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Correction Fiche TD 17
Polynomes

Partie A : Degré d’un polynéme

Exercice A.1 : Déterminer tous les polyndmes tels que :
P'(X)? = 4P(X)

On raisonne tout d’abord sur le degré. On sait que :
deg(P') = deg(P) — 1si P # cste
1 cas : Si P = cste
Ona:
P=cste=P =0
On a donc :
{P’(X)2 =4P(X) P=0
P = cste
Donc le polyndme nul est le seul polyndme constant qui vérifie la relation.
2iéme ¢ag : deg(P) > 0
On pose : deg(P) =n > 1.
On a donc :
P'(X)2=4P(X) = 2(n—1)=n
=n=2
On pose :
P(X) = aX? + bX + cavec (a,b,c) € R* X R?
On en déduit donc que :
P’'(X)? = 4P(X) = (2aX + b)? = 4aX? + 4bX + 4c
Par identification on obtient :
{4ab =4b
b? = 4c

a=1
:{bz — 4c cara+ 0
On en déduit donc que :
P(X) =0
P’'(X)% = 4P(X) & ou b2
P(X) =X2+bX+Z

Exercice A.2 : Déterminer tous les polyndmes tels que :
X2+ 1DP"(X)—-6P(X) =0

On raisonne la encore sur le degré.
1¢ cas : Si P = cste
Ona:
P=cste=P"'=0
On a donc :
2 n —
{(X + 1)P (X)—6P(X)—0:P:O
P = cste
Donc le polyndme nul est le seul polyndome constant qui vérifie la relation.

2itme cag : deg(P) = 1
On a:

deg(P) =1 = P"(X) = 0 = P(X) = 0 (Contradiction)
Donc aucun polyndme de degré 1 n’est solution.
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3iéme cas : deg(P) > 1
On pose : deg(P) = n > 1. On pose a,, son coefficient dominant.
On a donc :
X2+ 1DP'"X)—-6PX)=0=n(n—1)a,—6a,=0=n’-n—-6=0(cara, # 0) =>n=3
On pose P(X) = a3X3 + a,X? + a;X + a,
On a alors :
(X2 + 1)P"(X) — 6P(X) = (X% + 1)(6a3X + 2a,) — 6(azX3 +a,X? + a; X + a,)
= —4a,X? + 6(az —a;)X + 2a, — 6a,
On en déduit donc que :
{(X2 + 1DP"(X) —6P(X) =0 {az =a,=0
s
deg(P) =3 az = a;
On en déduit donc que :
2 " —
{(X + 1)(11)eg(();))_=6§ X)=0_ Ja; € C,P(X) = asX(X? + 1)
On en déduit donc que :
X2+ 1)P"(X) —6P(X) =0 & a3 € C,P(X) = a3X(X? + 1)

Exercice A.3 : Montrer que :

n
vn € N,Z (E) 3k(1 — X)3n-2kxk = (1 — x3)n
k=0

11 suffit de voir que :
n

n
n n
vn € N, z (k) 3k(1 _ X)3n—2kxk =, z (n B k) 3n—k(1 _ X)Bn—Z(n—k)xn—k
k=0 k=0

— i (E) 3n—k(1 _ X)n+2an—k

k=0
n

— (1 _ X)n z (E) 3n—k(1 _ X)zkxn—k

k=0
n

= @=0" ) (1) @O -0
k=
=(1- xo)n((1 —-X)? +3X)"

= (1 -1 +X+x2)"
=(1-X3)"

n
n
—Vne N,Z (k) 3k(1 — X)3n-2kyk = (1 — X3)n
k=0

Exercice A.4 : Déterminer tous les polyndmes de R5[X] tel que :
P(0) = 1,P(1) = 0;P(—1) = —2etP(2) = 4

On voit que I’on peut d¢ja factoriser P par (X-1) :

PX) = (X—1)Q(X) avec Q € R,[X]
On a donc :

Q(X) =aX?+bX+c

Deplusona:

P0O)=—Q0)=—-c=1=c=-1
Deplusona:

P(2)=Q(2)=4a+2b—-1=4=4a+2b=5
Enfinona:
P(-1)=-2Q(-1)=-2(a—-b—-1)=-2
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On a donc :
a—b=2
On en déduit donc que :
QX) = Ex2 —lx -1
2 2
On a donc :

PX)=(X-1) GXZ - %x - 1)

Exercice A.5 : Déterminer le degré de :
P(X) = (X2 +1)" —2X2" + (X2 —1)"

Il suffit d’utiliser le bindme de Newton :

P(X) = Zn: (E) X2K 4 i (E) (—1)n—kx2k _ px2n
0 k=0

k=
Sin<1,PX)=0
Sin>2,ona:

n-2 n—3

n n
P(X) = XZk 1 (_1)11—1( — Zx2n—4 sz 1 (_1)n—k
> (X ) —axe 3 () o)

On en déduit donc que :
—oosin <1

2 n __ 2n 2 _ ny —
deg((X2 + 1" — 2X2" + (X2 — 1)P) {Zn_4sin0n

Exercice A.6 : On pose :

