ex)) − x = −2x + ln(1 + ex) 
Or on sait que :  

{
lim
x→∞

(1 + ex) = 1

lim
x→1

ln(x) = 0
⟹ lim

x→−∞
g(x) = lim

x→−∞
−2x = +∞  

 

De plus on a :  

{
lim
x→+∞

(1 + e−x) = 1

lim
x→1

ln(x) = 0
⟹ lim

x→+∞
f(x) = 0 (par composée) ⟹ lim

x→+∞
g(x) = −∞ 

Donc f réalise une bijection de ℝ dans ]0;+∞[ . 
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On en déduit donc d’après le théorème de la bijection qu’il existe un unique α ∈ ℝ tel que f(α) = α :  

 
On sait que f(0) = ln(2) > 0 et f(1) = ln(1 + e−1) < ln(e) = 1  
On en déduit donc que :  

0 < α < 1 

4) Il suffit de voir que :  

sup
x∈ℝ+

|f ′(x)| = −f ′(0) =
1

2
 

On en déduit que f est 
1

2
−lipschitzienne sur ℝ+. 

On a donc :  

∀x ≥ 0, |f(x) − α| ≤
1

2
|x − α| 

5) On sait que f est continue sur ℝ. Donc les suites convergentes définies par :  

{
u0 ∈ ℝ

un+1 = ln(1 + e
−un)

 

Convergent vers un point fixe de f, soit α. 

Or on sait que :  

∀x ≥ 0, |f(x) − α| ≤
1

2
|x − α| 

De plus on sait que f(ℝ+) ⊂ ℝ+ car f est strictement décroissante et  

f(0) = ln(2) > 0 

lim
x→+∞

f(x) = 0 

 
On a donc par une récurrence immédiate que :  

∀n ∈ ℕ, un > 0 car u0 > 0  
On a donc :  

∀n ∈ ℕ, |f(un) − α| ≤
1

2
|un − α|  

⟹∀n ∈ ℕ, |un+1 − α| ≤
1

2
|un − α|  

On en déduit donc par récurrence là aussi immédiate que :  

⟹∀n ∈ ℕ, |un − α| ≤ (
1

2
)
n

|u0 − α| 

On a donc :  

0 ≤ lim
n
|un − α| ≤ lim

n
(
1

2
)
n

|u0 − α| 

Or on sait que :  

lim
n
(
1

2
)
n

|u0 − α| = 0 car
1

2
∈] − 1; 1[ 
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On a donc :  

lim
n
|un − α| = 0  

Ce qui est équivalent à dire que :  

lim
n
un = α 

Donc (un) converge vers α. 

 
Exercice B.3 : Soit f la fonction définie par :  

f ∶  {
ℝ → ℝ

x ↦ {
1 + x si x ≥ 0
ex si x < 0

 

Montrer que f ∈ C1(ℝ) et f ∉ C2(ℝ). 

 

Il faut voir que f est dérivable sur ℝ et de dérivée continue. 

On a :  

lim
x→0−

f(x) − f(0)

x
= lim
x→0−

 
ex − 1

x
= 1 = lim

x→0+

f(x) − f(0)

x
= f ′(0) 

Donc f est dérivable en 0 donc sur ℝ. 

De plus on a :  

f ′: {
ℝ → ℝ

x ↦ {
1 si x ≥ 0
ex si x < 0

 

On a alors :  

lim
x→0−

f′(x) = f ′(0) = lim
x→0+

f′(x) 

On en déduit que f′ est continue sur ℝ. Donc f est bien de classe 𝒞1 sur ℝ,  f ∈ 𝒞1(ℝ) 
 

Cependant on a :  

lim
x→0−

f′(x) − f′(0)

x
= lim
x→0−

 
ex − 1

x
= 1 ≠ lim

x→0+
 
f ′(x) − f ′(0)

x
= 0 

On en déduit donc que f n’est pas deux fois dérivable en 0 donc que f n’est pas de classe 𝒞2 sur ℝ : f ∉ C2(ℝ). 
 

Exercice B.4 : Soit f une fonction dérivable sur ℝ. 

1) Montrer que f est paire si et seulement si f ′est impaire.  

2) Montrer que si f est impaire, alors f′ est paire. Que dire de la réciproque ? 

3) Montrer que si f est périodique, alors f′ est périodique. Que dire de la réciproque ? 

 
1) C’est une équivalence.  

 1er cas : ⟹ 

Soit f une fonction dérivable paire. 

On a donc :  

∀x ∈ ℝ, f(−x) = f(x) 
On a donc :  

∀x ∈ ℝ,−f ′(−x) = f ′(x) ⟹ ∀x ∈ ℝ, f ′(−x) = −f ′(x) 
Donc f′ est impaire. 

 2ième cas : 𝐟′ impaire 

On pose :  

g(x) = f(−x) − f(x) 
On a donc :  

∀x ∈ ℝ, f ′(−x) + f ′(x) = 0 

On a donc :  

∀x ∈ ℝ,∫ f ′(−t) + f(t)

x

0

dt = c, c ∈ ℝ  
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⟹ [−f(−t)]0
x + [f(t)]0

x = c, c ∈ ℝ 

⟹−f(−x) + f(0) + f(x) − f(0) = c, c ∈ ℝ 

⟹ f(−x) = f(x) + c 
On a de plus :  

f(0) = f(0) + c ⟹ c = 0 

On a donc :  

∀x ∈ ℝ, f(−x) = f(x) 
 

On en déduit donc que :  

f est paire si et seulement si f ′est impaire. 

2) Soit f une fonction dérivable impaire. 

On a donc :  

∀x ∈ ℝ, f(−x) = −f(x) 
On a donc :  

∀x ∈ ℝ,−f ′(−x) = −f ′(x) ⟹ ∀x ∈ ℝ, f ′(−x) = f ′(x) 
Donc f′ est paire. 

