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Correction Fiche TD 17 

Polynômes 

 

Partie A : Degré d’un polynôme 

 

Exercice A.1 :  Déterminer tous les polynômes tels que :  

P′(X)2 = 4P(X)  

 

On raisonne tout d’abord sur le degré. On sait que :  

deg(P′) = deg(P) − 1 si P ≠ cste 

1er cas : Si 𝐏 = 𝐜𝐬𝐭𝐞 

On a : 

P = cste ⟹ P′ = 0 

On a donc :  

{P
′(X)2 = 4P(X)
P = cste

⟹ P = 0 

Donc le polynôme nul est le seul polynôme constant qui vérifie la relation. 

2ième cas : 𝐝𝐞𝐠(𝐏) > 𝟎 

On pose : deg(P) = n ≥ 1. 

On a donc :  

P′(X)2 = 4P(X) ⟹ 2(n − 1) = n 

⟹ n = 2 

On pose :  

P(X) = aX2 + bX + c avec (a, b, c) ∈ ℝ∗ × ℝ2 

On en déduit donc que : 

P′(X)2 = 4P(X) ⟹ (2aX + b)2 = 4aX2 + 4bX + 4c 
Par identification on obtient :  

⟹ {
4ab = 4b
b2 = 4c

 

⟹ {
a = 1
b2 = 4c

 car a ≠ 0 

On en déduit donc que :  

P′(X)2 = 4P(X) ⟺ {

P(X) = 0
ou

P(X) = X2 + bX +
b2

4

 

 

Exercice A.2 : Déterminer tous les polynômes tels que : 

(X2 + 1)P′′(X) − 6P(X) = 0  

 

On raisonne là encore sur le degré. 

1er cas : Si 𝐏 = 𝐜𝐬𝐭𝐞 

On a : 

P = cste ⟹ P′′ = 0 

On a donc :  

{(X
2 + 1)P′′(X) − 6P(X) = 0

P = cste
⟹ P = 0 

Donc le polynôme nul est le seul polynôme constant qui vérifie la relation. 

2ième cas : 𝐝𝐞𝐠(𝐏) = 𝟏 

On a:  

deg(P) = 1 ⟹ P′′(X) = 0 ⟹ P(X) = 0 (Contradiction) 
Donc aucun polynôme de degré 1 n’est solution.  
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3ième cas : 𝐝𝐞𝐠(𝐏) > 𝟏 

On pose : deg(P) = n ≥ 1. On pose an son coefficient dominant. 

On a donc :  

(X2 + 1)P′′(X) − 6P(X) = 0 ⟹ n(n − 1)an − 6an = 0⟹ n2 − n − 6 = 0 (car an ≠ 0) ⟹ n = 3 

On pose P(X) = a3X
3 + a2X

2 + a1X + a0 

On a alors :  

(X2 + 1)P′′(X) − 6P(X) = (X2 + 1)(6a3X + 2a2) − 6(a3X
3 + a2X

2 + a1X + a0) 

= −4a2X
2 + 6(a3 − a1)X + 2a2 − 6a0 

On en déduit donc que :  

{
(X2 + 1)P′′(X) − 6P(X) = 0

deg(P) = 3
⟺ {

a2 = a0 = 0
a3 = a1

 

On en déduit donc que :  

{
(X2 + 1)P′′(X) − 6P(X) = 0

deg(P) = 3
⟺ ∃a3 ∈ ℂ

∗, P(X) = a3X(X
2 + 1) 

On en déduit donc que :  

(X2 + 1)P′′(X) − 6P(X) = 0 ⟺ ∃a3 ∈ ℂ, P(X) = a3X(X
2 + 1) 

 

Exercice A.3 : Montrer que :  

∀n ∈ ℕ,∑(
n

k
)

n

k=0

3k(1 − X)3n−2kXk = (1 − X3)n 

 

Il suffit de voir que :  

∀n ∈ ℕ,∑(
n

k
)

n

k=0

3k(1 − X)3n−2kXk =,∑(
n

n − k
)

n

k=0

3n−k(1 − X)3n−2(n−k)Xn−k 

= ∑(
n

k
)

n

k=0

3n−k(1 − X)n+2kXn−k 

= (1 − X)n∑(
n

k
)

n

k=0

3n−k(1 − X)2kXn−k 

= (1 − X)n∑(
n

k
)

n

k=0

(3X)n−k((1 − X)2)k 

= (1 − X)n((1 − X)2 + 3X)n 

= ((1 − X)(1 + X + X2))
n
 

= (1 − X3)n 

⟹∀n ∈ ℕ,∑(
n

k
)

n

k=0

3k(1 − X)3n−2kXk = (1 − X3)n 

 

Exercice A.4 : Déterminer tous les polynômes de ℝ3[X] tel que :  

P(0) = 1; P(1) = 0; P(−1) = −2 et P(2) = 4 

 

On voit que l’on peut déjà factoriser P par (X-1) :  

P(X) = (X − 1)Q(X) avec Q ∈ ℝ2[X] 
On a donc :  

Q(X) = aX2 + bX + c 
De plus on a :  

P(0) = −Q(0) = −c = 1 ⟹ c = −1 

De plus on a :  

P(2) = Q(2) = 4a + 2b − 1 = 4 ⟹ 4a + 2b = 5 

Enfin on a :  

P(−1) = −2Q(−1) = −2(a − b − 1) = −2 
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On a donc :  

a − b = 2 

On en déduit donc que :  

Q(X) =
3

2
X2 −

1

2
X − 1 

On a donc :  

P(X) = (X − 1) (
3

2
X2 −

1

2
X − 1) 

 

Exercice A.5 : Déterminer le degré de :  

P(X) = (X2 + 1)n − 2X2n + (X2 − 1)n 

 

Il suffit d’utiliser le binôme de Newton :  

P(X) = ∑(
n

k
)X2k

n

k=0

+∑(
n

k
) (−1)n−kX2k

n

k=0

− 2X2n 

Si n ≤ 1, P(X) = 0 

Si n ≥ 2, on a :  

P(X) = ∑(
n

k
)X2k(1 + (−1)n−k)

n−2

k=0

= 2X2n−4 +∑(
n

k
)X2k(1 + (−1)n−k)

n−3

k=0

 

On en déduit donc que :  

deg((X2 + 1)n − 2X2n + (X2 − 1)n) = {
−∞si n ≤ 1
2n − 4 sinon

 

 

Exercice A.6 : On pose :  

ϕ: {
ℝ[X] → ℝ[X]

P ↦ (2X − 1)P − (X2 +
1

2
)P′

 

a) Déterminer deg(ϕ(P)) en fonction de deg(P). 

b) Résoudre ϕ(P) = 1 

 

Il faut distinguer des cas !  

1er cas :  𝐏 = 𝟎 ⟹   Φ(P) = 0 donc deg(ϕ(P)) = deg(P) = −∞ 

2ième cas : Si 𝐝𝐞𝐠(𝐏) = 𝟐 

On a alors :  

P(X) = aX2 + bX + c, a ≠ 0 

On a donc :  

P′(X) = 2aX + b 

Donc :  

Φ(aX2 + bX + c) = (2X − 1)(aX2 + bX + c) − (X2 +
1

2
) (2aX + b) 

= X2(−a + 2b − b) + X(2c − b + a) + (−c +
b

2
) 

= X2(b − a) + X(2c − b + a) + (
b

2
− c) 

On a alors plusieurs cas de figures ! Si a ≠ b, deg(ϕ(aX2 + bX + c)) = 2 = deg(P) 

Si a = b et c = 0, deg(ϕ(aX2 + bX + c)) = 0 

Si a = b, c ≠ 0, deg(ϕ(aX2 + bX + c)) = 1 

3ième cas : Si 𝐝𝐞𝐠(𝐏) ∈ ℕ\{𝟐}. 
On pose an le coefficient dominant de P, et n = deg(P) 

On a donc :  

nan le coefficient dominant de P′. 

On voit que (2X − 1)P est de degré n+1 et de coefficient dominant 2an. 
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De même (X2 +
1

2
) P′ est de degré n+1 et de coefficient dominant nan. 

Comme n ≠ 2, Φ(P) est de degré n+1 et de coefficient dominant (2 − n)an. 