R[X] = R[X]
q):{P o (2X — 1)P — (X2 +%) p’

a) Déterminer deg(c])(P)) en fonction de deg(P).
b) Résoudre ¢(P) = 1

11 faut distinguer des cas !
1*cas: P=0= &(P) =0 donc deg((l)(P)) = deg(P) = —o0
2¢me ¢ag : Si deg(P) = 2

On a alors :
P(X) =aX?+bX+ca#0
On a donc :
P'(X) =2aX+Db
Donc :

1
®(aX? +bX+c) = (2X—1)(aX? +bX +¢) — (x2 + 5) (2aX + b)

b
=X2(—a+2b—b)+X(2c—b+a)+(—c+§)

=X2(b—a)+X(2c—b+a)+(g—c)

On a alors plusieurs cas de figures ! Si a # b, deg($p(aX? + bX + ¢)) = 2 = deg(P)
Sia=betc=0,deg(dp(ax?>+bX+c)) =0

Sia=b,c# 0,deg(dp(aX?+bX+¢)) =1

3iéme ¢as : Si deg(P) € N\{2}.

On pose a,, le coefficient dominant de P, et n = deg(P)

On a donc :

na, le coefficient dominant de P’.

On voit que (2X — 1)P est de degré n+1 et de coefficient dominant 2a,,.
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De méme (X2 + %) P’ est de degré n+1 et de coefficient dominant na,,.

Comme n # 2, ®(P) est de degré n+1 et de coefficient dominant (2 — n)a,,.
Ainsi on peut dire que :
—oosiP=0
deg(Phi(P)) = {deg(P) + 1 sideg(P) # 2
kaveck € {0; 1} sinon

b) On voit que ®(P) = 1 = deg(P) = 2 d’apres la question précédente.
On pose :

P(X) = aX? + bX + caveca # 0
On sait que a # b = deg($®(P)) = 2. Donc a = b.
c# 0= deg(®(P)) =1.
On a donc c = 0.
On a de plus :

a
®(aX? +aX) = 5

On en déduit donc que :
®(P) =1 P(X) = 2X? +2X

Exercice A.7 : Déterminer tous les polynomes P tel que :
XP(X + 1)P(X — 1) = P(X?)

1¢" cas : P = 0 fonctionne !
2ime ¢as : P # 0. On pose deg(P) = n € N.
On a donc :
deg(XP(X + 1)P(X — 1)) = 2n + 1 etdeg(P(X?)) = 2n
Donc la relation est impossible !

On en déduit donc que :
XP(X+ DP(X—1) = P(X?) & P = Oy

Exercice A.8 : On considére la famille de polyndmes définie par récurrence par :
P(X) =1
P,(X) = 2X
Par1(X) = XPy(X) + 2X?P,-1(X)
Déterminer le coefficient dominant de P,.

11 suffit de voir que :
P,(X) =1 =12%P (X) = 2X = 21X, P,(X) = 4X? = 22X2,P;(X) = 8X3 = 23X%3
On peut alors poser la proposition Q,, suivante :
Qn: P(X) =2"X"
ATTENTION : Il faut faire une récurrence double !

Initialisation : Q, et Q4 sont vraies !
Hérédité : Soit n un entier naturel fixé. On suppose vraies Q, et Q,41. On a alors :

Pn+2(X) = Xpn+1(X) + ZXZPn(X)
— 2n+1Xn+2 + 2n+1Xn+2

— 2n+2Xn+2
Donc Q,,4, est vraies.
Conclusion : Q4 et Q; sont vraies et si Q,, et Q44 sont vraies, alors Q,,, aussi ! D’aprés le principe de récurrence on
a:
vn € N, P,(X) = 2"X"
Ainsi le coefficient dominant est 2.
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Partie B : Divisibilité dans K[X]

Exercice B.1 : Effectuer la division euclidienne de A € C[X] par B € C[X] dans les cas suivants :
AAX)=X3—1etBX)=X+2

DAX) =X*+iX3—iX?+X+1etBX) =X?+iX+1

)AX) =X*+2X3+4X%2+2etBX) =X+ (1 —DX+1+i

a)Ona:
X3—1=X+2)X?-2X+4)—-9
b)Ona:
X+ —iX24+X+1=X2+ X+ D(X2+ (-1-D) +iX+2+i
c)Ona:

X 4+2X34+4x24+2=X2+ (1 -DX+1+D(X2+ 1+ DX+ (1-1)

Exercice B.2 : Déterminer le reste de la division euclidienne de :
P(X) = (cos(a) + Xsin(a))n parB(X) = X2+ 1

On sait que le reste de la division euclidienne de P par B est de degré inférieur ou égal a 1. On pose :
R,X) =a,X+ b,
Le but est donc de déterminer a,, et by,.
Ona:
vn € N, (cos(a) + Xsin(a))n =X?*+1)Q,X) +a,X+b,
On pose X = i. On a alors :
(cos(a) + isin(a))n =e™ =3 j+b,
De méme pour X = —iona:
(cos(a) — isin(a))n =e M= 3 i+b,
On résout le systéme suivant :
e" =a i+b,
{e_ina = —api+ by
On a donc :
2b,, = e’ 4 e7iNa — b = cos(na)
On en déduit alors que :
a, = sin(na)
On a donc :
Vn € N, (cos(a) + Xsin(a))n = (X? + 1)Q,(X) + sin(na) X + cos(na)

Exercice B.3 : A quelle condition sur a, b, ¢ réels le polynome P(X) = X* + aX? + bX + c est-il divisible par X2 +
X+1?