La réciproque est fausse. On pose pour contre-exemple : f(x) = sin(x) + 1. 

On a donc :  

∀x ∈ ℝ, f ′(x) = cos(x) 
Donc f′ est paire. 

Cependant f n’est pas impaire :  

 ∀x ∈ ℝ, f(−x) = sin(−x) + 1 = −sin(x) + 1 

On a alors :  

{
f (−

π

2
) = sin (−

π

2
) + 1 = 0

f (
π

2
) = sin (

π

2
) + 1 = 2

⟹ f (−
π

2
) ≠ −f (

π

2
) 

Donc f n’est pas impaire. 

3) Soit f une fonction T-périodique. On a alors :  

∀x ∈ ℝ, f(x + T) = f(x) 
On a donc :  

∀x ∈ ℝ, f ′(x + T) = f ′(x) 
Donc f ′ est T-périodique. 

La réciproque est fausse. 

Il suffit de poser :  

∀x ∈ ℝ, f(x) = sin(x) + x 
On a :  

lim
x→+∞

f(x) = +∞ 

Donc f n’est pas bornée donc f n’est pas périodique.  

Cependant on a :  

∀x ∈ ℝ, f′(x) = cos(x) + 1 

On a alors :  

∀x ∈ ℝ, f ′(x + 2π) = cos(x + 2π) + 1 = cos(x) + 1 = f′(x) 
Donc f′ est 2π −périodique. 

 

Exercice B.5 : Déterminer les extrema de f(x) = x4 + x3 + 1 sur ℝ. 

 
Il suffit de dériver f. On a : 

∀x ∈ ℝ, f ′(x) = 4x3 + 3x2 

On résout :  

f ′(x) = 0 ⟺ 4x3 + 3x2 = 0 

⟺ x2(4x + 3) = 0 
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⟺{

x = 0
ou

x = −
3

4

 

Donc si f admet des extrema locaux ou globaux, c’est seulement aux points A(0; f(0)) et B (
3

4
 ; f (

3

4
)). 

Mais ce n’est pas une condition suffisante. 

On étudie le signe de f ′(x) 
On sait de plus que :  

lim
x→+∞

(x4 + x3 + 1) = lim
x→± ∞

x4 (1 +
1

x
+
1

x4
) = +∞ 

On a les variations suivantes :  

 
Donc f admet un minimum global en x = −0,75 qui vaut :  

f (−
3

4
) =

445

256
 

On a la courbe de 𝑓. 

 

 

Partie C : Dérivée n-ième 

 
Exercice C.1 : Calculer la dérivée n-ième de :  

f ∶  {
ℝ → ℝ

x ↦ (x2 + 1)e3x
 

 

On utilise la formule de Leibnitz :  

On sait que : 

∀n ∈ ℕ, (fg)n =∑(
n

k
) fkgn−k

n

k=0

 

On pose :  
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∀x ∈ ℝ, g(x) = x2 + 1 

⟹∀x ∈ ℝ, g′(x) = 2x 

⟹ ∀x ∈ ℝ, g′′(x) = 2 

⇒ ∀x ∈ ℝ, , ∀n ≥ 3, g(n)(x) = 0 

De plus on pose :  

∀x ∈ ℝ, h(x) = e3x 
On a donc :  

∀n ∈ ℕ, ∀x ∈ ℝ, h(n)(x) = 3ne3x 
On a donc :  

∀x ∈ ℝ,∀n ∈ ℕ, n ≥ 2, f (n) = (gh)(n) =∑(
n

k
) fkgn−k

n

k=0

 

⟹ ∀x ∈ ℝ, ∀n ∈ ℕ, n ≥ 2, f (n)(x) = (
n

0
) × 3n(x2 + 1)e3x + (

n

1
) × 2x3n−1e3x + (

n

2
) × 2 × 3n−2e3x 

Or on sait que :  

(
n

n
) = 1, (

n

1
) = n, (

n

2
) =

n(n − 1)

2
 

On en déduit que :  

∀x ∈ ℝ,∀n ∈ ℕ, n ≥ 2, f (n)(x) = (3n(x2 + 1) + 2n × 3n−1x + 3n−2n(n − 1))e3x 

= 3n−2(9x2 + 6nx + n(n − 1) + 9)e3x 
De plus : 

 f (0)(x) = (x2 + 1)e3x 

f (1)(x) = (3x2 + 2x + 3)e3x 

f (2)(x) = (9x2 + 12x + 11)e3x 
On en déduit que les égalités restent vraies. On a donc :  

∀x ∈ ℝ, ∀n ∈ ℕ, n ≥ 2, f (n)(x) = 3n−2(9x2 + 6nx + n(n − 1) + 9)e3x 
 

Exercice C.2 : On pose :  

∀ n ∈ ℕ, ∀ x ∈ ℝ, fn(x) = x
n(1 + x)n 

1) Déterminer de deux manières différentes le terme dominant de fn
(n)

.  

2) En déduire la valeur de :  

Sn =∑(
n

k
)
2

n

k=0

 

 

1) Méthode 1 : Il suffit de développer :  

∀ n ∈ ℕ, ∀ x ∈ ℝ, fn(x) = x
n(1 + x)n 

= xn × (∑(
n

k
)

n

k=0

xk) 

=∑(
n

k
) xn+k

n

k=0

 

On a donc :  

∀(n, k) ∈ ℕ2, k ≤ n, ∀ x ∈ ℝ, fn
(n)(x) = ∑(

n

k
)
(n + k)!

k!
xk

n

k=0

 

Méthode 2 : On utilise la formule de Leibnitz. 