Ainsi on peut dire que :  

deg(Phi(P)) = {

−∞ si P = 0
deg (P) + 1 si deg(P) ≠ 2

k avec k ∈ {0; 1} sinon
 

b) On voit que Φ(P) = 1 ⟹ deg(P) = 2 d’après la question précédente. 

On pose :  

P(X) = aX2 + bX + c avec a ≠ 0 

On sait que a ≠ b ⟹ deg(Φ(P)) = 2. Donc a = b. 

c ≠ 0 ⟹ deg(Φ(P)) = 1. 

On a donc c = 0. 

On a de plus :  

Φ(aX2 + aX) =
a

2
 

On en déduit donc que :  

Φ(P) = 1 ⟺ P(X) = 2X2 + 2X 

 

Exercice A.7 : Déterminer tous les polynômes P tel que :  

XP(X + 1)P(X − 1) = P(X2) 

 

1er cas : P = 0 fonctionne ! 

2ième cas : 𝐏 ≠ 𝟎. On pose deg(P) = n ∈ ℕ. 

On a donc :  

deg(XP(X + 1)P(X − 1)) = 2n + 1 et deg(P(X2)) = 2n 

Donc la relation est impossible !  

 

On en déduit donc que :  

XP(X + 1)P(X − 1) = P(X2) ⟺ P = 0𝕂[X] 

 

Exercice A.8 : On considère la famille de polynômes définie par récurrence par :  

{

P0(X) = 1

P1(X) = 2X

Pn+1(X) = XPn(X) + 2X
2Pn−1(X)

 

Déterminer le coefficient dominant de Pn.  

 

Il suffit de voir que :  

P0(X) = 1 = 2
0, P1(X) = 2X = 2

1X, P2(X) = 4X
2 = 22X2, P3(X) = 8X

3 = 23X3 
On peut alors poser la proposition Qn suivante :  

Qn ∶  Pn(X) = 2
nXn 

ATTENTION : Il faut faire une récurrence double !  

 

Initialisation : Q0 et Q1 sont vraies !  

Hérédité : Soit n un entier naturel fixé. On suppose vraies Qn et Qn+1. On a alors :  

Pn+2(X) = XPn+1(X) + 2X
2Pn(X) 

= 2n+1Xn+2 + 2n+1Xn+2 

= 2n+2Xn+2 
Donc Qn+2 est vraies. 

Conclusion : Q0 et Q1 sont vraies et si Qn et Qn+1 sont vraies, alors Qn+2 aussi ! D’après le principe de récurrence on 

a :  

∀n ∈ ℕ, Pn(X) = 2
nXn 

Ainsi le coefficient dominant est 2n. 
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Partie B : Divisibilité dans 𝕂[𝐗] 

 

Exercice B.1 : Effectuer la division euclidienne de A ∈ ℂ[X] par B ∈ ℂ[X] dans les cas suivants :  

a) A(X) = X3 − 1 et B(X) = X + 2 

b) A(X) = X4 + iX3 − iX2 + X + 1 et B(X) = X2 + iX + 1 

c) A(X) = X4 + 2X3 + 4X2 + 2 et B(X) = X2 + (1 − i)X + 1 + i 

 

a) On a :  

X3 − 1 = (X + 2)(X2 − 2X + 4) − 9 

b) On a :  

X4 + iX3 − iX2 + X + 1 = (X2 + iX + 1)(X2 + (−1 − i)) + iX + 2 + i 

c) On a :  

X4 + 2X3 + 4X2 + 2 = (X2 + (1 − i)X + 1 + i)(X2 + (1 + i)X + (1 − i)) 

 

Exercice B.2 : Déterminer le reste de la division euclidienne de :  

P(X) = (cos(a) + Xsin(a))
n
 par B(X) = X2 + 1 

 

On sait que le reste de la division euclidienne de P par B est de degré inférieur ou égal à 1. On pose :  

Rn(X) = anX + bn 

Le but est donc de déterminer an et bn.  

On a :  

∀n ∈ ℕ, (cos(a) + Xsin(a))
n
= (X2 + 1)Qn(X) + anX + bn 

On pose X = i. On a alors :  

(cos(a) + isin(a))
n
= eina = ani + bn 

De même pour X = −i on a : 

(cos(a) − isin(a))
n
= e−ina = −ani + bn 

On résout le système suivant :  

{
eina = ani + bn
e−ina = −ani + bn

 

On a donc :  

2bn = e
ina + e−ina⟹ bn = cos(na) 

On en déduit alors que :  

an = sin(na) 
On a donc :  

∀n ∈ ℕ, (cos(a) + Xsin(a))
n
= (X2 + 1)Qn(X) + sin(na) X + cos(na) 

 

Exercice B.3 : A quelle condition sur a, b, c réels le polynôme P(X) = X4 + aX2 + bX + c est-il divisible par X2 +

X + 1 ? 

 

On doit factoriser X2 + X + 1 sur ℂ ∶ 

X2 + X + 1 = (X − e
2iπ
3 )(X − e

−2iπ
3 ) 

Pour plus de commodité on pose j = e
2iπ

3 . 
On en déduit donc que :  

P(X) = X4 + aX2 + bX + c est divisible par X2 + X + 1 si et seulement si P(j) = 0 = P(j)̅. 
On sait que :  

P(j) = j4 + aj2 + bj + c = 0 

⟹ aj2 + j(b + 1) + c = 0 

⟹−a+ j(b + 1 − a) + c = 0 
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Comme (a, b, c) ∈ ℝ3, on en déduit que :  

ℑ(−a + j(b + 1 − a) + c) =
(b + 1 − a)√3

2
= 0 

⟹ b+ 1 = a 
De plus on sait que :  

ℜ(−a + j(b + 1 − a) + c) = −a −
b + 1 − a

2
+ c = 0 

⟹−a− b − 1 + 2c = 0 

⟹ c = a car b + 1 = a 
De plus on a :  

P(j)̅ = 0 est immédiat puisque a,b et c sont des réels. 

On en déduit donc que :  

P(X) = X4 + aX2 + bX + c est divisible par X2 + X + 1 si et seulement si a = c = b + 1. 

On a alors :  

X4 + aX2 + (a − 1)X + a = (X2 + X + 1)(X2 − X + a) 
 

Exercice B.4 : a) Montrer que :  

∀P ∈ 𝕂[X], (P(X) − X)|(Po(P(X)) − X) 

b) En déduire les solutions réels de :  

(x2 − 3x + 1)2 = 3x2 − 8x + 2 

 

a) On pose :  

P(X) = ∑akX
k

n

k=0

 

On a donc :  

P(P(X)) − X = P(P(X)) − P(X) + P(X) − X 

=∑akP(X)
k

n

k=0

−∑akX
k

n

k=0

+ P(X) − X 

=∑ak(P(X)
k − Xk)

n

k=1

+ P(X) − X 

= (P(X) − X)(∑(ak∑P(X)iXk−1−i
k−1

i=0

)

n

k=1

− 1) 

Donc P(X) − X divise P(P(X)) − X. 

b) On pose :  

P(X) − X = 3X2 − 8X + 2 

On en déduit donc que :  

P(X) = 3X2 − 7X + 2 

On a donc :  

P(P(X)) = 3(3X2 − 7X + 2)2 − 7(3X2 − 7X + 2) + 2 

= 

 

Exercice B.5 : Déterminer tous les polynômes P tels que :  

P(2) = 6, P′(2) = 1, P′′(2) = 4 et ∀n ≥ 3, P(n)(2) = 0 

 

On sait que :  

∀n ≥ 3, P(n)(2) = 0 

Supposons que :  

P(3)(X) ≠ 0 

On pose deg(P(3)) = n et an son coefficient dominant. On en déduit donc que :  
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P(n+3)(X) = n! an 

Or on sait que :  

P(n+3)(2) = n! an = 0 

Impossible car an ≠ 0 et n! ≠ 0. 