On doit factoriser X? + X + 1 sur C :
2im —2im
X2+X+1=<X—e3 )(X—e 3 )

Pour plus de commodité on pose j = eZlTﬂ.
On en déduit donc que :
P(X) = X* + aX? + bX + c est divisible par X? + X + 1 si et seulement si P(j) = 0 = P(j).
On sait que :
P(G) =j*+aj?+bj+c=0
=aj’+j(b+1)+c=0
= —-a+jlb+1—-a)+c=0
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Comme (a,b,c) € R3, on en déduit que :
b+1-a)3
3(—a+j(b+1—a)+c)=%:0
=b+1=a
De plus on sait que :
b+1—a

9%(—a+j(b+1—a)+c)=—a—T+c=O

= -a—-b—-1+2c=0

= c=acarb+1=a
Deplusona:
P() = 0 est immédiat puisque a,b et ¢ sont des réels.
On en déduit donc que :
P(X) = X* + aX? + bX + c est divisible par X? + X + 1 si et seulementsia = c=b + 1.
On a alors :

X*+axX?+@—-1DX+a=X*+X+1)X?—-X+a)

Exercice B.4 : a) Montrer que :
vP € K[X], (P(X) — X)|(Po(P(X)) — X)
b) En déduire les solutions réels de :
(x2—3x+1)2=3x*>—-8x+2

a) On pose :

n

P(X) = z aE XX

k=0
On a donc :

P(P(X)) —X=P(P(X)) - P(X) + P(X) — X

_ z a Pk — z a XK + P(X) — X

k=0 k=0
n

= 2 a(PX)* = XK) + P(X) — X
k=1
n k-1

=(PX) -X) 2 akz P(X)ixk-1-i | -1
k=1 i=0
Donc P(X) — X divise P(P(X)) — X.
b) On pose :
P(X) — X =3X%2-8X+2
On en déduit donc que :
P(X) = 3X? —7X + 2
On a donc :
P(P(X)) =3(3X*—7X+2)2 - 7(3X* - 7X+2) + 2

Exercice B.5 : Déterminer tous les polynomes P tels que :
P(2) = 6,P'(2) = 1,P"(2) =4etvn>3,PM(2) =0

On sait que :
vn > 3,PM(2) =0
Supposons que :
PAX)#0
On pose deg(P(3)) = n et a, son coefficient dominant. On en déduit donc que :




PO+ (X) =nla,

Or on sait que :

PM+3)(2) = nla, =0
Impossible car a, # 0 etn! # 0.
On en déduit donc que :

P& =0

Donc P € R, [X].
On pose :

P(X) =aX?+bX +c
On a alors d’apres les informations de 1’énoncé :

4a+2b+c=6 1
4a+b=1 =a=5,b=—1,c=6
. 2a=1

Donc P(X) = 5XZ -X+6
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| Exercice B.6 : Effectuer la division euclidienne de X2" — X2 + 1 par X? — X

Ona:

(X2 — X2+ 1) = (X2 — X)Q(X) + a,X + b,

PourX=0ona:
1=b,
DepluspourX=1ona:
1=a,+b,
On en déduit donc que :
XM —X2+1)=X>-X)QX)+1
= X" - X% = (X2 -X)QX)

= X?~1 — X = (X — 1)Q(X) par intégrité de R[X]

= X(X?"2-1)=X-1QX)

Or on sait que :
2n-3

VvneEN ,Nn>2X"2-1=(X-1) XK

k=0

On en déduit donc que :
2n-3

Q(X) — Xk+1

2n-3
:in—X2+1:(X2—X)<Z Xk+1>+1

Exercice B.7 : On pose :

k=0
2 =21
M= ( 2 -3 2)
-1 2 0
1) Calculer M2 + 2M — 31;.
2) En déduire M™ pour tout entier naturel n.
3) On pose les suites (uy), (vy) et (wy,) tels que :
Upt1 = 2Up — 2V, + Wy
Vn €N, [Vnﬂ = 2uy, — 3v, + 2w,
Wnt1 = —Up +2vy
Déterminer une formule explicite de (u,,) en fonction de n.

1)Ona:
M2 4+ 2M —3I; = 04




2) On cherche le reste de la division euclidienne de X" par X% + 2X — 3.
On sait que le reste R, est de degré inférieur ou égale a 1 :

R, =a,X+ b,
On a donc :

X" = (X2 4 2X — 3)Q,(X) + a,X + by,

On sait que :
X2+2X-3=X-1X+3)
On remplace dans la division euclidienne X par 1 :
A=a,+b,
De méme avec X = =3 :
(=3)"=-3a, +b,
On résout alors le systéme :
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ap+by=1 1-(=3)" 3+ (=3)"
{ B hn=—a,=———cetbh, =———
—3a, + b, =(-3) 4 4
On en déduit donc que :
1—-(=3)" 3+ (=3)"
vn € N, X" = (X2 +2X-3)Q,(X) + (4 ) X+ (4 )