On pose :  

gn ∶ x ↦ xn 

hn: x ↦ (1 + x)n 

On sait que (gn, hn) ∈ (𝒞
∞(ℝ))

2
 et :  

∀(n, k) ∈ ℕ2, k ≤ n, ∀x ∈ ℝ, gn
(k) =

n!

k!
xn−k 
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∀(n, k) ∈ ℕ2, k ≤ n, ∀x ∈ ℝ, hn
(k)
=
n!

k!
(1 + x)n−k 

 

∀ x ∈ ℝ, fn
(n)(x) = ∑(

n

k
) gn

(k)

n

k=0

hn
(n−k)

 

=∑(
n

k
)
n!

k!
xn−k

n

k=0

n!

(n − k)!
(1 + x)k 

2) Il suffit de voir que fn
(n)

 est un polynôme de degré n. 

Or on sait que deux polynômes sont égaux si et seulement si les termes devant chaque monôme sont égaux.  

Regardons le terme de degré n, appelé an.  

Dans le membre de gauche on a :  

∀n ∈ ℕ, an =
(2n)!

n!
  

Dans le membre de droite on peut voir que le polynôme (1 + x)k est de degré k et le terme de degré k est 1. On a 

donc :  

∀n ∈ ℕ, an =∑(
n

k
)
n!

k!

n!

(n − k)!

n

k=0

= n!∑(
n

k
) (
n

k
)

n

k=0

= n!∑(
n

k
)
2

n

k=0

 

On en déduit donc que :  

∀n ∈ ℕ,∑(
n

k
)
2

n

k=0

=
(2n)!

n! n!
= (

2n

n
) 

 

Exercice C.3 : Calculer la dérivée n-ième de :  

f ∶  {
ℝ → ℝ

x ↦ cos3(x)
 

 

Il faut linéariser :  

∀x ∈ ℝ, (cos(x))3 = (
eix + e−ix

2
)

3

 

=
1

8
× (e3ix + 3eix + 3e−ix + e−3ix) 

=
1

4
cos(3x) +

3

4
cos(x)  

De plus on pose :  

g: x ↦ cos(x) 
On sait que g est de classe 𝒞∞ sur ℝ et :  

∀x ∈ ℝ, g′(x) = −sin(x) = cos (x +
π

2
)  

g′′(x) = −cos(x) = cos(x + π),  

g(3)(x) = sin(x) = cos (x +
3π

2
) 

On peut conjecturer que :  

∀n ∈ ℕ, ∀ x ∈ ℝ, g(n)(x) = cos (x +
nπ

2
) 

On démontre cela par récurrence. 

Initialisation : Pour n = 0, on a :  

∀ x ∈ ℝ, g(0)(x) = cos(x) = cos (x +
0 × π

2
) 

Donc la proposition est vraie pour n = 0. 

Hérédité : Soit n un entier naturel fixé. On suppose que :  

∀ x ∈ ℝ, g(n)(x) = cos (x +
nπ

2
) 

On a donc :  
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∀ x ∈ ℝ, g(n+1)(x) = −sin (x +
nπ

2
) 

Or on sait que :  

∀ x ∈ ℝ, cos (x +
π

2
) = −sin(x) 

On a donc :  

∀ x ∈ ℝ, g(n+1)(x) = −sin (x +
nπ

2
) = cos (x +

nπ

2
+
π

2
) = cos(x +

(n + 1)π

2
) 

Donc la proposition est héréditaire. 

Conclusion : La proposition est vraie pour n = 0 et est héréditaire donc :  

∀ x ∈ ℝ, ∀n ∈ ℕ, g(n)(x) = cos (x +
nπ

2
) 

On en déduit donc que :  

∀n ∈ ℕ, ∀ x ∈ ℝ, f (n)(x) =
3n

4
cos (3x +

nπ

2
) +

3

4
cos (x +

nπ

2
) 

 

Exercice C.4 : Calculer la dérivée n-ième de :  

f ∶  {
ℝ → ℝ

x ↦ ex sin(x)
 

 
C’est une question du DS 2 de la promo 2019-2020. 

On raisonne par récurrence. Pour tout entier naturel n on pose la proposition P(n) suivante :  

P(n): "∀x ∈ ℝ, f (n)(x) = 2
n
2ex sin (x + n

π

4
) " 

Initialisation : Pour n=0 :  

2
0
2ex sin (x + 0 ×

π

4
) = ex sin(x) = f(x) 

Donc P(0) est vraie.  

Hérédité : Soit n un entier naturel fixé. On suppose vraie P(n). On a donc :  

∀x ∈ ℝ, f (n)(x) = 2
n
2ex sin (x + n

π

4
) 

⇒ ∀x ∈ ℝ, f (n+1)(x) = 2
n
2ex sin (x + n

π

4
) + 2

n
2ex cos (x + n

π

4
) 

= 2
n
2ex

(

 
 
sin (x + n

π

4
) + cos (x + n

π

4
)

⏟                  

√2sin(x+n×
π
4
+
π
4
)

)

 
 

 

= 2
n+1
2 ex sin (x + (n + 1) ×

π

4
) 

Donc P(n+1) est vraie. 

Conclusion : P(0) est vraie et P(n) est héréditaire donc d’après le principe de récurrence, P(n) est toujours vraie. 

 
Partie D : Théorème de Rolle et accroissement fini 

 

Exercice D.1 : Soient n un entier naturel et (a, b) ∈ ℝ2. Démontrer que le polynôme Pn(X) = X
n + aX + b s’annule 

au plus trois fois sur ℝ. 

 
On raisonne par l’absurde. On suppose qu’il existe au moins quatre racines de Pn :  

{
x1 < x2 < x3 < x4

Pn(x1) = Pn(x2) = Pn(x3) = Pn(x4)
 

Pn est de classe C∞ donc dérivable donc on peut appliquer le théorème de Rolle.  