On en déduit donc que :  

P(3) = 0 

Donc P ∈ ℝ2[X]. 
On pose :  

P(X) = aX2 + bX + c 
On a alors d’après les informations de l’énoncé :  

{
4a + 2b + c = 6
4a + b = 1
2a = 1

⟹ a =
1

2
, b = −1, c = 6 

Donc P(X) =
1

2
X2 − X + 6 

 

Exercice B.6 : Effectuer la division euclidienne de X2n − X2 + 1 par X2 − X 

 

On a :  

(X2n − X2 + 1) = (X2 − X)Q(X) + anX + bn 

Pour X = 0 on a :  

1 = bn 

De plus pour X = 1 on a :  

1 = an + bn 

On en déduit donc que :  

(X2n − X2 + 1) = (X2 − X)Q(X) + 1 

⟹ X2n − X2 = (X2 − X)Q(X) 

⟹ X2n−1 − X = (X − 1)Q(X) par intégrité de ℝ[X] 

⟹ X(X2n−2 − 1) = (X − 1)Q(X) 
Or on sait que :  

∀n ∈ ℕ∗, n ≥ 2, X2n−2 − 1 = (X − 1) ∑ Xk
2n−3

k=0

 

On en déduit donc que :  

Q(X) = ∑ Xk+1
2n−3

k=0

 

⟹ X2n − X2 + 1 = (X2 − X)(∑ Xk+1
2n−3

k=0

) + 1 

 

Exercice B.7 : On pose :  

M = (
2 −2 1
2 −3 2
−1 2 0

) 

1) Calculer M2 + 2M− 3I3. 

2) En déduire Mn pour tout entier naturel n.  

3) On pose les suites (un), (vn) et (wn) tels que :  

∀n ∈ ℕ, {

un+1 = 2un − 2vn +wn
vn+1 = 2un − 3vn + 2wn
wn+1 = −un + 2vn

 

Déterminer une formule explicite de (un) en fonction de n.  

 

1) On a :  

M2 + 2M− 3I3 = 03 
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2) On cherche le reste de la division euclidienne de Xn par X2 + 2X − 3. 

On sait que le reste Rn est de degré inférieur ou égale à 1 :  

Rn = anX + bn 

On a donc :  

Xn = (X2 + 2X − 3)Qn(X) + anX + bn 

On sait que :  

X2 + 2X − 3 = (X − 1)(X + 3) 
On remplace dans la division euclidienne X par 1 :  

A = an + bn 

De même avec X = −3 :  

(−3)n = −3an + bn 

On résout alors le système :  

{
an + bn = 1

−3an + bn = (−3)
n⟹ an =

1 − (−3)n

4
 et bn =

3 + (−3)n

4
 

On en déduit donc que :  

∀n ∈ ℕ, Xn = (X2 + 2X − 3)Qn(X) +
1 − (−3)n

4
X +

3 + (−3)n

4
 

3) On sait que :  

∀n ∈ ℕ, {

un+1 = 2un − 2vn +wn
vn+1 = 2un − 3vn + 2wn
wn+1 = −un + 2vn

⟺ ∀n ∈ ℕ, (

un+1
vn+1
wn+1

) = (
2 −2 1
2 −3 2
−1 2 0

)(

un
vn
wn
) = M(

un
vn
wn
) 

On en déduit donc que :  

∀n ∈ ℕ, (

un
vn
wn
) = Mn (

u0
v0
w0
)  

Or on sait que :  

∀n ∈ ℕ,Mn = (M2 + 2M− 3I3)Qn(M) +
1 − (−3)n

4
M +

3 + (−3)n

4
I3 

=
1 − (−3)n

4
M +

3 + (−3)n

4
I3 

=

(

 
 
 

5 − (−3)n

4

(−3)n − 1

2

1 − (−3)n

4
1 − (−3)n

2
(−3)n

1 − (−3)n

2
(−3)n − 1

4

1 − (−3)n

2

3 + (−3)n

4 )

 
 
 

 

 

On en déduit donc que :  

∀n ∈ ℕ, un =
5 − (−3)n

4
u0 +

(−3)n − 1

2
v0 +

1 − (−3)n

4
w0 

 

Partie C : Racine d’un polynôme 

 

Exercice C.1 : Montrer que (X − 1)2 divise X2n − X2n−1 − X + 1 pour tout n ≥ 1. 

 

On pose :  

Pn(X) = X
2n − X2n−1 − X + 1 

On a :  

Pn(1) = 0 et Pn
′(1) = 2n − (2n − 1) − 1 = 0 

Donc (X − 1)2 divise X2n − X2n−1 − X + 1 pour tout n ≥ 1. 

 

 

 

 



Page 9 sur 20 
 

Exercice C.2 : Soit n entier naturel. On pose :  

P(X) = ∑
Xk

k!

n

k=0

 

Montrer que toutes les racines de 𝑃 sont simples.  

 

On raisonne par l’absurde. Supposons que P admette une racine double 𝛼 ∈ ℂ. On a alors :  

P(α) = ∑
αk

k!

n

k=0

= 0 et P′(α) = ∑
αk

k!

n−1

k=0

= 0 

On en déduit que :  

𝛼𝑛

𝑛!
= 0 ⟹ 𝛼 = 0 

Or 𝑃(0) = 1. Donc cela est impossible. 

Ainsi 𝑃 n’admet pas de racine double !  

Toutes les racines de P sont simples. 

 

Exercice C.3 : Soit 𝑃 un polynôme non nul à coefficient réel. Parmi les propositions suivantes, lesquelles sont vraies ? 

 a) Si P est de degré impair, alors P admet une racine réelle.  

b) Si P admet une racine réelle, alors P’ admet une racine réelle. 

c) Si P admet deux racines réelles, alors P’ admet une racine réelle.  

d) Si P’ est scindé à racines simples, alors P est scindé à racines simples.  

e) Si P est scindé à racines simples, alors P’ est scindé à racines simples. 

f) Si 𝑎 ∈ ℝ est racine de P de multiplicité exactement 𝑚 ≥ 1, alors a est racine de P’ de multiplicité exactement 𝑚 − 1 

 

a) VRAI !  En calculant les limites en +∞ et −∞ de P qui sont opposées puis en utilisant le théorème des valeurs 

intermédiaires. 

b) FAUX ! Contre-exemple : 𝑃(𝑋) = 𝑋 ⟹ 𝑃′(𝑋) = 1 n’admet aucune racine réelle !  

c) VRAI ! Il suffit d’appliquer le théo1rème de Rolle puisque :  

∃(𝑥1, 𝑥2) ∈ ℝ
2, 𝑃(𝑥1) = 𝑃(𝑥2) = 0 

Ainsi, comme P est dérivable, on peut appliquer le théorème de Rolle :  

∃𝑐 ∈ ]𝑥1, 𝑥2[, 𝑃
′(𝑐) = 0 

Remarque : Si P admet une racine double réelle le résultat reste vrai car :  

∃𝑄 ∈ ℝ[𝑋], 𝑃(𝑋) = (𝑋 − 𝛼)2𝑄(𝑋) 
On a donc :  

𝑃′(𝑋) = 2(𝑋 − 𝛼)𝑄(𝑋) + (𝑋 − 𝛼)2𝑄′(𝑋) ⟹ 𝑃′(𝛼) = 0 

P’ admet la même racine que P !  

d) FAUX !  

Il suffit de prendre :  

𝑃(𝑋) = 𝑋3 − 𝑋 − 6 

On a donc : 

𝑃′(𝑋) = 3𝑋2 − 1 = 3(𝑋 −
√3

3
)(𝑋 +

√3

3
) 

Donc 𝑃′ est scindé à racine simple. 

Cependant P n’est pas scindé à racine simple car :  

𝑃(𝑋) = 𝑋3 − 𝑋 − 6 = (𝑋 − 2)(𝑋2 + 2𝑋 + 3) 
e) VRAI ! On pose 𝑑𝑒𝑔(𝑃) = 𝑛 et (𝑥1, … , 𝑥𝑛) les racines de P, rangées dans l’ordre croissant :  

𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 

On a alors :  

𝑃(𝑥1) = ⋯ = 𝑃(𝑥𝑛) = 0 

Il suffit ensuite d’appliquer le théorème de Rolle 𝑛 − 1 fois. 

On a alors 𝑛 − 1 racines simples de P’. Comme P’ est de degré 𝑛 − 1, P’ est scindé à racines simples !  

f) VRAI ! Il suffit d’utiliser la caractérisation :  
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𝑃(𝑎) = 𝑃′(𝑎) = 𝑃′′(𝑎) = ⋯ = 𝑃(𝑟−1)(𝑎) = 0 𝑒𝑡 𝑃(𝑟)(𝑎) ≠ 0 

 

Exercice C.4 : On pose pour tout entier naturel n :  

Ln(X) =
1

2nn!
((X2 − 1)n)(n) 

1) Déterminer le coefficient dominant de Ln.  