3) On sait que :
Upt1 = 2Up — 2V + Wy Un+1 2
vn € N{vpi1 = 2uy —3vp + 2w, © VnEN,| Vn+1 | =( 2

Wpiq = —Up + 2vy Wn+1 -1

On en déduit donc que :
Up Up
VHEN(VH):W(VO)
Wn Wo

Or on sait que :

—2 1\ /Un Up
-3 2 Vn =M Vn
2 0/ \Wp Whn

1-(=3)" 3+(=3)"
vn € N,M" = (M? + 2M — 313)Q, (M) + (4 ) M+ (4 ) I3

1—-(-3)" 3+(=3)"

5—-(-3)" (-3)"—-1 1—-(-3)"
4 2 4

_|1-(=3)" L 1=(=3)"
— - ¥
\(—3)n —1 1-(=3)" 3+ (—3)n/
4 2 4
On en déduit donc que :
5—(=3)" -3)" -1 1—(=3)"
vn € N,u, = (4 )u0+( )2 Vo + (4 )WO

Partie C : Racine d’un polynome

| Exercice C.1 : Montrer que (X — 1)? divise X?" — X?"~1 — X + 1 pour tout n > 1.

On pose :
P,(X) =X?n —x20"1 X +1
Ona:

P.(1)=0etP/(1)=2n—(2n—1)—1=0

Donc (X — 1)? divise X?" — X?"~1 — X + 1 pour tout n > 1.
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Exercice C.2 : Soit n entier naturel. On pose :

Montrer que toutes les racines de P sont simples.

On raisonne par 1’absurde. Supposons que P admette une racine double @ € C. On a alors :

n Kk n—1 k
— o — ! — o —
P(a)—ZE—OetP((x)—ZE—O
k=0 k=0
On en déduit que :

aTl
—=0=a=0
n!

Or P(0) = 1. Donc cela est impossible.
Ainsi P n’admet pas de racine double !
Toutes les racines de P sont simples.

Exercice C.3 : Soit P un polynéme non nul a coefficient réel. Parmi les propositions suivantes, lesquelles sont vraies ?
a) Si P est de degré impair, alors P admet une racine réelle.

b) Si P admet une racine réelle, alors P’ admet une racine réelle.

¢) Si P admet deux racines réelles, alors P’ admet une racine réelle.

d) Si P’ est scindé a racines simples, alors P est scindé a racines simples.

e) Si P est scindé a racines simples, alors P’ est scind¢ a racines simples.

) Si a € R est racine de P de multiplicité exactement m > 1, alors a est racine de P’ de multiplicité exactement m — 1

a) VRAI! En calculant les limites en +o0 et —oo de P qui sont opposées puis en utilisant le théoréme des valeurs
intermédiaires.
b) FAUX ! Contre-exemple : P(X) = X = P'(X) = 1 n’admet aucune racine réelle !
c) VRAI ! 1l suffit d’appliquer le théolréme de Rolle puisque :

A(x1,%2) € R P(x1) = P(x3) =0
Ainsi, comme P est dérivable, on peut appliquer le théoréme de Rolle :

3c € |x1,x,[,P'(c) =0

Remarque : Si P admet une racine double réelle le résultat reste vrai car :

3Q € RIX], P(X) = (X — )?Q(X)
On a donc :

PX)=2X-a)QX)+ (X —a)?Q'(X) = P'(a) =0
P’ admet la méme racine que P !
d) FAUX !
11 suffit de prendre :
PX)=X3-X-6

P’(X)=3X2—1=3<X—§><X+g>

On a donc :

Donc P’ est scindé a racine simple.
Cependant P n’est pas scindé a racine simple car :
PX)=X3-X-6=X-2)(X?+2X+3)
e) VRAI ! On pose deg(P) = n et (x4, ..., x,,) les racines de P, rangées dans I’ordre croissant :
X1 < Xp < < Xp
On a alors :
P(xy) = =P(x,) =0
11 suffit ensuite d’appliquer le théoréme de Rolle n — 1 fois.
On a alors n — 1 racines simples de P’. Comme P’ est de degré n — 1, P’ est scindé a racines simples !
f) VRAI ! 1l suffit d’utiliser la caractérisation :
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P(a)=P'(a)=P"(a) = =P V(@) =0et PM(a) #0

Exercice C.4 : On pose pour tout entier naturel n :
Ly X) =

1) Déterminer le coefficient dominant de L.
2) Calculer L, (1) et L,(—1).
3) Montrer que L,, admet n racines réelles distinctes appartenant a | — 1; 1[.

1
2%n!

(X2 = )M

1) On sait que :

n

X*-1D" = Z (n) X* =1+nXx?+ (;) X* 4 -4 nX?n"2 4 x20

ok |
nryv2 -
= (X2 -1)MH® = % =(@2n)@2n—-1)..(2n— (n+ 1))X" + kZOaka
Or on sait que :
@n@En-1)..(2n—(m+1)) = (an:)!

