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Correction DS n°6

|Exercice 1: Une somme directe|

On pose :

F={M=(Ccl Z)EMZ(]R)telquea+d=0}

G = vect(l,)
1) Démontrer que F est un espace vectoriel de dimension finie, en donner une base et sa dimension.
2) Démontrer que :
M, (R) =FoOG

3) Décomposer la matrice A = (1 2) dans FOG.

3 4

1)Ona:

M=(‘Cl Z)EF(zbd:—a(:)M:(Z _ba)=a((1) _01)+b(8 (1))+c((1) 8)

On en déduit donc que :
p=veee((§ %) 53 D)

F est donc un espace vectoriel. De plus on a :

B= ((1 0 ), (0 1) , (0 O)) en est une base génératrice. Montrons qu’elle est libre.

0 —=1/°\0 0/°'\1 O
On résout :
a(y 2y o)+a( 0= o

=0
Ay =0
Az =0
1, =0

Donc B est libre et génératrice de F, c¢’est donc une base et sa dimension est 3.
2) On peut le faire de différentes facons.

Méthode 1 : Montrer que B, = B U {I,} est une base de M, (R).

La encore on peut le faire de différentes fagons.

e Card(B,) =4= dim(]\/[z (]R)) donc montrer que B, est une base de M, (R) revient a
montrer que B, est libre.

On résout :
A+1,=0
,11((1) _01)”2(8 (1))+,13((1’ 8)+,1412=02<=> Zzg
AM—2A,=0

(L) et (Ly)donnent 1, =0 = A,
Donc B, est libre, c’est donc une base au vue de son cardinal.

e Card(B,) =4= dim(]\/[z (]R)) donc montrer que B, est une base de M, (R) revient a

montrer que B, est génératrice.
Ona:

st =veee((§ 0.3 0)-C 90 9)) = vect(Bun BraBan £z2)

Montrer que B, est génératrice revient a montrer que les vecteurs de B, peuvent engendrer car E; ; de la base
canonique de M, (R). Montrons cela. Pour plus de commodité on pose :
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5=(G 206 -6 )= onmm

Ona:
1 1
El,l = EIZ +EM1
E1,2 = M,
E2,1 = M;
1 1
kEz,z = Elz - §M1

Ainsi B, est génératrice, c’est donc une base au vue de son cardinal.

Méthode 2 : Caractérisation des sommes directes.

a) Egalité des dimensions

Ona:
dim(F) + dim(G) = 3 + 1 = 4 = dim(M5,(R))
b) Intersection réduit a {05}
Il e Rtelque M = (/1 0)
MeFNG & 0 Ve2l=0 M=0,
[M]y, + [M];, =0
Ainsiona:

Par la caractérisation des sommes directes, FOG = M, (R).

Méthode 3 : Analyse-synthése

a) Analyse
Ona:
_(a b\ _(x Y t 0
m=(C =0 2D+ o)
EF €G
(x=l(a—d)
x+t=a 2
= b 4:)4 y=b
Z=cC Z=c
—x = 1
t-x=d Lt=z(a+d)
b) Synthése
Ona:
1( d) b
_a_
a b _(a b 2 la+d 0
v = (% gemmm= (7 )= 1 +5°0 " avd)
c E(d—a) =
€F

On en déduit donc que :
_(a b
VM = (C ¥
On a donc M, (R) = FOG.

) € M3(R),3! (Mg, Mg) € F X G tel que M = Mg + My

3) D’apres les questions précédentes on a :

3 5
(1 2)= 7 2 L2 0
2 2

€eF €G




Page 3 sur 15

Exercice 2 : Une suite définie par une intégrale|

On pose :

1

1+x”dx

1
VnEN,Inzf
0

1) Expliquez pourquoi la suite (I,,) est bien définie sur N.
2) Calculer Iy, I, I,.
3) Dans cette question on cherche a calculer /5.

a) Montrer que :

b) En déduire que :
V3m

1
13 = §ln(2) + T

4) a) Démontrer que la suite (I,,) est croissante.
b) En déduire la convergence de (I,).
¢) Montrer que :

1
0<1-I, <——
"Tn+1

d) Déterminer la limite de I, quand n — +oo
On va chercher a présent un équivalent de la suite (I,, — 1) pour savoir « a quelle vitesse » I, converge vers sa limite.
5) a) Démontrer, a I’aide d’une IPP que :
In(2)

1
1
L,—1= — [ In(1 " d
n n+nfn(+x)x

0
b) Démontrer que :

Vx € [0;1],vn € N,In(1 + x™) < x™

L,=1 _lnflz) +o <l>

n

¢) En déduire que :

1) On sait que :

fnix 1T € €°([0; 1]) par quotient

Donc f;,, admet une primitive sur [0; 1] donc I, est bien définie.