2) Calculer Ln(1) et Ln(−1).  

3) Montrer que 𝐿𝑛 admet n racines réelles distinctes appartenant à ] − 1; 1[.  

 

1) On sait que :  

(X2 − 1)n =∑(
n

k
)X2k

n

k=0

= 1 + nX2 + (
n

2
)X4 +⋯+ nX2n−2 + X2n 

⟹ ((X2 − 1)n)(n) =
dn(X2 − 1)

dtn
= (2n)(2n − 1)…(2n − (n + 1))Xn +∑akX

k

n−1

k=0

 

Or on sait que : 

(2n)(2n − 1)…(2n − (n + 1)) =
(2n)!

n!
 

On en déduit donc que le coefficient dominant de Ln est 
1

2n
(2n
n
).  

2) On voit que :  

(X2 − 1)n = (X − 1)n(X + 1)n 

Ainsi 1 est racine d’ordre n de (X2 − 1)n, de même que -1. 

On en déduit donc que : 

∀k ∈ ⟦0; n − 1⟧, P(k)(1) = P(k)(−1) = 0 

On utilise alors la formule de Taylor avec reste intégral :  

(X2 − 1)n =∑
P(k)(1)

k!
(X − 1)k

2n

k=0

 

= ∑
P(k)(1)

k!
(X − 1)k

2n

k=n

 

= (X − 1)n∑
P(k)(1)

k!
(X − 1)k−n

2n

k=n

 

Par intégrité de ℝ[𝑋],  

(𝑋 + 1)𝑛 = ∑
𝑃(𝑘)(1)

𝑘!
(𝑋 − 1)𝑘−𝑛

2𝑛

𝑘=𝑛

 

On en déduit donc pour 𝑋 = 1 que :  

2𝑛 =
𝑃(𝑛)(1)

𝑛!
 

On en déduit donc que :  

[(𝑋2 − 1)𝑛](𝑛)(1) = 2𝑛𝑛! 

⟹ 𝐿𝑛(1) = 1 

De même on a :  

(𝑋 − 1)𝑛 = ∑
𝑃(𝑘)(−1)

𝑘!
(𝑋 + 1)𝑘−𝑛

2𝑛

𝑘=𝑛

 

On a donc :  

(−2)𝑛 =
𝑃(𝑛)(−1)

𝑛!
 

⟹ 𝑃(𝑛)(−1) = (−1)𝑛2𝑛𝑛! 
⟹ 𝐿𝑛(−1) = (−1)

𝑛 
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3) On pose 𝑃𝑛(𝑋) = (𝑋
2 − 1)(𝑛) 

On montre cette propriété par récurrence. 

On pose :  

∀𝑛 ∈ ℕ∗, ∀𝑘 ∈ ⟦1, 𝑛⟧ 𝒫(𝑘) ∶ "∃ − 1 < 𝑥1 < ⋯ < 𝑥𝑘 < 1 ∀𝑖 ∈ ⟦1; 𝑛⟧ 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑃
(𝑘)(𝑥𝑖) = 0 " 

Initialisation : Soit 𝑛 = 0. On a alors :  

𝑃𝑛
(1)(𝑋) = 2𝑛𝑋(𝑋2 − 1)𝑛−1 

Donc la propriété est vraie car 𝑃𝑛
(1)

 admet une racine, 0, dans l’intervalle ]−1; 1[. 

Hérédité : Soit 𝑘 ∈ ⟦1, 𝑛⟧, fixé. On suppose vraie 𝑃(𝑘) est vraie.  

On veut prouver que la propriété est vraie pour 𝑘 + 1 ≤ 𝑛. Donc 𝑘 ≤ 𝑛 − 1. On sait donc deux choses :  

1) D’après la question précédente :  

∀𝑘 ≤ 𝑛 − 1,𝑃𝑛
(𝑘)(1) = 𝑃𝑛

(𝑘)(−1) = 0 

2) D’après l’hypothèse de récurrence :  

∃ − 1 < 𝑥1 < ⋯ < 𝑥𝑘 < 1 ∀𝑖 ∈ ⟦1; 𝑛⟧ 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑃
(𝑘)(𝑥𝑖) = 0 

On a donc 𝑘 + 2 racines disctintes de 𝑃𝑛
(𝑘)

 :  

On applique alors 𝑘 + 1 fois le théorème de Rolle et on obtient les 𝑘 + 1 racines de 𝑃𝑛
(𝑘+1)

 comprises entre 0 et 1. 

Donc la propriété est héréditaire. 

Conclusion : On conclut d’après le principe de récurrence. 

On en déduit donc que :  

𝑃𝑛
(𝑛) admet au moins n racines distinctes dans l’intervalle ] − 1; 1[. 

De plus on sait que :  

𝑑𝑒𝑔(𝑃𝑛) = 2𝑛 

On en déduit donc que 𝑑𝑒𝑔(𝐿𝑛) = 𝑛. 

On en déduit donc que :  

𝐿𝑛 admet n racines réelles distinctes appartenant à ] − 1; 1[. 
 

Exercice C.5 : Montrer que 𝑋(𝑋 + 1)(2𝑋 + 1) divise 𝑃(𝑋) = (𝑋 + 1)2𝑛 − 𝑋2𝑛 − 2𝑋 − 1 

 

Il suffit de voir que 0,−1 𝑒𝑡 −
1

2
 sont racines de P.  

 

Exercice C.6 : Déterminer les racines de 𝑃(𝑋) = 𝑋4 − 5𝑋3 + 5𝑋2 + 5𝑋 − 6 𝑠𝑢𝑟 ℂ.  

 

On cherche une racine évidente :  

𝑃(1) = 0 

On peut donc factoriser par 𝑋 − 1 :  

𝑃(𝑋) = (𝑋 − 1)(𝑋3 − 4𝑋2 + 𝑋 + 6) 
On pose : 

𝑄(𝑋) = 𝑋3 − 4𝑋2 + 𝑋 + 6 

On a :  

𝑄(−1) = −1 − 4 − 1 + 6 = 0 

On peut donc factoriser par 𝑋 + 1 ∶  

𝑄(𝑋) = (𝑋 + 1)(𝑋2 − 5𝑋 + 6) 
Il reste à factoriser :  

𝑋2 − 5𝑋 + 6 = (𝑋 − 2)(𝑋 − 3) 
On a donc :  

𝑃(𝑋) = 𝑋4 − 5𝑋3 + 5𝑋2 + 5𝑋 − 6 = (𝑋 − 1)(𝑋 + 1)(𝑋 − 2)(𝑋 − 3) 

Exercice C.7 : Déterminer les racines de 𝑋5 + 1 sur ℂ.  

 

On résout :  

𝑋5 + 1 = 0 

⟺ 𝑋5 = −1 
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⟺ 𝑋5 = (−1)5 

⟺ (
𝑋

−1
)
5

= 1 

⟺−𝑋 = 𝑒
2𝑖𝑘𝜋
5 , 𝑘 ∈ ⟦0; 4⟧ 

On en déduit donc que :  

𝑋 = 𝑒𝑖𝜋
2𝑘+5
5 , 𝑘 ∈ ⟦0; 4⟧ 

 

Partie D : Factorisation 

 

Exercice D.1 : Factoriser 𝑃(𝑋) = 𝑋5 + 𝑋 dans ℂ[𝑋]. 

 

On a :  

𝑃(𝑋) = 𝑋5 + 𝑋 = 𝑋(𝑋4 + 1) = 𝑋∏(𝑋 − 𝑒𝑖𝜋
2𝑘+1
4 )

3

𝑘=0

 

Remarque : On résout comme précédemment 𝑋4 + 1 = 0 ! 

 

Exercice D.2 : Décomposer en produit de polynômes irréductibles 𝑋6 + 1. 

 

L’énoncé ne nous dit pas si nous devons factoriser 𝑋6 + 1 sur ℝ[𝑋] ou sur ℂ[𝑋]. Nous allons donc faire les deux !  