On en déduit donc que le coefficient dominant de L, est zi“ (znn)_
2) On voit que :
XZ-D"=X-1D"X+ 1"
Ainsi 1 est racine d’ordre n de (X2 — 1)", de méme que -1.
On en déduit donc que :
vk € [0;n—1],P®(1) = P®(-1) =0
On utilise alors la formule de Taylor avec reste intégral :

2n X)
o= T k,(l) X-1DF
, k=0 '
S plo(g
- k!( (x- 1"
k=n
@1
=X-1" k!( )(X e
k=n

Par intégrité de R[X],

On en déduit donc pour X = 1 que :
_ PM(1)

ZTl
n!

On en déduit donc que :
[(X%2 - D"]™(1) = 2™n!

=L,(1)=1
Demémeona:
2n
P (—1
X-D"= Z %(X + 1)k-n
k=n '
On a donc :
PM (-1
(=D
nl

— PM(—1) = (=1)"2"nl
= L,(-D)=(CD"
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3) On pose B, (X) = (X2 —1)™
On montre cette propriété par récurrence.
On pose :

vn e N, Vk € [1,n] P(k): "I —1<x; < < x, < 1Vi € [1;n] tel que P@(x;) =0"
Initialisation : Soitn = 0. On a alors :

PV (X) = 2nX (X2 — 1)"!
Donc la propriété est vraie car P,El) admet une racine, 0, dans ’intervalle |—1; 1].
Hérédité : Soit k € [[1,n], fixé. On suppose vraie P (k) est vraie.
On veut prouver que la propriété est vraie pour k + 1 < n. Donc k < n — 1. On sait donc deux choses :
1) D’apres la question précédente :
vk<n—1,PF 1) =pPF(-1)=0
2) D’apres 1’hypothése de récurrence :
3-1<x < <x,<1Vi€ [1;n] tel que PP (x;) =0

On a donc k + 2 racines disctintes de P,fk) :
On applique alors k + 1 fois le théoréme de Rolle et on obtient les k + 1 racines de P,gkﬂ)
Donc la propriété est héréditaire.
Conclusion : On conclut d’apres le principe de récurrence.
On en déduit donc que :

comprises entre O et 1.

P,fn) admet au moins n racines distinctes dans Iintervalle | — 1; 1[.
De plus on sait que :

deg(P,) = 2n
On en déduit donc que deg(L,) = n.
On en déduit donc que :
L,, admet n racines réelles distinctes appartenant a | — 1; 1J.

Exercice C.5 : Montrer que X(X + 1)(2X + 1) divise P(X) = (X + )" — X" —2X — 1

11 suffit de voir que 0, —1 et — % sont racines de P.

Exercice C.6 : Déterminer les racines de P(X) = X* — 5X3 + 5X? + 5X — 6 sur C.

On cherche une racine évidente :
P(1)=0
On peut donc factoriser par X — 1 :
PX)=X-1)(X3—4X*+X +6)
On pose :
QX)=X3—-4X>+X+6

Ona:

Q(-1)=-1-4-1+6=0
On peut donc factoriser par X + 1 :

QX)) =X+ 1(X?-5X+6)
Il reste a factoriser :

X2 -5X+6=(X-2)(X-3)
On a donc :

P(X) =X*—-5X3+5X?+5X-6=X-1DX+1D)X-2)(X-3)

Exercice C.7 : Déterminer les racines de X> + 1 sur C.

On résout :
X°4+1=0
X5 =-1
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e X5 =(-1)°
X 5
sS(—) =1
=)
2ikm

= —X=e 5 ,ke[0;4]
On en déduit donc que :

in2k+5
X=e" 5 ke[0;4]

Partie D : Factorisation

Exercice D.1 : Factoriser P(X) = X> + X dans C[X].

Ona:
3

, 2k+1

PX)=X>+X=XX*+1) :Xl_[(X—em—4 )

k=0

Remarque : On résout comme précédemment X* +1 =0

Exercice D.2 : Décomposer en produit de polynomes irréductibles X¢ + 1.

L’énoncé ne nous dit pas si nous devons factoriser X® + 1 sur R[X] ou sur C[X]. Nous allons donc faire les deux !
1 cas : Sur C[X]

On résout :
X+1=0=Xx°=-1
i\ 6
<:>X6=<e6)
6
<X>
=S || — =1
LT
e6
i 2ikm
S X=e6 xe 6 ;k€e[0;5]
. 2k+1
= X=e"6 ,ke[0;5]
On a donc :

5

. 2k+1
et ](e-e)

k=0

2me ¢as : sur R[X]
C’est trés classique ! 11 suffit de « ranger » deux par deux les racines complexes non réelles (ici toutes !) de X® + 1
afin de faire apparaitre un polynome de degré 2 a discriminant négatif'!

Ona:
> 2kl 2 2k et
[ [(e=eme) =] [|(x-ee) (x =)
k=0 k=0
:(XZ—ZCOS(%)X+1)(X2—2c05(%)X+1)(X2—Zcos(%)X+1)

=X0+1=(X2-V3X+1)X?+1D(X?+V3X +1)

Exercice D.3 : Soit n un entier naturel non nul. On pose :

P,(X) = X?" — 2Xcos(8)X™ + 1 o1 8 € R\nZ
1) Factoriser B, dans C[X].
2) En déduire une factorisation de P, dans R[X].