∃(x1
′ , x2

′ , x3
′ ) ∈ ]x1; x2[ × ]x2; x3[ × ]x3; x4[ , {

x1
′ < x2

′ < x3
′

Pn
′(x1

′ ) = Pn
′(x2

′ ) = Pn
′(x3

′ ) = 0
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On applique encore le théorème de Rolle à Pn

′ :  

∃(x1
′′, x2

′′) ∈ ]x′1; x′2[ × ]x′2; x′3[ , {
x1
′′ < x2

′′

Pn
′′(x1

′′) = Pn
′′(x2

′′) = 0
 

Or on sait que :  

∀x ∈ ℝ, Pn
′′(X) = n(n − 1)Xn−2  

Donc Pn
′′ admet seulement une racine, qui est 0. 

Donc Pn(X) = X
n + aX + b s’annule au plus trois fois sur ℝ. 

 
Exercice D.2 : On pose le polynôme Pn: X ↦ ((1 − t2)n)(n) est un polynôme de degré n dont toutes les racines sont 

réelles comprises dans [-1 ;1]. 

 

On sait que :  

Qn: t ↦ (1 − t2)n est un polynôme de degré 2n. On le dérive n fois, on obtient un polynôme de degré n. Les valeurs -

1 et 1 sont des racines d’ordre n de Qn, donc :  

Qn(1) = Qn
′ (1) = ⋯ = Qn

(n−1)(1) = 0 

On a la même chose avec −1.  

De plus on sait que :  

Qn(1) = Qn(−1) = 0 

On peut donc appliquer le théorème de Rolle :  

∃c ∈] − 1; 1[, Qn
′ (c) = 0 

On a donc :  

{
Qn
′ (c) = Qn

′ (−1) = Qn
′ (1) = 0

−1 < c < 1
 

On peut donc appliquer de nouveau de théorème de Rolle pour Qn′ :  

∃(c1; c2 ∈] − 1; c[× ]c; 1[, Qn
′′(c1) = Qn

′′(c2) = 0 

On réitère le procédé par récurrence. On obtient alors pour Qn
(n−1)

 n+1 racines :  

−1 < c1 < ⋯ < cn−1 < 1 

On applique encore le théorème de Rolle n fois.  

On obtient alors par construction n racines pour Pn = Qn
(n)

. Comme un polynôme de degré n a au plus n racines, on a 

toutes les racines de Qn
(n)

.  

Donc : Pn: X ↦ ((1 − t2)n)(n) est un polynôme de degré n dont toutes les racines sont réelles comprises dans [-1 ;1]. 

 

Exercice D.3 : Résoudre l’équation différentielle suivantes sur ℝ :  

xy′ − 2y = (x − 1)(x + 1)3 

 

On résout l’équation homogène :  

(E0): xy
′ − 2y = 0 

On résout cela sur ]0; +∞[ puis sur ]−∞; 0[. 
(E0): xy

′ − 2y = 0 

On résout sur ]0;+∞[:  

y′ −
2

x
y = 0 ⟺ ∃λ ∈ ℝ,∀x > 0, y0(x) = λe

2 ln(x) = λx2 

On résout sur ]−∞; 0[:  

y′ −
2

x
y = 0 ⟺ ∃μ ∈ ℝ,∀x < 0, y0(x) = μe

2 ln(−x) = μx2 

On doit à présent déterminer une solution particulière de l’équation  

xy′ − 2y = (x − 1)(x + 1)3 

On sait que :  

∀x ∈ ℝ, (x − 1)(x + 1)3 = (x − 1)(x3 + 3x2 + 3x + 1) 

= x4 + 2x3 − 2x − 1 

On cherche alors une solution particulière de :  

xy′ − 2y = x4 + 2x3 − 2x − 1 
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On pose y(x) = ax4 + bx3 + cx2 + dx + e 
On a alors :  

xy′ − 2y = 2ax4 + bx3 − dx − 2e = x4 + 2x3 − 2x − 1 

On en déduit donc que :  

yp(x) =
1

2
x4 + 2x3 + 2x +

1

2
 

On en déduit donc que :  

y′ −
2

x
y = (x − 1)(x + 1)3 ⟺ ∃λ ∈ ℝ, ∀x > 0, y0(x) = λe

2 ln(x) = λx2 +
1

2
x4 + 2x3 + 2x +

1

2
 

y′ −
2

x
y = (x − 1)(x + 1)3⟺ ∃μ ∈ ℝ,∀x > 0, y1(x) = μe

2 ln(x) = μx2 +
1

2
x4 + 2x3 + 2x +

1

2
 

Or on a :  

lim
x→0+

y′0(x) = 2 = lim
x→0−

y′1(x) 

On peut donc prolonger les solutions de cette équation différentielle sur ℝ en posant :  

y′ −
2

x
y = (x − 1)(x + 1)3 ⟺ ∃(λ; μ) ∈ ℝ2, y(x) = {

λx2 +
1

2
x4 + 2x3 + 2x +

1

2
 si x ≥ 0

μx2 +
1

2
x4 + 2x3 + 2x +

1

2
 sinon

 

 

Exercice D.4 : a) Montrer que :  

∀x ∈]0;+∞[,
1

x + 1
≤ ln(x + 1) − ln(x) ≤

1

x
 

b) En déduire que :  

∀x ∈]0;+∞[, (
x + 1

x
)
x

≤ e ≤ (
x + 1

x
)
x+1

 

c) Montrer que :  

∀n ∈ ℕ∗,
(n + 1)n

n!
≤ en ≤

(n + 1)n+1

n!
 