1er cas : Sur ℂ[𝑿] 
On résout :  

𝑋6 + 1 = 0 ⟺ 𝑋6 = −1 

⟺ 𝑋6 = (𝑒
𝑖𝜋
6 )

6

 

⟺ (
𝑋

𝑒
𝑖𝜋
6

)

6

= 1 

⟺ 𝑋 = 𝑒
𝑖𝜋
6 × 𝑒

2𝑖𝑘𝜋
6 ; 𝑘 ∈ ⟦0; 5⟧ 

⟺ 𝑋 = 𝑒𝑖𝜋
2𝑘+1
6 , 𝑘 ∈ ⟦0; 5⟧ 

On a donc :  

𝑋6 + 1 =∏(𝑋 − 𝑒𝑖𝜋
2𝑘+1
6 )

5

𝑘=0

 

2ième cas : sur ℝ[𝑿] 

C’est très classique ! Il suffit de « ranger » deux par deux les racines complexes non réelles (ici toutes !) de 𝑋6 + 1 

afin de faire apparaître un polynôme de degré 2 à discriminant négatif !  

On a :  

∏(𝑋 − 𝑒𝑖𝜋
2𝑘+1
6 )

5

𝑘=0

=∏[(𝑋 − 𝑒𝑖𝜋
2𝑘+1
6 )(𝑋 − 𝑒−𝑖𝜋

2𝑘+1
6 )]

2

𝑘=0

 

= (𝑋2 − 2𝑐𝑜𝑠 (
𝜋

6
)𝑋 + 1) (𝑋2 − 2𝑐𝑜𝑠 (

𝜋

2
)𝑋 + 1) (𝑋2 − 2𝑐𝑜𝑠 (

5𝜋

6
)𝑋 + 1) 

⟹ 𝑋6 + 1 = (𝑋2 −√3𝑋 + 1)(𝑋2 + 1)(𝑋2 + √3𝑋 + 1) 

 

Exercice D.3 : Soit n un entier naturel non nul. On pose :  

𝑃𝑛(𝑋) = 𝑋
2𝑛 − 2𝑋𝑐𝑜𝑠(𝜃)𝑋𝑛 + 1 𝑜ù 𝜃 ∈ ℝ\𝜋ℤ 

1) Factoriser 𝑃𝑛 dans ℂ[𝑋]. 

2) En déduire une factorisation de 𝑃𝑛 dans ℝ[𝑋]. 

 

1) Il suffit de voir que :  
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𝑃𝑛(𝑋) = 𝑋
2𝑛 − 2𝑋𝑐𝑜𝑠(𝜃)𝑋𝑛 + 1 = (𝑋𝑛)2 − 2𝑐𝑜𝑠(𝜃) (𝑋𝑛) + 1 

On peut faire le changement de variable 𝑋𝑛 = 𝑌 

On a donc :  

𝑃𝑛(𝑋) = 𝑌
2 − 2𝑐𝑜𝑠(𝜃)𝑌 + 1 

= (𝑌 − 𝑒𝑖𝜃)(𝑌 − 𝑒−𝑖𝜃) 

= (𝑋𝑛 − 𝑒𝑖𝜃)(𝑋𝑛 − 𝑒−𝑖𝜃) 

Il reste à factoriser 𝑋𝑛 − 𝑒𝑖𝜃 :  

On cherche les racines de 𝑋𝑛 − 𝑒𝑖𝜃 :  

𝑋𝑛 = 𝑒𝑖𝜃 = (𝑒
𝑖𝜃
𝑛 )

𝑛

 

⟺(
𝑋

𝑒
𝑖𝜃
𝑛

)

𝑛

= 1 𝑐𝑎𝑟 𝜃 ∈ ℝ\𝜋ℤ 

⟺ 𝑋 = 𝑒
𝑖𝜃
n × 𝑒

2𝑖𝑘𝜋
𝑛 , 𝑘 ∈ ⟦0; 𝑛 − 1⟧ 

⟺𝑋 = 𝑒𝑖
2𝑘𝜋+𝜃
𝑛 , 𝑘 ∈ ⟦0; 𝑛 − 1⟧ 

De même on a :  

𝑋𝑛 = 𝑒−𝑖𝜃 

⟺𝑋 = 𝑒𝑖
2𝑘𝜋−𝜃
𝑛 , 𝑘 ∈ ⟦0; 𝑛 − 1⟧ 

On a donc :  

𝑋2𝑛 − 2𝑋𝑐𝑜𝑠(𝜃)𝑋𝑛 + 1 =∏[(𝑋 − 𝑒
𝑖
2𝑘𝜋+𝜃
𝑛 ) (𝑋 − 𝑒𝑖

2𝑘𝜋−𝜃
𝑛 )]

𝑛−1

𝑘=0

 

2) De même que l’exercice précédent, il faut ordonner les racines complexes avec leur conjugué !  

𝑋2𝑛 − 2𝑋𝑐𝑜𝑠(𝜃)𝑋𝑛 + 1 =∏[(𝑋 − 𝑒
𝑖
2𝑘𝜋+𝜃
𝑛 ) (𝑋 − 𝑒−𝑖

2𝑘𝜋+𝜃
𝑛 )]

𝑛−1

𝑘=0

 

⟺𝑋2𝑛 − 2𝑋𝑐𝑜𝑠(𝜃)𝑋𝑛 + 1 =∏(𝑋2 − 2𝑐𝑜𝑠 (
2𝑘𝜋 + 𝜃

𝑛
)𝑋 + 1)

𝑛−1

𝑘=0

 

 

Exercice D.4 : Déterminer les polynômes 𝑃 de ℂ[𝑋] tel que 𝑃′|𝑃. 

 

Remarque : Si 𝑑𝑒𝑔(𝑃) ∈ {0;−∞} alors la proposition est fausse car P’=0. Ainsi pour être candidat il faut que 

𝑑𝑒𝑔(𝑃) ≥ 1. 

 

Soit 𝑃 ∈ ℂ[𝑋] tel que 𝑑𝑒𝑔(𝑃) ≥ 1. Soit 𝛼 une racine de P. Supposons que 𝛼 ne soit pas racine de 𝑃′ et que 𝑃′|𝑃. 

On a alors :  

∃𝑄 ∈ ℂ[𝑋], 𝑃(𝑋) = 𝑃′(𝑋)𝑄(𝑋) 𝑎𝑣𝑒𝑐 𝑃′(𝛼) ≠ 0 

On a alors :  

𝑃(𝛼) = 𝑃′(𝛼)𝑄(𝛼) = 0 ⟹ 𝑄(𝛼) = 0 

On a donc :  

𝑄(𝛼) = 𝜆(𝑋 − 𝛼) 𝑎𝑣𝑒𝑐 𝜆 ≠ 0 

On en déduit donc que :  

𝑃(𝑋) = 𝑃′(𝑋)𝜆(𝑋 − 𝛼) 
On a donc :  

𝑃′(𝑋) = 𝑃′′(𝑋)𝜆(𝑋 − 𝛼) + 𝜆𝑃′(𝑋) 
On a donc :  

𝑃′(𝛼) = 𝜆𝑃′(𝛼) ⟹ 𝜆 = 1 𝑐𝑎𝑟 𝑃′(𝛼) ≠ 0 

On a donc :  

𝑃(𝑋) = 𝑃′(𝑋)(𝑋 − 𝛼) 
Ce qui implique que :  

𝑃′(𝑋) = 𝑃′′(𝑋)(𝑋 − 𝛼) + 𝑃′(𝑋) 



Page 14 sur 20 
 
Comme 𝑄 ≠ 0 on en déduit donc que 𝑃′′(𝑋) = 0 par intégrité de ℂ[𝑋] et donc que 𝑑𝑒𝑔(𝑃) = 1. 

Ainsi si P admet une racine qui n’est pas racine de P’, alors le polynôme P est de degré 1, et 𝑃′ divise P. 

 

A présent il reste à traiter le cas 𝑑𝑒𝑔(𝑃) ≥ 2. On pose 𝑑𝑒𝑔(𝑃) = 𝑛 ≥ 2. 

On a vu précédemment que cela implique que toutes les racines de P sont aussi racines de P’. 

On pose 𝑚 le nombre de racines distinctes de P, 𝛼1, … , 𝛼𝑚 les racines de P et 𝑟1, … , 𝑟𝑚 leur ordre de multiplicité 

successives.  

On sait que :  

𝛼1, … , 𝛼𝑚 sont racines de P’ d’ordre de multiplicité  𝑟1 − 1,… , 𝑟𝑚 − 1. 

