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DM n°5 bis 

 

 Soit 𝑓 une fonction définie et continue sur [−1; 1]. On définit :  

‖𝑓‖∞ = sup
𝑥∈[−1;1]

|𝑓(𝑥)| 

Vous verrez l’an prochain que ce nombre est très important. 

 

Partie A : Echauffement 

 

1) On pose :  

𝑓: 𝑥 ↦
2𝑥 + 3

1 + 𝑥2
𝑝𝑜𝑢𝑟 𝑥 ∈ [−1; 1] 

Déterminer ‖𝑓‖∞. 

2)  a) Justifier l’existence de ‖𝑓‖∞ pour tout 𝑓 ∈ 𝒞0([−1; 1]). 

 b) Justifiez que :  

∀𝑓 ∈ 𝒞0([−1; 1]), ∃𝑐 ∈ [−1; 1] 𝑡𝑒𝑙 𝑞𝑢𝑒 ‖𝑓‖∞ = 𝑓(𝑐) 

 c) Si 𝑓 ∈ 𝒞1([−1; 1]), déterminer 𝑓′(𝑐).  

 

 Nous allons à présent nous intéresser aux polynômes. On se place dans ℝ[𝑋]. Dans toute la suite on confond 

le polynôme 𝑃 ∈ ℝ[𝑋] avec sa fonction polynomiale 𝑃̃ pour éviter une certaine lourdeur dans les notations.  

3)  a) Montrer que :  

‖𝑃‖∞ = 0 ⟺ 𝑃 = 0ℝ[𝑋] 

 b) Démontrer que cela n’est plus vrai pour 𝑓 ∈ 𝒞0(ℝ). 
 

Partie B : Les polynômes de Tchebychev 

 

 Nous allons à présent montrer le théorème suivant :  

∀𝑛 ∈ ℕ∗, ∀𝑃 ∈ ℝ[𝑋], deg(𝑃) = 𝑛 ⟹ ‖𝑃‖∞ ≥
|𝑎𝑛|

2𝑛−1
 𝑎𝑣𝑒𝑐 𝑎𝑛 = 𝐶𝐷(𝑃) 

Pour cela nous allons avoir besoin des polynômes de Tchebychev.  

On pose :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ [−1; 1], 𝑇𝑛(𝑥) = cos(𝑛𝑎𝑟𝑐𝑐𝑜𝑠(𝑥)) 

1)  Déterminer 𝑇0 𝑒𝑡 𝑇1.  

2)  a) Démontrer que :  

∀𝑥 ∈ [−1; 1], 𝑇𝑛+2(𝑥) = 2𝑥𝑇𝑛+1(𝑥) − 𝑇𝑛(𝑥) 

 b) En déduire que pour tout 𝑛 ∈ ℕ, 𝑇𝑛 est une fonction polynomiale sur [−1; 1].  

 c) Donner 𝑇2(𝑋) et 𝑇3(𝑋). 

3)  Déterminer le degré de 𝑇𝑛 ainsi que son coefficient dominant.  

4)  Déterminer la parité de 𝑇𝑛.  

5)  a) Démontrer que :  

∀𝜃 ∈ [0; 𝜋], 𝑇𝑛(cos(𝜃)) = cos(𝑛𝜃) 

 b) En déduire que si 𝑛 ∈ ℕ∗, 𝑇𝑛 est scindé à racines simples puis déterminer les racines de 𝑇𝑛.  

6)  Montrer que ‖𝑇𝑛‖∞ = 1.  
 

 Dans toute la suite on pose :  

∀𝑛 ∈ ℕ, 𝑉𝑛 =
1

2𝑛−1
𝑇𝑛  

a) Montrer que 𝑉𝑛 est unitaire. 

b) Déterminer ‖𝑉𝑛‖∞.  
 

Partie C : Minoration de ‖𝑷‖∞. 

 

 Dans cette partie on se donne 𝑛 ∈ ℕ∗, 𝑃 ∈ ℝ[𝑋] de degré 𝑛 et unitaire. On souhaite prouver que ‖𝑃‖∞ ≥

21−𝑛. Pour cela on va raisonner par l’absurde. On suppose que :  
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‖𝑃‖∞ <
1

2𝑛−1
 

1)  Démontrer que deg(𝑉𝑛 − 𝑃) ≤ 𝑛 − 1. 

2)  On pose :  

∀𝑘 ∈ ⟦0; 𝑛⟧, 𝑥𝑘 = cos (
𝑘𝜋

𝑛
) 

 a) Déterminer le signe de (𝑉𝑛 − 𝑃)(𝑥𝑘). 

 b) En déduire que 𝑉𝑛 = 𝑃 puis conclure.  

3)  a) En déduire que :  

∀𝑛 ∈ ℕ∗, ∀𝑃 ∈ ℝ[𝑋], deg(𝑃) = 𝑛 ⟹ ‖𝑃‖∞ ≥
|𝑎𝑛|

2𝑛−1
 𝑎𝑣𝑒𝑐 𝑎𝑛 = 𝐶𝐷(𝑃) 

 b) De plus déterminer tous les polynômes 𝑃𝑛 de degré 𝑛 tel que :  

‖𝑃𝑛‖∞ =
|𝑎𝑛|

2𝑛−1
 

 

Partie D : Une magnifique application 

 

 Dans cette partie nous allons nous intéresser à ce que l’on appelle une interpolation. On se donne 𝑓 ∈

𝒞𝑛+1([−1; 1]) et 𝑛 + 1 antécédents (𝑎0, 𝑎1, … , 𝑎𝑛) ∈ [−1; 1]𝑛+1 avec 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑛.  