 

a) On sait que :  

∀x > 0, ln(x + 1) − ln(x) = ln (
x + 1

x
) = ln (1 +

1

x
) 

On pose :  

f: x ↦ ln(1 + x) − x 
On sait que f est dérivable et :  

∀x ≥ 0, f ′(x) =
1

1 + x
− 1 =

−x

1 + x
< 0 

Or on sait que :  

f(0) = 0 

On en déduit donc que :  

∀x > 0, f(x) < 0 ⟹ ln(1 + x) < x 
On a donc :  

∀x ∈]0;+∞[, ln (1 +
1

x
) ≤

1

x
 

On peut faire de même en posant :  

x ↦ ln (1 +
1

x
) −

1

x + 1
 

Ou on peut utiliser la croissance de l’intégrale :  

∀x > 0, ∫
1

t

x+1

x

dt = ln(x + 1) − ln(x) 

De plus on sait que :  

∀t ∈ [x; x + 1],
1

t
≥

1

x + 1
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On a donc :  

∀x > 0, ∫
1

t

x+1

x

dt ≥ ∫
1

x + 1

x+1

x

dt 

⟹ ln(x + 1) − ln(x) ≥
1

x + 1
 

b) On a :  

∀x > 0,
1

x + 1
≤ ln(x + 1) − ln(x) ≤

1

x
 

⟹ x+ 1 ≥
1

ln (
x + 1
x
)
≥ x  

⟹ (x + 1) ln (
x + 1

x
) ≥ 1 ≥ x ln (

x + 1

x
) 

⟹ e
(x+1) ln(

x+1
x
)
≥ e ≥ e

x ln(
x+1
x
)
 

⟹ (
x + 1

x
)
x

≤ e ≤ (
x + 1

x
)
x+1

 

c) On en déduit donc que :  

∀n ∈ ℕ∗, ∀k ∈ ⟦1; n⟧, (
1 + k

k
)
k

≤ e ≤ (
1 + k

k
)
k+1

 

On a donc :  

∀n ∈ ℕ∗,∏(
1 + k

k
)
kn

k=1

=∏(1 + k)k
n

k=1

×∏
1

kk 

n

k=1

 

On a donc :  

∀n ∈ ℕ∗,∏(1 + k)k
n

k=1

×∏
1

kk 

n

k=1

≤∏e

n

k=1

≤∏(1 + k)k+1
n

k=1

×∏
1

kk+1 

n

k=1

 

⟹ (1 + n)n ×∏(1 + k)k
n−1

k=1

×∏
1

kk 

n

k=1

≤ en ≤ (1 + n)n+1 ×∏(1 + k)k+1
n−1

k=1

×∏
1

kk+1 

n

k=1

 

⟹ (1 + n)n ×∏kk−1
n

k=2

×∏
1

kk 

n

k=1

≤ en ≤ (1 + n)n+1 ×∏kk
n

k=2

×∏
1

kk+1 

n

k=1

 

⟹ (1 + n)n ×∏
1

k 

n

k=2

×
1

11
≤ en ≤ (1 + n)n+1 ×∏

1

k 

n

k=2

×
1

12
 

⟹ ∀n ∈ ℕ∗,
(n + 1)n

n!
≤ en ≤

(n + 1)n+1

n!
 

 

Exercice D.5 : Montrer que :  

∀x ≥ 0,
x

x + 1
≤ ln(1 + x) ≤ x 

 

On a déjà démontré à l’exercice D.5 que :  

∀x ∈]0;+∞[,
1

x + 1
≤ ln (1 +

1

x
) ≤

1

x
 

On pose :  

x =
1

X
 

On a donc :  

∀X > 0,
1

1
X + 1

≤ ln(1 + X) ≤ X  

⟹ ∀X > 0,
X

X + 1
≤ ln(1 + X) ≤ X 
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Remarque : On peut aussi utiliser l’inégalité des accroissements finis :  

On pose :  

f ∶ x ↦ ln(1 + x) 
Soit x ∈ ℝ+. On sait que : 

 f est continue sur [0; x] 

 f est dérivable sur ]0; x[ 

De plus on sait que :  

∀x > 0, f ′(x) =
1

1 + x
 

De plus on sait que :  

∀t ∈ [0; x],
1

1 + x
≤ f ′(t) ≤ 1 

On en déduit donc que :  

∀x ≥ 0,
1

1 + x
(x − 0) ≤ f(x) − f(0) ≤ 1(x − 0)  

On a donc :  

∀x ≥ 0,
x

x + 1
≤ ln(1 + x) ≤ x 

 

Exercice D.6 : Montrer que :  

∀(x, y) ∈ [0; 1[2, x < y,
y − x

√(1 − x2)
≤ arcsin(y) − arcsin(x) <

y − x

√(1 − y2)
 

 

On peut aussi utiliser l’inégalité des accroissements finis :  

On pose :  

f ∶ x ↦ arcsin(x) 

Soit (x, y) ∈ [0; 1[2, x < y. On sait que : 

 f est continue sur [x; y] 

 f est dérivable sur ]x; y[ 

De plus on sait que :  

∀x ∈ [0; 1[2, f ′(x) =
1

√1 − x2
 

De plus on sait que :  

∀t ∈ [0; x],
1

√1 − x2
≤ f ′(t) ≤

1

√1 − y2
 

On en déduit donc que :  

∀(x, y) ∈ [0; 1[2,
1

√1 − x2
(y − x) ≤ f(y) − f(x) ≤

y − x

√(1 − y2)
  

On a donc :  

∀(x, y) ∈ [0; 1[2, x < y,
y − x

√(1 − x2)
≤ arcsin(y) − arcsin(x) <

y − x

√(1 − y2)
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Partie E : Application aux suites 𝐮𝐧+𝟏 = 𝐟(𝐮𝐧) 

 

Exercice E.1 : Etudier la convergence de la suite définie par :  

{

u0 ∈ ℝ

un+1 = 2 +
1

2
sin(un)

 

 

On pose :  

f: x ↦ 2 +
1

2
sin(x) 

On sait que :  

∀x ∈ ℝ, f(x) = 2 +
1

2
sin(x) 

On a donc :  

∀x ∈ ℝ, f ′(x) =
1

2
cos(x) 

On en déduit donc que :  

sup
x∈ℝ

|f ′(x)| =
1

2
 

On en déduit donc que f est 
1

2
−lipschitzienne :  

∀(x, y) ∈ ℝ, |f(x) − f(y)| ≤
1

2
|x − y| 

Il faut à présent montrer que f admet un point fixe.  