De plus on sait que :  

𝑟1 +⋯+ 𝑟𝑚 = 𝑑𝑒𝑔(𝑃) et (𝑟1 − 1) +⋯+ (𝑟𝑚 − 1) ≤ 𝑑𝑒𝑔(𝑃
′) 

On a donc :  

𝑟1 +⋯+ 𝑟𝑚 −𝑚 ≤ 𝑑𝑒𝑔(𝑃) − 1 

On en déduit donc que :  

𝑚 ≤ 1 

Comme 𝑑𝑒𝑔(𝑃) ≥ 2, on en déduit donc que 𝑚 = 1 car ℂ est algébriquement clos.  

Ainsi P admet une unique racine.  

On pose alors :  

𝑃(𝑋) = 𝜆(𝑋 − 𝛼)𝑛, 𝑛 ≥ 2 

On a alors :  

𝑃′(𝑋) = 𝑛𝜆(𝑋 − 𝛼)𝑛−1⟹𝑃′(𝑋) ×
1

𝑛
(𝑋 − 𝛼) = 𝑃′(𝑋)𝑄(𝑋) = 𝑃(𝑋) 

Ainsi P’ divise bien P, donc la réciproque est vraie. On en déduit donc que :  

{𝑃 ∈ ℂ[𝑋], 𝑃′|𝑃} = {𝑃 ∈ ℂ[𝑋], 𝑑𝑒𝑔(𝑃) = 1} ∪ {𝜆(𝑋 − 𝛼)𝑛, (𝜆, 𝛼, 𝑛) ∈ ℂ∗ × ℂ × ℕ\{0; 1}}  

 

Exercice D.5 : Trouver tous les polynômes tels que :  

𝑃(𝑋2) = 𝑃(𝑋)𝑃(𝑋 + 1) 

 

1er cas : Si 𝑷 = 𝒄 est un polynôme constant. 

On a alors :  

𝑐 = 𝑐2 

On en déduit donc que :  

𝑐 ∈ {0; 1} 
2ième cas : Si 𝒅𝒆𝒈(𝑷) ≥ 𝟏 

On va montrer que les deux seules racines complexes de P sont 0 et 1. 

On pose R l’ensemble des racines de P :  

𝑅 = {𝑧 ∈ ℂ, 𝑃(𝑧) = 0} 
On sait que 𝑧 est non vide car ℂ est algébriquement clos. 

On a alors :  

𝑃(𝑧2) = 𝑃(𝑧)𝑃(𝑧 + 1) = 0 

On en déduit donc que 𝑧 ∈ 𝑅 ⟹ 𝑧2 ∈ 𝑅. 

Par un récurrence triviale on en déduit donc que :  

𝑧 ∈ 𝑅 ⟹ ∀𝑛 ∈ ℕ∗, 𝑧2𝑛 ∈ 𝑅 

Il faut alors distinguer plusieurs cas car on a potentiellement une infinité de racine, ce qui est impossible car 

𝑑𝑒𝑔(𝑃) ≥ 1. 

 1er cas : Soit 𝒛 ∈ 𝑹, |𝒛| > 𝟏 

On a alors : (𝑧2𝑛)𝑛∈ℕ∗ la suite composée que de racines de P et tel que :  

𝑙𝑖m
𝑛
|𝑧|2𝑛 = +∞ 

Donc P admet une infinité de racines. Impossible ! 

 2ième cas : Soit 𝒛 ∈ 𝑹, 𝟎 < |𝒛| < 𝟏  

On a alors : (𝑧2𝑛)𝑛∈ℕ∗ la suite composée que de racines de P et tel que :  𝑙𝑖𝑚
𝑛
|𝑧|2𝑛 = 0  et ∀𝑛 ∈ ℕ∗, 𝑧2𝑛 ≠ 0. 

Donc P admet une infinité de racines. Impossible ! 



Page 15 sur 20 
 
 

On en déduit donc que :  

𝑧 ∈ 𝑅 ⟹ |𝑧| = 1 𝑜𝑢 𝑧 = 0 

On sait donc que :  

𝑧 ∈ 𝑅 ⟹ ∃𝜃 ∈ ℝ, 𝑧 = 𝑒𝑖𝜃 𝑜𝑢 𝑧 = 0 

Si 𝑧 = 𝑒𝑖𝜃 ∈ 𝑅. 

On a alors :  

𝑃((𝑧 − 1)2) = 𝑃(𝑧 − 1)𝑃(𝑧) = 0 

⟹ (𝑧 − 1)2 ∈ 𝑅 

⟹ {
𝑧 − 1 = 0
𝑜𝑢

|𝑧 − 1| = 1
 

⟹ {
𝑧 = 1
𝑜𝑢

(1 − 𝑐𝑜𝑠(𝜃))2 + 𝑠𝑖𝑛2(𝜃) = 1
 

⟹ {
𝑧 = 1
𝑜𝑢

𝑐𝑜𝑠(𝜃) = 1
 

⟹ 𝑧 = 1 

Ainsi les seules racines de P sont 0 et 1. 

 

On pose alors :  

𝑃(𝑋) = 𝜆𝑋𝑘(𝑋 − 1)𝑘′, 𝜆 ∈ ℂ 

On a alors :  

𝑃(𝑋2) = 𝜆𝑋2𝑘(𝑋2 − 1)𝑘
′
 

𝑃(𝑋)𝑃(𝑋 + 1) = 𝜆2𝑋𝑘+𝑘
′
(𝑋 + 1)𝑘(𝑋 − 1)𝑘′ 

Par identification on obtient :  

{
𝜆2 = 𝜆

2𝑘 = 𝑘 + 𝑘′

𝑘 = 𝑘′
 

On en déduit donc que : 

𝑃(𝑋2) = 𝑃(𝑋)𝑃(𝑋 + 1) ⟺ 𝑃 = {0ℝ[𝑋]} ∪ {(𝑋
2 − 𝑋)𝑘; 𝑘 ∈ ℕ} 

 

Partie E : Relation coefficients racines 

 

Exercice E.1 : a) Soit 𝑛 ∈ ℕ. Montrer qu’il existe un unique 𝑃 ∈ ℂ[𝑋] tel que : 

∀𝑧 ∈ ℂ∗, 𝑃 (𝑧 +
1

𝑧
) = 𝑧𝑛 +

1

𝑧𝑛
 

b) Montrer alors que toutes ses racines sont réelles, simples et dans l’intervalle [-2 ;2].  

 

a) Il y a deux choses à démontrer dans cette question, l’existence et l’unicité. 

1) Montrons l’unicité. On suppose qu’il existe 𝑃1 et 𝑃2 deux polynômes de ℂ[𝑋] tels que :  

∀𝑧 ∈ ℂ∗, 𝑃1 (𝑧 +
1

𝑧
) = 𝑃2 (𝑧 +

1

𝑧
) 

On pose :  

𝐻 = 𝑃1 − 𝑃2 

On a donc : 

∀𝑛 ∈ ℕ∗, 𝐻 (𝑛 +
1

𝑛
) = 𝐻 (

𝑛2 + 1

𝑛
) = 0 

Or on sait que :  

𝑙𝑖𝑚
𝑛

𝑛2 + 1

𝑛
= +∞ 
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On en déduit donc que la suite 𝑢n = 𝑛 +
1

𝑛
 admet une infinité de valeurs distinctes. Donc 𝐻 admet une infinité de 

racines. Donc 𝐻 = 0ℂ[𝑋] 

2) Montrons à présent l’existence.  

Un rapide calcul montre que :  

𝑃0(𝑋) = 2 convient 

𝑃1(𝑋) = 𝑋 convient 

𝑃2(𝑋) = 𝑋
2 − 2 convient. 

𝑃3(𝑋) = 𝑋
3 − 3𝑋 convient. 

On peut donc conjecturer que :  

𝑃𝑛+2 = 𝑋𝑃𝑛+1 − 𝑃𝑛 

On pose la proposition suivante :  

∀𝑛 ∈ ℕ,𝒫(𝑛): {
𝑃𝑛 𝑒𝑡 𝑃𝑛+1 𝑒𝑥𝑖𝑠𝑡𝑒
𝑃𝑛+2 = 𝑋𝑃𝑛+1 − 𝑃𝑛

 

Initialisation : vrai pour 𝑛 = 0 d’après les calculs précédents. 