1) 11 suffit de voir que :
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B,(X) = X?" —2Xcos(B)X" +1 = (X2 - 2cos(0) (X™) + 1
On peut faire le changement de variable X™ =Y
On a donc :
P,(X)=Y?—-2cos(B)Y +1
= (¥ =)y - e~
_ (Xn _ eie)(Xn _ e—ie)
Il reste & factoriser X™ — e'? :
On cherche les racines de X™ — e :

) i\
X" =el = (67>

n
X
s (Te) = 1car 6 € R\nZ
en
i0 2ikm
S X=enxe n ke[0;n—1]
.2km+6

e X=e"n ke[0;n—1]
Demémeona:
X" = e—i9
2km—0

o X=e" n ke[0;n—1]

= 2km+8 2kn—6
in—ZXcos(G)X”+1=1_H(X—el n )(X—el n )]
k=0

2) De méme que I’exercice précédent, il faut ordonner les racines complexes avec leur conjugué !

o l.2k7t+0 _l.2k7t+6
in—ZXcos(B)X”+1=1_H(X—e n )(X—e n )]
k=0
n-1

on 5 2k + 6
s X —2Xcos(9)X"+1=1_[<X —ZCOS(T)X+1>
k=0

On a donc :

Exercice D.4 : Déterminer les polynémes P de C[X] tel que P'|P.

Remarque : Si deg(P) € {0; —oo} alors la proposition est fausse car P’=0. Ainsi pour étre candidat il faut que
deg(P) = 1.

Soit P € C[X] tel que deg(P) = 1. Soit a une racine de P. Supposons que @ ne soit pas racine de P’ et que P’'|P.
On a alors :
3Q € C[X],P(X) = P'(X)Q(X) avec P'(a) # 0O
On a alors :
P(a) =P (@)Q(a) =0=Q(a) =0
On a donc :
Q@) =AX —a)avecd#0
On en déduit donc que :
PX) =P (X)AX — a)

On a donc :
P'(X) =P"(X)A(X — a) + AP'(X)
On a donc :
P'(a) =AP' (@) > A=1carP'(a) # 0
On a donc :

PX) =P X)X —a)
Ce qui implique que :
PX)=P"'"X)(X—a)+ P (X)
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Comme Q # 0 on en déduit donc que P"'(X) = 0 par intégrité de C[X] et donc que deg(P) = 1.
Ainsi si P admet une racine qui n’est pas racine de P’, alors le polyndome P est de degré 1, et P’ divise P.

A présent il reste a traiter le cas deg(P) = 2. On pose deg(P) =n > 2.
On a vu précédemment que cela implique que toutes les racines de P sont aussi racines de P’.
On pose m le nombre de racines distinctes de P, ay, ..., a;, les racines de P et 1y, ..., 13y, leur ordre de multiplicité
successives.
On sait que :
aq, -, Ay sont racines de P’ d’ordre de multiplicité r, — 1, ...,7, — 1.
De plus on sait que :
rn+-+n,=degP)et(r; — 1)+ -+ (n, — 1) < deg(P")
On a donc :
rn+o+n,—m<deg(P)—1
On en déduit donc que :
m<1

Comme deg(P) = 2, on en déduit donc que m = 1 car C est algébriquement clos.
Ainsi P admet une unique racine.
On pose alors :

PX)=AX—-a)",n=2
On a alors :

PX)=niX—a)" = P'(X) X%(X —a) =P'(X)QX) = P(X)

Ainsi P’ divise bien P, donc la réciproque est vraie. On en déduit donc que :
{P € C[X],P'|P} ={P € C[X],deg(P) = 1} U {A(X — @)™, (4, a,n) € C* x C x N\{0; 1}

Exercice D.5 : Trouver tous les polynomes tels que :
P(X?) =PX)P(X+1)

1¢" cas : Si P = c est un polynéme constant.
On a alors :
c=c
On en déduit donc que :
c € {0; 1}
2iéme eag: Sideg(P) = 1
On va montrer que les deux seules racines complexes de P sont 0 et 1.
On pose R I’ensemble des racines de P :
R={z€CP(z) =0}
On sait que z est non vide car C est algébriquement clos.
On a alors :
P(z®) =P(z)P(z+1)=0
On en déduit donc que z € R = z? € R.
Par un récurrence triviale on en déduit donc que :
ZER=VneN*z?"€eR
11 faut alors distinguer plusieurs cas car on a potentiellement une infinité¢ de racine, ce qui est impossible car
deg(P) = 1.
o 1*cas:Soitz€R,|z|>1
On a alors : (z2™),en+ la suite composée que de racines de P et tel que :
lirgnlzlzn = +oo

Donc P admet une infinité de racines. Impossible !
o 2fmeeas:SoitzER O0<|z|<1
On a alors : (z2™),cn+ la suite composée que de racines de P et tel que : lim|z|?™ = 0 et Vn € N*, z2™ # 0.
n

Donc P admet une infinité de racines. Impossible !
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On en déduit donc que :
ZER=|z|=10uz=0
On sait donc que :
zER=30€R z=ePouz=0
Siz=e" €R.
On a alors :
P((z—=1)?) =P(z—-1)P(2)=0
= (z—1)*€R
z—1=0
=>{ ou
lz—1] =1
z=1
=>{ ou
(1 —cos(8))? +sin?(0) =1
z=1
:{ ou
cos(6) =1
=z=1
Ainsi les seules racines de P sont 0 et 1.