On pose :  

g ∶ x ↦ f(x) − x 
g est dérivable sur ℝ et :  

∀x ∈ ℝ, g′(x) =
1

2
cos(x) − 1 < 0 

Donc g est strictement décroissante sur ℝ. Comme g est continue, elle réalise une bijection de ℝ dans g(ℝ). 
Or on sait que :  

g(0) = 2 et g(2π) = 2 − 2π < 0 

On en déduit dons qu’il existe un unique α ∈ ℝ tel que f(α) = α. 

De plus on sait que :  

∀u0 ∈ ℝ, ∀n ∈ ℕ, |f(un) − f(α)| ≤
1

2
|un − α|  

⟹∀n ∈ ℕ, |un+1 − α| ≤
1

2
|un − α|  

On en déduit donc par récurrence là aussi immédiate que :  

⟹∀n ∈ ℕ, |un − α| ≤ (
1

2
)
n

|u0 − α| 

On a donc :  

0 ≤ lim
n
|un − α| ≤ lim

n
(
1

2
)
n

|u0 − α| 

Or on sait que :  

lim
n
(
1

2
)
n

|u0 − α| = 0 car
1

2
∈] − 1; 1[ 

On a donc :  

lim
n
|un − α| = 0  

Ce qui est équivalent à dire que :  

lim
n
un = α 

Donc (un) converge vers α. 
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Exercice E.2 : Etudier la convergence de la suite définie par :  

{
u0 ∈ ℝ

un+1 = cos(un)
 

 

On remarque que :  

∀u0 ∈ ℝ, u1 = cos(u0) ∈ [−1; 1] 
On peut donc supposer que u0 ∈ [−1; 1]. 
On sait que cos est 1-lipschitzienne car :  

∀x ∈ ℝ, |sin(x)| ≤ 1 

Ou bien on a :  

∀(x, y) ∈ ℝ2, x < y,∫−dt

y

x

≤ ∫sin(t)

y

x

dt ≤ ∫dt

y

x

 

⟹ ∀(x, y) ∈ ℝ2, |∫ sin(t)

y

x

| ≤  |∫ dt

y

x

| 

⟹ ∀(x, y) ∈ ℝ2, |cos(y) − cos(x)| ≤ |y − x| 
Or on sait que :  

∀n ∈ ℕ∗, un ∈ [−1; 1] 
Or on sait que :  

∀x ∈ [−1; 1], | sin(x) | ≤ sin (1) < 1 

On en déduit donc que :  

∀(x, y) ∈ [−1; 1]2, |cos(x) − cos(y)| ≤ sin(1) |x − y| 
De plus on sait que :  

∃! α ∈ [−1; 1], cos(α) = α 

Qui se démontre avec un TVI avec la fonction x ↦ cos(x) − x 
On a donc :  

∀n ∈ ℕ∗ , |cos(un) − cos(α)| ≤ sin(1) |un − α| 
On en déduit donc par récurrence là aussi immédiate que :  

⟹ ∀n ∈ ℕ∗, |un − α| ≤ (𝑒
−
1
𝑒)
n−1

|u1 − α| 

Or on sait que :  

lim
n
(sin (1))n−1|u1 − α| = 0 carsin(1) ∈] − 1; 1[ 

On a donc :  

lim
n
|un − α| = 0  

Ce qui est équivalent à dire que :  

lim
n
un = α 

Donc (un) converge vers α. 

 

Exercice E.3 : On définit :  

{
u0 = 1

un+1 = e
−un 

1) Montrer que :  

∀n ∈ ℕ, un ∈ [
1

e
; 1] 

2) Démontrer que (un) converge. On note ℓ sa limite.  

3) Déterminer une valeur approchée de ℓ à 10−3. On détaillera le procédé utilisé. 

 

1) On peut démontrer cela par récurrence. On pose :  

∀n ∈ ℕ, Pn = "un ∈ [
1

e
; 1] " 

Initialisation : n = 0. u0 = 1 donc P0 est vraie. 
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Hérédité : Soit n un entier naturel fixé. On suppose que :  

1

e
≤ un ≤ 1 

⟹−1 ≤ −un ≤ −
1

e
 

⟹ e−1 ≤ e−un ≤ e−
1
e < 1 

Donc Pn+1 est vraie. 

Conclusion : P0 est vraie et Pn héréditaire donc d’après le principe de récurrence :  

∀n ∈ ℕ, un ∈ [
1

e
; 1] 

2) On pose :  

∀x ∈ [
1

e
; 1] , f(x) = e−x 

On sait que :  

∀x ∈ [
1

e
; 1] , f ′(x) = −e−x < 0 

⟹ ∀x ∈ [
1

e
; 1] , f ′′(x) = e−x > 0 

On en déduit donc que f′ est croissante sur [
1

e
; 1] et négative donc :  

∀x ∈ [
1

e
 ; 1] , |f ′(x)| ≤ e

−
1
e < 1 

On en déduit donc que :  

 

∀(x, y) ∈  [
1

e
 ; 1]

2

, |f(x) − f(y)| ≤ e−
1
e|x − y| 

A présent on pose :  

g: x ↦ f(x) − x 
On sait que :  

∀x ∈ [
1

e
 ; 1] , g′(x) = −e−x − 1 < 0 

On en déduit donc que g est décroissante sur [
1

e
 ; 1]. 

Or on a :  

g (
1

e
) = e−

1
e −

1

e
=
1

e
1
e

−
1

e
> 0 car

1

e
< 1 

De même :  

g(1) = e−1 − 1 < 0 car − 1 < 0 

Donc g est continue, strictement décroissante et change de signe. 