On dit que 𝑃𝑛 est le polynôme d’interpolation de 𝑓 d’ordre 𝑛 + 1 pour le (𝑛 + 1) − 𝑢𝑝𝑙𝑒𝑡 (𝑎0, 𝑎1, … , 𝑎𝑛) si :  

{
𝑃𝑛 ∈ ℝ𝑛[𝑋]

∀𝑖 ∈ ⟦0; 𝑛⟧, 𝑃𝑛(𝑎𝑖) = 𝑓(𝑎𝑖)
 

On définit alors 𝑑(𝑎0,𝑎1,…,𝑎𝑛)(𝑃𝑛, 𝑓) la distance entre 𝑃𝑛 et 𝑓 par :  

𝑑(𝑎0,𝑎1,…,𝑎𝑛)(𝑃𝑛, 𝑓) = ‖𝑃𝑛 − 𝑓‖∞ 

Le but de cette partie étant de trouver un excellent (𝑛 + 1) − 𝑢𝑝𝑙𝑒𝑡 (𝑎0, 𝑎1, … , 𝑎𝑛) pour 𝑓, c’est-à-dire tel que 

𝑑(𝑎0,𝑎1,…,𝑎𝑛)(𝑃𝑛, 𝑓) soit majorée par une suite qui tend vers 0 quand 𝑛 tend vers +∞. On verra que ce (𝑛 + 1) − 𝑢𝑝𝑙𝑒𝑡 

est indépendant de 𝑓.  

 Cela est très utile en physique, notamment pour les éphémérides astronomiques où l’on a besoin de réajuster 

une régression par exemple.  

 

1)  On pose 𝑓: 𝑥 ↦
2𝑥+3

1+𝑥2 pour 𝑥 ∈ [−1; 1]. Déterminer 𝑑(−1,0,1)(𝑃2, 𝑓). 

 2)  Démontrer que :  

∀(𝑎0, 𝑎1, … , 𝑎𝑛) ∈ [−1; 1]𝑛+1 𝑎𝑣𝑒𝑐 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑛, ∃! 𝑃𝑛 ∈ ℝ𝑛[𝑋] 𝑡𝑒𝑙 𝑞𝑢𝑒 ∀𝑖 ∈ ⟦0; 𝑛⟧, 𝑃𝑛(𝑎𝑖) = 𝑓(𝑎𝑖)  
 

Dans toute la suite on pose :  

𝑆(𝑎0,𝑎1,…,𝑎𝑛)(𝑋) = ∏(𝑋 − 𝑎𝑖)

𝑛

𝑘=0

 

De plus on pose 𝑃𝑛 ∈ ℝ𝑛[𝑋] l’unique polynôme tel que :  

∀𝑖 ∈ ⟦0; 𝑛⟧, 𝑃𝑛(𝑎𝑖) = 𝑓(𝑎𝑖) 

Enfin on pose :  

𝜙𝜆: 𝑥 ↦ 𝑓(𝑥) − 𝑃𝑛(𝑥) − 𝜆𝑆(𝑎0,𝑎1,…,𝑎𝑛)(𝑥) 

 a) Démontrer que : 

∃𝜆 ∈ ℝ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∃𝑡𝜆 ∈ [−1; 1]\{𝑎0, … , 𝑎𝑛} 𝑡𝑒𝑙 𝑞𝑢𝑒 𝜙𝜆(𝑡𝜆) = 0 

 b) Montrer que 𝜙𝜆 s’annule 𝑛 + 2 fois sur [−1; 1]. 

 c) En déduire que 𝜙𝜆
(𝑛+1) s’annule au moins une fois sur [−1; 1]. 

 d) Déterminer 𝜙𝜆
(𝑛+1)

 en fonction de 𝑓(𝑛+1), 𝑛 𝑒𝑡 𝜆. 

 e) En déduire qu’il existe 𝑎 ∈ [−1; 1] tel que :  

𝑓(𝑡𝜆) − 𝑃(𝑡𝜆) =
𝑓(𝑛+1)(𝑎)

(𝑛 + 1)!
𝑆(𝑡𝜆) 

3)  a) En déduire que :  
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∀𝑥 ∈ [−1; 1], |𝑓(𝑥) − 𝑃(𝑥)| ≤
‖𝑓(𝑛+1)‖

∞

(𝑛 + 1)!
|𝑆(𝑎0,𝑎1,…,𝑎𝑛)(𝑥)| 

 b) Pour quelles valeurs de (𝑎0, … , 𝑎𝑛) ∈ [−1; 1]𝑛+1 la quantité ‖𝑆(𝑎0,𝑎1,…,𝑎𝑛)‖
∞

 est-elle minimale ?  

On note (𝑡0, … , 𝑡𝑛) ce (𝑛 + 1) − 𝑢𝑝𝑙𝑒𝑡 et 𝑃 le polynôme associé 

 c) En déduire que :  

‖𝑃 − 𝑓‖∞ ≤
‖𝑓(𝑛+1)‖

∞

(𝑛 + 1)!
×

1

2𝑛−1
 

 

 