On pose alors :
PX)=2X*¥X-1D¥,2€ecC
On a alors :
P(X?) = AX2k(x2 — 1)¥'
POOP(X + 1) = 22X+ (X + Dk (X — 1)¥
Par identification on obtient :

12 =2
2k =k +k'
k=k

On en déduit donc que :
P(X?) = P(X)P(X + 1) & P = {Ogpx } U {(X2 — X)*; k € N}

Partie E : Relation coefficients racines

Exercice E.1 : a) Soit n € N. Montrer qu’il existe un unique P € C[X] tel que :

1 1
VZE(C*,P(z+—)=Z”+—n
z z

b) Montrer alors que toutes ses racines sont réelles, simples et dans I’intervalle [-2 ;2].

a) Il y a deux choses a démontrer dans cette question, 1’existence et 1’unicité.
1) Montrons I’unicité. On suppose qu’il existe P; et P, deux polyndomes de C[X] tels que :

1 1
vz € C', P, <Z+—) =P, (z+—)
z z

On pose :
H=P —P,
On a donc :
1 n?+1
VnEN*,H(n+—)=H =0
n n
Or on sait que :
on?+1
lim = +oo

n n
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On en déduit donc que la suite u, = n + - admet une infinité de valeurs distinctes. Donc H admet une infinité de

racines. Donc H = O¢[x;
2) Montrons a présent 1’existence.
Un rapide calcul montre que :
Py(X) = 2 convient
P;(X) = X convient
P,(X) = X? — 2 convient.
P3(X) = X3 — 3X convient.
On peut donc conjecturer que :
Priz = XPpy1 — Py
On pose la proposition suivante :

P, et P, .1 existe
Priz = XPny1 — By
Initialisation : vrai pour n = 0 d’apres les calculs précédents.

Hérédité : Soitn € N fixé. On suppose vraie :

vn € N,P(n): {

Poyoy =XPyiq — Py
On pose :

QX) = XPpy2(X) — Ppyr1 (X)
On a donc que Py, et P, 4 existe. De plus on a :

. 1 1 1 1
vz eC ,Q(z+;>=(z+E>Pn+2(z+E)—Pn+1(z+E>

1 1 1
— 2 1
= (22 (4 ) = (7 4 o)

1

Zn+3

- Zn+3 +

On a donc :
Vz € C*,Q = P,,3 par unicité
Conclusion : On conclut d’apres le principe de récurrence.
b) On sait que Py = 2 et P; = X, P4» = XP,+1 — B,. On peut donc démontrer par récurrence que :
vn € N,deg(P,) =n
La ici il faut faire une récurrence double !!
Initialisation : La proposition est vraie au rang 0 et 1 d’apres les calculs précédents.
Hérédité : Soit n un entier naturel fixé. On suppose la proposition vraie au rang n et n + 1. On a donc :
deg(P,) =netdeg(Ppyq) =n+1
On en déduit donc que :
deg(XPpiq —B) =n+2
On a donc :
deg(Ppy2) =n+2
Ainsi la proposition est héréditaire.
Conclusion : On conclut d’apres le principe de récurrence.

Ainsi P, admet exactement n racines complexes, comptées avec leur ordre de multiplicité. Il reste a démontrer que ces
racines sont simples et comprises dans I’intervalle |—2; 2].
On fixe n. On pose z = e'?. On a alors :

. 1 .
Pn (e‘g + eTG) = ean +

On pose x = 2 cos(08). On a donc :

onie P, (2 cos(8)) = cos(nd)

Vx € [-2;2],B,(x) = cos <narccos (;))

On résout :
cos | narccos (E) = 0 © arccos (f) - + k_n k€EZ
2/ 2/ " 2n n’

On sait que :
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Vx € [—1;1] arccos(x) € [0; 7]
On résout :

Tk
0<—+—<nm
2n n

[EnN

S0<=-+k<n

[\

©0<k<n-1
On en déduit que :

m  kn
P(Zcos(—+—)>=0,\7’k€[[O;n—l]]
2Zn n
On pose :
m  km
vk e [O;n—1],u, = —+—
2Zn n

On a donc d’apres les calculs précédents :
vk € [0;n — 1], u; € [0; ]
Deplusona:
O<uyg<uy; <--<uy1<m

. T km
On a donc nracines de P, : a; = 2 cos (E + 7)

Comme le degré de P, est n, on a toutes les racines. Qui sont bien simples (cosinus restreint sur [0, 7] est une
bijection !), on a toutes les racines de P,.