Donc on a :  

∃α ∈ [
1

e
 ; 1] , g(α) = 0 

⟹ ∃α ∈ [
1

e
 ; 1] , f(α) = α 

De plus on sait que :  

∀n ∈ ℕ∗ , |f(un) − f(α)| ≤ e
−
1
e|un − α| 

On en déduit donc par récurrence là aussi immédiate que :  

⟹ ∀n ∈ ℕ∗, |un − α| ≤ (e
−
1
e)
n

|u0 − α| 

Or on sait que :  

lim
n
(e−

1
e)
n

|u0 − α| = 0 car e
−
1
e  ∈] − 1; 1[ 

On a donc :  

lim
n
|un − α| = 0  
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Ce qui est équivalent à dire que :  

lim
n
un = α 

Donc (un) converge vers α. 

 

3) Pour avoir une valeur approchée, on peut faire un programme Python avec la dichotomie pour déterminer une 

valeur approchée de α à 10−3 :  

 
On obtient alors :  

 
On a donc :  

α ≈ 0,739 (arrondi à 10−3) 

 
 

 

Partie F : Convexité 

 

Exercice F1 : Montrer que :  

∀(𝑥, 𝑦) ∈ ]1; +∞[2, ln (
𝑥 + 𝑦

2
) ≥ √ln(𝑥) ln(𝑦) 

(On pourra étudier la convexité de 𝑥 ↦ −𝑙𝑛(𝑙𝑛(𝑥))) 
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On pose 𝑓: 𝑥 ↦ − ln(ln(𝑥))  𝑠𝑢𝑟 ]1;+∞[. 

On a 𝑓 ∈ 𝒞2(]1;+∞[) et :  

∀𝑥 ∈]1; +∞[, 𝑓′(𝑥) = −
1

𝑥𝑙𝑛(𝑥)
⟹ ∀𝑥 ∈]1;+∞[, 𝑓′′(𝑥) =

1

𝑥2 ln(𝑥)
+

1

𝑥2𝑙𝑛2(𝑥)
=

ln(𝑥) + 1

𝑥2 × ln2(𝑥)
> 0 

On en déduit donc que 𝑓 est convexe. 

Ainsi on a :  

∀(𝑥, 𝑦) ∈ ]1;+∞[2, 𝑓 (
𝑥 + 𝑦

2
) ≤

𝑓(𝑥) + 𝑓(𝑦)

2
⟹ − ln (ln (

𝑥 + 𝑦

2
)) ≤ −

ln(ln(𝑥)) + ln(ln(𝑥))

2
 

⟹ ln(ln (
𝑥 + 𝑦

2
)) ≥

ln(ln(𝑥)) + ln(ln(𝑥))

2
⟹ ln (

𝑥 + 𝑦

2
) ≥ 𝑒

ln(ln(𝑥))+ln(ln(𝑥))
2 ⟹ 𝐥𝐧(

𝒙 + 𝒚

𝟐
) ≥ √𝐥𝐧(𝒙) 𝐥𝐧(𝒚) 

 

Exercice F2 : Montrer que :  

∀(𝑥, 𝑦, 𝑎, 𝑏) ∈ ]0;+∞[4, 𝑥𝑙𝑛 (
𝑥

𝑎
) + 𝑦𝑙𝑛 (

𝑦

𝑏
) ≥ (𝑥 + 𝑦) ln (

𝑥 + 𝑦

𝑎 + 𝑏
) 

(On pourra étudier la convexité de 𝑥 ↦ 𝑥𝑙𝑛(𝑥)) 

 

On pose 𝑓: 𝑥 ↦ 𝑥𝑙𝑛(𝑥) 𝑠𝑢𝑟 ]0; +∞[. 

On a 𝑓 ∈ 𝒞2(]1;+∞[) et :  

∀𝑥 > 0, 𝑓′(𝑥) = ln(𝑥) + 1 ⟹ 𝑓′′(𝑥) =
1

𝑥
> 0 

On en déduit que 𝑓 est convexe sur ]0;+∞[. 
On a donc d’après l’inégalité de convexité :  

∀𝑡 ∈ [0; 1], ∀(𝑋, 𝑌) ∈ ]0;+∞[2, 𝑔(𝑡𝑋 + (1 − 𝑡)𝑌) ≤ 𝑡𝑔(𝑋) + (1 − 𝑡)𝑔(𝑌) 
On pose ensuite :  

𝑋 =
𝑥

𝑎
, 𝑌 =

𝑦

𝑏
 𝑒𝑡 𝑡 =

𝑎

𝑎 + 𝑏
 

On a alors :  

(
𝒂

𝒂 + 𝒃
×
𝒙

𝒂
+

𝒃

𝒂 + 𝒃
×
𝒚

𝒃
) 𝐥𝐧 (

𝒂

𝒂 + 𝒃
×
𝒙

𝒂
+

𝒃

𝒂 + 𝒃
×
𝒚

𝒃
) ≤

𝒂

𝒂 + 𝒃

𝒙

𝒂
𝐥𝐧(

𝒙

𝒂
) +

𝒃

𝒂 + 𝒃
𝐥𝐧 (

𝒚

𝒃
) 

On en déduit alors l’inégalité demandée ¡ 

 

Exercice F3 (Ingélaité de Jensen) :  

1) Soit 𝑓: 𝐼 → ℝ une fonction convexe. Montrer que :  

∀(𝑥1, … , 𝑥𝑛) ∈ 𝐼
𝑛, ∀(𝜆1, … , 𝜆𝑛) ∈ (ℝ

+)𝑛, 𝑜𝑛 𝑎 ∶  

∑𝜆𝑘

𝑛

𝑘=1

= 1⟹ 𝑓(∑𝜆𝑘𝑥𝑘

𝑛

𝑘=1

) ≤ ∑𝜆𝑘𝑓(𝑥𝑘)

𝑛

𝑘=1

 

2) En déduire que :  

∀(𝑥1, … , 𝑥𝑛) ∈ (ℝ
+)𝑛, (∏𝑥𝑘

𝑛

𝑘=1

)

1
𝑛

≤
1

𝑛
(∑𝑥𝑘

𝑛

𝑘=1

)  

 

1) Il faut faire une récurrence sur les (𝜆1, … , 𝜆𝑛) ∈ (ℝ
+)𝑛. 