Hérédité : Soit 𝑛 ∈ ℕ fixé. On suppose vraie : 

𝑃𝑛+2 = 𝑋𝑃𝑛+1 − 𝑃𝑛 

On pose :  

𝑄(𝑋) = 𝑋𝑃𝑛+2(𝑋) − 𝑃𝑛+1(𝑋) 
On a donc que 𝑃𝑛+2 et 𝑃𝑛+1 existe. De plus on a :  

∀𝑧 ∈ ℂ∗, 𝑄 (𝑧 +
1

𝑧
) = (𝑧 +

1

𝑧
)𝑃𝑛+2 (𝑧 +

1

𝑧
) − 𝑃𝑛+1 (𝑧 +

1

𝑧
) 

= (𝑧 +
1

z
) (𝑧𝑛+2 +

1

𝑧𝑛+2
) − (𝑧𝑛+1 +

1

𝑧𝑛+1
) 

= 𝑧𝑛+3 +
1

𝑧𝑛+3
 

On a donc :  

∀𝑧 ∈ ℂ∗, 𝑄 = 𝑃𝑛+3 𝑝𝑎𝑟 𝑢𝑛𝑖𝑐𝑖𝑡é 
Conclusion : On conclut d’après le principe de récurrence.  

b) On sait que 𝑃0 = 2 𝑒𝑡 𝑃1 = 𝑋, 𝑃𝑛+2 = 𝑋𝑃𝑛+1 − 𝑃𝑛. On peut donc démontrer par récurrence que :  

∀𝑛 ∈ ℕ, 𝑑𝑒𝑔(𝑃𝑛) = 𝑛 

Là ici il faut faire une récurrence double !! 

Initialisation : La proposition est vraie au rang 0 et 1 d’après les calculs précédents. 

Hérédité : Soit 𝑛 un entier naturel fixé. On suppose la proposition vraie au rang 𝑛 et 𝑛 + 1. On a donc :  

𝑑𝑒𝑔(𝑃𝑛) = 𝑛 𝑒𝑡 𝑑𝑒𝑔(𝑃𝑛+1) = 𝑛 + 1 

On en déduit donc que :  

𝑑𝑒𝑔(𝑋𝑃𝑛+1 − 𝑃𝑛) = 𝑛 + 2 

On a donc :  

𝑑𝑒𝑔(𝑃𝑛+2) = 𝑛 + 2 

Ainsi la proposition est héréditaire. 

Conclusion : On conclut d’après le principe de récurrence. 

 

Ainsi 𝑃𝑛 admet exactement n racines complexes, comptées avec leur ordre de multiplicité. Il reste à démontrer que ces 

racines sont simples et comprises dans l’intervalle ]−2; 2[. 

On fixe n. On pose 𝑧 = 𝑒𝑖𝜃. On a alors :  

𝑃𝑛 (𝑒
𝑖𝜃 +

1

𝑒𝑖𝜃
) = 𝑒𝑛𝑖𝜃 +

1

𝑒𝑛𝑖𝜃
⟹ 𝑃𝑛(2 𝑐𝑜𝑠(𝜃)) = 𝑐𝑜𝑠(𝑛𝜃) 

On pose 𝑥 = 2 𝑐𝑜𝑠(𝜃). On a donc :  

∀𝑥 ∈ [−2; 2], 𝑃𝑛(𝑥) = 𝑐𝑜𝑠 (𝑛𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑥

2
)) 

On résout : 

𝑐𝑜𝑠 (𝑛𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑥

2
)) = 0 ⟺ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑥

2
) =

𝜋

2𝑛
+
𝑘𝜋

𝑛
, 𝑘 ∈ ℤ 

On sait que :  
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∀𝑥 ∈ [−1; 1] 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥) ∈ [0;  𝜋] 
On résout :  

0 ≤
𝜋

2𝑛
+
𝑘𝜋

𝑛
≤ 𝜋 

⟺ 0 ≤
1

2
+ 𝑘 ≤ 𝑛 

⟺ 0 ≤ 𝑘 ≤ 𝑛 − 1 

On en déduit que :  

𝑃 (2 𝑐𝑜𝑠 (
𝜋

2𝑛
+
𝑘𝜋

𝑛
)) = 0, ∀𝑘 ∈ ⟦0; 𝑛 − 1⟧ 

On pose :  

∀𝑘 ∈ ⟦0; 𝑛 − 1⟧, 𝑢𝑘 =
𝜋

2𝑛
+
𝑘𝜋

𝑛
 

On a donc d’après les calculs précédents :  

∀𝑘 ∈ ⟦0; 𝑛 − 1⟧, 𝑢𝑘 ∈ [0; 𝜋] 
De plus on a : 

0 < 𝑢0 < 𝑢1 < ⋯ < 𝑢𝑛−1 < 𝜋 

On a donc n racines de 𝑃𝑛 : 𝛼𝑘 = 2𝑐𝑜𝑠 (
𝜋

2𝑛
+
𝑘𝜋

𝑛
) 

Comme le degré de 𝑃𝑛 est n, on a toutes les racines. Qui sont bien simples (cosinus restreint sur [0, 𝜋] est une 

bijection !), on a toutes les racines de 𝑃𝑛. 

 

Exercice E.2 : On pose un polynôme unitaire de ℤ[𝑋] (C’est-à-dire que tous les coefficients de 𝑃 sont dans ℤ) :  

𝑃(𝑋) = 𝑋𝑛 +∑𝑎𝑘𝑋
𝑘

𝑛−1

𝑘=0

, 𝑜ù ∀𝑘 ∈ ⟦0; 𝑛 − 1⟧, 𝑎𝑘 ∈ ℤ 

a) Montrer que si P admet une racine dans ℤ, alors cette racine divise 𝑎0.  

b) Les polynômes 𝑃(𝑋) = 𝑋3 − 𝑋2 − 109𝑋 − 11 et 𝑄(𝑋) = 𝑋10 + 𝑋5 + 1 ont-ils des racines dans ℤ.  

 

a) Soit 𝛼 ∈ ℤ une racine de 𝑃. On a donc :   

𝑃(𝛼) = 𝛼𝑛 +∑𝑎𝑘𝛼
𝑘

𝑛−1

𝑘=0

= 0 

⟹ 𝛼(α𝑛−1 +∑𝑎𝑘𝛼
𝑘−1

𝑛−1

𝑘=1

) + 𝑎0 = 0 

⟹ 𝑎0 = −𝛼(𝛼
𝑛−1 +∑𝑎𝑘+1𝛼

𝑘

𝑛−2

𝑘=0

)  

Donc 𝛼 divise 𝑎0. 

b) On a : 𝑃(𝑋) = 𝑋3 − 𝑋2 − 109𝑋 − 11 

On en déduit donc que 𝑃 ∈ ℤ[𝑋]. On en déduit donc que P admet une racine a dans ℤ si et seulement si 𝑎 divise 11. 

On a donc 4 candidats possibles : {1;−1; 11;−11}. 
Il suffit alors de calculer :  

𝑃(1) = −120, 𝑃(−1) = 96, 𝑃(11) = 0 

Donc P admet une racine dans ℤ. 

 

On fait de même avec 𝑄(𝑋) = 𝑋10 + 𝑋5 + 1⟹ 𝑄(1) = 3 𝑒𝑡 𝑄(−1) = 1. Donc Q n’admet pas de racine dans ℤ.  

  

 

 

 

 

 

 



Page 18 sur 20 
 
 

Exercice E.3 : Soit n un entier naturel non nul. On pose :  

𝑃𝑛(𝑋) = (𝑋 + 1)
𝑛 − (𝑋 − 1)𝑛 

1) Factoriser 𝑃𝑛 sur ℂ. 

2) En déduire que :  

∏
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1
)

𝑝

𝑘=1

=
1

√2𝑝 + 1
 

 

1) On résout :  

𝑃𝑛(𝑋) = 0 ⟺ (𝑋 + 1)𝑛 − (𝑋 − 1)𝑛 = 0 

On a 𝑃𝑛(1) = 2
𝑛 donc 1 n’est pas racine de 𝑃𝑛(𝑋). On a :  

𝑃𝑛(𝑋) = 0 

⟺ (
𝑋 + 1

𝑋 − 1
)
𝑛

= 1 

⟺
𝑋+ 1

𝑋 − 1
= 𝑒

2𝑖𝑘𝜋
𝑛 ; 𝑘 ∈ ⟦1; 𝑛 − 1⟧ 

On voit que 𝑘 = 0 n’est pas solution !  