Exercice E.2 : On pose un polyndme unitaire de Z[X] (C’est-a-dire que tous les coefficients de P sont dans Z) :
n-1
PX)=X"+ ) a,X¥,ouvk € [0;n—1],a, €Z
k=0
a) Montrer que si P admet une racine dans Z, alors cette racine divise a;.
b) Les polyndmes P(X) = X3 — X? — 109X — 11 et Q(X) = X% + X5 + 1 ont-ils des racines dans Z.

a) Soit a € Z une racine de P. On a donc :

n-1
Pl@=a+ ) apa®=0
k=0
n-1
= a(an_l +Zakak 1> +ay,=0
k=1
n-2
=a,=—a (0{”‘1 + 2 Apsr @ )
k=0

Donc a divise a.
b)Ona:P(X) =X3—X?—-109X — 11
On en déduit donc que P € Z[X]. On en déduit donc que P admet une racine a dans Z si et seulement si a divise 11.
On a donc 4 candidats possibles : {1; —1;11; —11}.
11 suffit alors de calculer :
P(1) = —-120,P(—1) =96,P(11) =0
Donc P admet une racine dans Z.

On fait de méme avec Q(X) = X' + X5 + 1 = Q(1) = 3 et Q(—1) = 1. Donc Q n’admet pas de racine dans Z.
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Exercice E.3 : Soit n un entier naturel non nul. On pose :

PLX)=X+D)"-&X-1D"

1) Factoriser P, sur C.
2) En déduire que :

1) On résout :

PX)=0= X+D"-X-1D"=0

On a P,(1) = 2™ donc 1 n’est pas racine de P,(X).Ona:

Pn(X)=0
X+ 1\"
= (3 -
X—-1
X+1 2ikm
@mze n ;kE[[l;n—l]]
On voit que k = 0 n’est pas solution !
On a donc :
2ikm 2ikm
S X+ 1=Xen —e
2ikm
en +1
A = 2ikm
en —1
ik _lkm
en +e n
S X= ikm ikm
en —e n
cos(kn)
(:»Xz—l— kel;n—
Sln(kn)
n
1
@X=—kn_,k6[[1;n—1]]
tan (57)

On en déduit donc que :
n-1

P,(X) =(X+1)"—(X—1)”=2n1_[ X”;n

k=1
b) Il suffit de prendren = 2p + 1 et X = 0. On a alors :

Deplusona:
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Or on remarque que :

e M)

p
- 1_[ tan ((2p -|1- 1— k)n)

2p+1

On a donc :

14
[l )| =5
kmt C2p+1

=1 \tan (3557)

? 1 1 1
:>1_[ kt \ | |2p+1 apr1
k=1 tan( ) p 2p+1

2p+1

Exercice E.4 : Soient @, 8,y les racines de P(X) = X3 — 5X2 + 6X — 1. Déterminer la valeur exacte de :
1 1 1

1—a+1—ﬁ+1—y

11 suffit d’utiliser les relations coefficients racines.
Soient a, 8,y les racines complexes de P. Comme le coefficient dominant de P est 1 ona :
X3-5X2+6X-1=X-a)X-BX-y)
=X3—(a+B+y)X?>+ (af + ay + By)X — aBy
Or on sait que :
oot ot 1-p0-N+0-a)0-n+1 -1 -a)
l-a 1= 1-y 1-pHA-ya-a)
_3-By+ay+ap)+2(a+p+y)
1-pHA-i-a

De la relation
X3-5X?2+6X—-1=X-a)X-BX—y)
On obtient en posant X = 1 :

A-pa-yi-a)=1

1 N 1 N 1
l—-a 1-p 11—y

On en déduit donc que :

= -8
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Exercice E.5 : Soit n un entier naturel et & € R. On considére le polynome P(X) = (X + 1)" — e2in0,

1) Factoriser P dans C[X].
2) En déduire les valeurs de :

1) Il suffit de déterminer les racines de P sur C :
PX) =0 (X +1)" = e?m?

X+ 1\"
= (m) =1
X+1 2ikm
©—=en Lk eo;n—1]
616

o x = e?ilkare) _q = ei(anw) X 2isin (k_1T + 9)
n

On en déduit donc que :

n-1
. ikm . kmt
X+ 1" — e?in® = <X —en "9 % 2isin (T + 9))
k=0
2) On pose a présent X = 0 on obtient :
n-1 n—1
: : km ikm
1 — e = (—1)"elnf2nin 1_[ sin (e + ;) en
k=0 k=0
Or on sait que :
n-1
ikt iT wn— im(n—-1)
en =enikok — g7 = (j)n-1
k=0
On a donc :
n—1
. . .2 _1 . kn
2isin(n@) = (—1)" x 2" x i“" sin (9 + —)
k=0 "
-1
T ) km sin(n0)
= sin (6 + ?) = W
k=0
2ikm
Pour la question 2 il suffit de voir que les | e n ) sont les racines de 1 + X + «-+ + X1,
1<ksn-1
On a donc :
n—1
2ikm
14X+ 4Xx01 :H(X—e n )
k=1
11 suffit ensuite de remplacer X = 1 et on obtient :
n-1 . n-1 n-1 n-1 n-1
2ikm kTt ikm ikt
n= 1—[ <1 —en ) = 1_[ —2isin (—) 1_[ en = (—1)ntjn-ipn-1 en sin(
k=1 k=1 N ket k=1 k=1
Or on sait que :
n-1 .
ik T wn— im/n(n-1)
elTT[ = elﬁnzlﬁik = eH(T) =it
k=1
On en déduit donc que :
n-1