Initialisation : On a 

𝑓(𝑥1) ≤ 𝑓(𝑥1) 
C’est trivial !  

Remarque (pour 𝑛 = 2, c’est l’inégalité de convexité !) 

Hérédité : On suppose que :  

∀(𝑥1, … , 𝑥𝑛) ∈ 𝐼
𝑛, ∀(𝜆1, … , 𝜆𝑛) ∈ (ℝ

+)𝑛, 𝑜𝑛 𝑎 ∶   ∑ 𝜆𝑘

𝑛

𝑘=1

= 1⟹ 𝑓(∑𝜆𝑘𝑥𝑘

𝑛

𝑘=1

) ≤ ∑𝜆𝑘𝑓(𝑥𝑘)

𝑛

𝑘=1

 

On pose :  
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(𝑥1, … , 𝑥𝑛, 𝑥𝑛+1) ∈ 𝐼
𝑛+1 𝑒𝑡 (𝜆1, … , 𝜆𝑛+1) ∈ (ℝ

+)𝑛+1, 𝑜𝑛 𝑎 ∶   ∑ 𝜆𝑘

𝑛+1

𝑘=1

= 1 

Si 𝜆𝑛+1 = 1 alors 𝑘 ∈ {1,…𝑛}, 𝜆𝑘 = 0 alors on a :  

𝑓 (∑𝜆𝑘𝑥𝑘

𝑛+1

𝑘=1

) = 𝑓(𝑥𝑛+1) = ∑𝜆𝑘𝑓(𝑥𝑘)

𝑛+1

𝑘=1

 

On pose ensuite 𝜆𝑛+1 ≠ 1 et :  

∀𝑘 ∈ {1,…𝑛}, 𝛽𝑘 =
𝜆𝑘

1 − 𝜆𝑛+1
 

On a alors :  

∀𝑘 ∈ {1,…𝑛}, 𝛽𝑘 > 0 𝑒𝑡 ∑𝛽𝑘

𝑛

𝑘=1

=
1

1 − 𝜆𝑛+1
(∑𝜆𝑘

𝑛

𝑘=1

) =
1

1 − 𝜆𝑛+1
(1 − 𝜆𝑛+1) = 1 

On applique alors l’inégalité de convexité avec:  

𝑡 = 𝜆𝑛+1, 𝑥 = 𝑥𝑛+1 𝑒𝑡 𝑦 = ∑𝛽𝑘𝑥𝑘

𝑛

𝑘=1

 

On a :  

𝑓 (𝜆𝑛+1𝑥𝑛+1 + (1 − 𝜆𝑛+1) (∑𝛽𝑘𝑥𝑘

𝑛

𝑘=1

)) ≤ 𝜆𝑛+1𝑓(𝑥𝑛+1) + (1 − 𝜆𝑛+1)𝑓 (∑𝛽𝑘𝑥𝑘

𝑛

𝑘=1

) 

⟹ 𝑓(𝜆𝑛+1𝑥𝑛+1 + (∑𝜆𝑘𝑥𝑘

𝑛

𝑘=1

)) ≤ 𝜆𝑛+1𝑓(𝑥𝑛+1) + 𝑓 (∑𝜆𝑘𝑥𝑘

𝑛

𝑘=1

) 

On peut donc appliquer l’hypothèse de récurrence :  

𝑓 (∑𝜆𝑘𝑥𝑘

𝑛

𝑘=1

) ≤ ∑𝜆𝑘𝑓(𝑥𝑘)

𝑛

𝑘=1

 

On obtient alors :  

𝑓 (∑𝜆𝑘𝑥𝑘

𝑛+1

𝑘=1

) ≤ ∑𝜆𝑘𝑓(𝑥𝑘)

𝑛+1

𝑘=1

 

Conclusion : On conclut d’après le príncipe de récurrence.  

2) 1er cas : Tous les 𝒙𝒌 sont strictement positifs 

On sait que :  

∀(𝑥1, … , 𝑥𝑛) ∈ (ℝ
+∗)𝑛, ∃(𝑦1, … , 𝑦𝑛) ∈ ℝ

𝑛 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑥𝑘 = 𝑒
𝑦𝑘 

On applique l’inégalité ci-dessus avec la fonction 𝑥 ↦ 𝑒𝑥 qui est convexe et  (𝜆1, … , 𝜆𝑛) = (
1

𝑛
, … ,

1

𝑛
) 

On a alors :  

∀(𝑦1, … , 𝑦𝑛) ∈ ℝ
𝑛, 𝑒

1
𝑛
(𝑦1+⋯+𝑦𝑛) ≤

1

𝑛
(∑𝑒𝑦𝑘

𝑛

𝑘=1

) 

⟹∀(𝒙𝟏, … , 𝒙𝒏) ∈ (ℝ
+∗)𝒏, , (∏𝒙𝒌

𝒏

𝒌=𝟏

)

𝟏
𝒏

≤
𝟏

𝒏
(∑𝒙𝒌

𝒏

𝒌=𝟏

) 

2ième cas : Il existe au moins un des 𝒙𝒌 nul.  

On a alors :  

(∏𝑥𝑘

𝑛

𝑘=1

)

1
𝑛

= 0 ≤
1

𝑛
(∑𝑥𝑘

𝑛

𝑘=1

) 

CQFD 