On a donc :  

 

⟺ 𝑋+ 1 = 𝑋𝑒
2𝑖𝑘𝜋
𝑛 − 𝑒

2𝑖𝑘𝜋
𝑛  

⟺ 𝑋 =
𝑒
2𝑖𝑘𝜋
𝑛 + 1

𝑒
2𝑖𝑘𝜋
𝑛 − 1

 

⟺ 𝑋 =
𝑒
𝑖𝑘𝜋
𝑛 + 𝑒−

𝑖𝑘𝜋
𝑛

𝑒
𝑖𝑘𝜋
𝑛 − 𝑒−

𝑖𝑘𝜋
𝑛

 

⟺𝑋 = −𝑖
𝑐𝑜𝑠 (

𝑘𝜋
𝑛
)

𝑠𝑖𝑛 (
𝑘𝜋
𝑛 )

, 𝑘 ∈ ⟦1; 𝑛 − 1⟧ 

⟺𝑋 =
1

𝑡𝑎𝑛 (
𝑘𝜋
𝑛 )

, 𝑘 ∈ ⟦1; 𝑛 − 1⟧ 

On en déduit donc que :  

𝑃𝑛(𝑋) = (𝑋 + 1)
𝑛 − (𝑋 − 1)𝑛 = 2𝑛∏(𝑋 + 𝑖

1

𝑡𝑎𝑛 (
𝑘𝜋
𝑛 )
)

𝑛−1

𝑘=1

 

b) Il suffit de prendre 𝑛 = 2𝑝 + 1 et 𝑋 = 0. On a alors :  

2(2𝑝 + 1)∏(𝑖
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1)
)

2𝑝

𝑘=1

= 2 

⟹ (𝑖)2𝑝∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1)
)

2𝑝

𝑘=1

=
1

2𝑝 + 1
 

⟹ (−1)𝑝∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1)
)

2𝑝

𝑘=1

=
1

2𝑝 + 1
 

De plus on a :  
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∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1
)
)

2𝑝+1

𝑘=1

=∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1
)
)

𝑝

𝑘=1

∏ (
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1
)
)

2𝑝

𝑘=𝑝+1

 

Or on remarque que : 

∏ (
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1
)
)

2𝑝

𝑘=𝑝+1

=∏(
1

𝑡𝑎𝑛 (
(2𝑝 + 1 − 𝑘)𝜋

2𝑝 + 1
)
)

𝑝

𝑘=1

 

=∏(
1

𝑡𝑎𝑛 (𝜋 −
𝑘𝜋

2𝑝 + 1
)
)

𝑝

𝑘=1

 

=∏(
−1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1
)
)

𝑝

𝑘=1

 

= (−1)𝑝∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1)
)

𝑝

𝑘=1

 

On a donc :  

(∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1)
)

𝑝

𝑘=1

)

2

=
1

2𝑝 + 1
 

⟹∏(
1

𝑡𝑎𝑛 (
𝑘𝜋

2𝑝 + 1)
)

𝑝

𝑘=1

= √
1

2𝑝 + 1
=

1

√2𝑝 + 1
 

 

Exercice E.4 : Soient 𝛼, 𝛽, 𝛾 les racines de 𝑃(𝑋) = 𝑋3 − 5𝑋2 + 6𝑋 − 1. Déterminer la valeur exacte de :  

1

1 − 𝛼
+

1

1 − 𝛽
+

1

1 − 𝛾
 

 

Il suffit d’utiliser les relations coefficients racines.  

Soient 𝛼, 𝛽, 𝛾 les racines complexes de P. Comme le coefficient dominant de P est 1 on a :  

𝑋3 − 5𝑋2 + 6𝑋 − 1 = (𝑋 − 𝛼)(𝑋 − 𝛽)(𝑋 − 𝛾) 

= 𝑋3 − (𝛼 + 𝛽 + 𝛾)𝑋2 + (𝛼𝛽 + 𝛼𝛾 + 𝛽𝛾)𝑋 − 𝛼𝛽𝛾 

Or on sait que :  

1

1 − 𝛼
+

1

1 − 𝛽
+

1

1 − 𝛾
=
(1 − 𝛽)(1 − 𝛾) + (1 − 𝛼)(1 − 𝛾) + (1 − 𝛽)(1 − 𝛼)

(1 − 𝛽)(1 − 𝛾)(1 − 𝛼)
 

=
3 − (𝛽𝛾 + 𝛼𝛾 + 𝛼𝛽) + 2(𝛼 + 𝛽 + 𝛾)

(1 − 𝛽)(1 − 𝛾)(1 − 𝛼)
 

De la relation  

𝑋3 − 5𝑋2 + 6𝑋 − 1 = (𝑋 − 𝛼)(𝑋 − 𝛽)(𝑋 − 𝛾) 
On obtient en posant 𝑋 = 1 :  

(1 − 𝛽)(1 − 𝛾)(1 − 𝛼) = 1 

On en déduit donc que :  
1

1 − 𝛼
+

1

1 − 𝛽
+

1

1 − 𝛾
= −8 
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Exercice E.5 : Soit n un entier naturel et 𝜃 ∈ ℝ. On considère le polynôme 𝑃(𝑋) = (𝑋 + 1)𝑛 − 𝑒2𝑖𝑛𝜃. 

1) Factoriser 𝑃 dans ℂ[𝑋]. 

2) En déduire les valeurs de :  

∏𝑠𝑖𝑛 (𝜃 +
k𝜋

𝑛
) 

𝑛−1

𝑘=0

𝑒𝑡  ∏𝑠𝑖𝑛 (
𝑘𝜋

𝑛
)

𝑛−1

𝑘=1

 

 

1) Il suffit de déterminer les racines de P sur ℂ :  

 𝑃(𝑋) = 0 ⟺ (𝑋 + 1)𝑛 = 𝑒2𝑖𝑛𝜃 

⟺ (
𝑋 + 1

𝑒2𝑖𝜃
)
𝑛

= 1 

⟺
𝑋+ 1

𝑒2𝑖𝜃
= 𝑒

2𝑖𝑘𝜋
𝑛 , 𝑘 ∈ ⟦0; 𝑛 − 1⟧ 

⟺𝑋 = 𝑒
2𝑖(𝑘

𝜋
𝑛
+𝜃)

− 1 = 𝑒
𝑖(
𝑘𝜋
𝑛
+𝜃)

× 2𝑖𝑠in (
kπ

n
+ θ) 

On en déduit donc que :  

(X + 1)n − e2inθ =∏(X− e
ikπ
n
+iθ × 2isin (

kπ

n
+ θ))

n−1

k=0

 

2) On pose à présent X = 0 on obtient :  

1 − e2inθ = (−1)neinθ2nin∏sin(θ +
kπ

n
) 

n−1

k=0

∏e
ikπ
n

n−1

k=0

 

Or on sait que : 

∏e
ikπ
n

n−1

k=0

= e
iπ
n
∑ kn−1
k=0 = e

iπ(n−1)
2 = (i)n−1 

On a donc :  

2i sin(nθ) = (−1)n × 2n × i2n−1∏sin(θ +
kπ

n
) 

n−1

k=0

 

⟹∏sin(θ +
kπ

n
) 

n−1

k=0

= −
sin(nθ)

2n−1
 

Pour la question 2 il suffit de voir que les (e
2ikπ

n )
1≤k≤n−1

 sont les racines de 1 + X +⋯+ Xn−1. 

On a donc :  

1 + X +⋯+ Xn−1 =∏(X − e
2ikπ
n ) 

n−1

k=1

 

Il suffit ensuite de remplacer X = 1 et on obtient :  

n =∏(1 − e
2ikπ
n ) 

n−1

k=1

=∏−2isin (
kπ

n
)

n−1

k=1

∏e
ikπ
n

n−1

k=1

= (−1)n−1in−12n−1∏e
ikπ
n

n−1

k=1

∏sin(
kπ

n
)

n−1

k=1

 

Or on sait que :  

∏e
ikπ
n

n−1

k=1

= e
iπ
n
∑ kn−1
k=1 = e

iπ
n
(
n(n−1)
2

)
= in−1 

On en déduit donc que :  

∏sin(
kπ

n
)

n−1

k=1

=
n

2n−1
 

 

 