2)Ona:
1
I_f 1 d 1
0= x—z
0

1+ x0

1+x

1
I, = f ! dx = [In(1 + x)]} = In(2)

1

= L ax = larctan@)]} = T
2 = 1+x2 X = |arctan\x 0—4
0

3) a) On sait que :
vx€[0;1],1+x3 =1 +x)(x>—x+1)
On décompose alors en éléments simples. On cherche (a, b, ¢) € R3 tel que :
1 a bx + ¢

) = = +

1+x3 (Q14+x)(x?2—-x+1) 1+x x?2-—-x+1
_a(x®—x+D+Bx+)A+x) x*(@+b)+x(b+c—a)+a+c
B 1+x3 a 1+ x3

Vx € [0; 1]

On identifie :
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(a=1
b+c—a=0<:>{b=——
cta= 3
l 2
=3
On a donc :
vx € [0;1] _1 1 1 x—2
YT s T3 T 3 e —x+1
On a donc :

Par linéarité de I’intégrale.

b)Ona:
1 1
f x—2 d _1]‘ 2x —4 d _1f 2x—1 3 d
x2—x+1 x—2 x2—x+1 x—2 x2—x+1 x2—x+1x

0 0 0

1 1

-1 3] Ll LDl 3f

2 —x+1 X 1 T2 n(x® —x 2
0 0

S S R S 2,1
dx Zb[(%x_%) +1d x[arctan(\/_x \/_>]

x2—x+1

1

1
1 -1 bl T 3
=—/3 (arctan (—) — arctan (—)) = —24/3 x arctan 2 = —2V3x—=——
3 V3 V3 6 3

2

On en déduit donc que :

1 V3
13 = Ell’l(Z) +?Tl'
4) a)Ona:
1 1 1
1 1
In“_lnz_[1+x"+1 _[ _f1+x”+1 1+x"dx
0 ) 0
x"(1—x)
= dx
(14 xm+1)(1 4 x1)
0
Orona:
g n(1-2) (-
14+ x>0 x"(1—x J‘ x"(1—x
€ [0;1
el Y s T aremar 0T Grema sy @0
1-x>0 0

Par croissance de I’intégrale.

On en déduit donc que (I,,) est croissante.

b) De plusona:
1

1
1
gl=f1+xndxsf1dx=lnS1
0 0

vx € [0;1],

14+ xm

Donc (I,,) est croissante et majorée, elle converge.
c)Ona:
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1 1 1

RN I oyt
no 14+ xn

0 0 0

De plus on sait que :

x" 1 x" 7
VxE[0;1],0S1+xnSx”z>f0dx§f1+xndxsfxndx
0 0
1
= 0<1-1, <—
n+1

d) On a d’aprés le théoréme des gendarmes :

llm(l—In) = 0=>11mI _hmfl+x"dx

5) a)Ona:

1
fl+xn =w)dx
0 —u(x)

[ x In(1 + x")] fln(l + x™) dx
0

_ '“(2) f In(1 + x™) dx

b) On va démontrer que :
vx €[0;1],In(1+x) <«x
On peut le faire en étudiant la fonction écart, en utilisant la concavité de la fonction In car sa dérivée seconde est
négative, ou bien a I’aide d’une intégrale !

Méthode 1 : Fonction écart
On pose :

o { [0;1] > R
"X x—In(1+x)
On sait que e est dérivable sur [0; 1] et

1 X
vx € [0;1], €’ =1- =
x€el 1 e'(x) 1+x 1+x
On en déduit donc le tableau de variations suivant :
r |0 1
efx) +
e /
0

De plus comme e(0) = 0 on en déduit donc que :
vx € [0;1],e(x) =0
On a donc :

lvx € [0;1],x > In(1 + x)|

Méthode 2 : Par concavité
On pose : g:x ~ In(1 + x)

1 -1
vx € [0;1],9'(x) =——==Vx €[0;1],g"(x) = ——= <0
x €[0;1], g'(x) o x €[0;1],8" (x) EFENE
Ainsi g est concave sur [0; 1] et sa courbe représentative est en-dessous de ses tangentes. Or on a :

(To):y =x
On en déduit donc par concavité que :
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Vx € [0;1],In(1 + x) < ¥

Méthode 3 : Par croissante de ’intégrale
On sait que :

X

X
1
Slz>f—dt§f1dtz>ln(1+x)§x
1+t
0 0

1

Vx € [0;1],Vt € |0; x|,
x € [051], V¢ € [0;x]

De plus on sait que :
vn € N,vVx € [0;1],x" € [0;1]
On en déduit donc que :

Vx €[0:1],vn € N,In(1 + x™) < x"

c)Ona:
1

1 1
VxE[0;1],VnEN,OSln(1+xn)Sx":dexSfln(1+x”)defx"dx
0 0

0
1

1
0< | In(1 Mdx <——
= _fn( +x)x_n+1
0

On en déduit donc que :
1 1
1 1
limjln(l +x™M)dx =0 :>—fln(1+x")dx = 0(—)
n n n
0 0

On a donc :

I,=1 _ln1(12) + o(l)

n

Remarque : On vient de faire ce que 1’on appelle un développement asymptotique ! On a ainsi la convergence de I,,,
et une vitesse de convergence de I,, vers 1 ! Ce qui est beaucoup plus précis ! On peut par exemple en déduire que :

(1 - 1,)) diverge !

|Exercice 3 : Les polynomes et les nombres de Bernoullij

1) Montrer que :
Q' =P

vP € R[X],3!Q € R[X] tel que fQ(t)dt =0
0

On définie alors pare récurrence la suite unique de polyndme (B,,) définie par :

{ B0=1
! {B;Fan_l
1
vn € N*
l " ’JBn(t)dtzo
Q

Ces polyndmes sont appelés les polynomes de Bernoulli.
2) a) Déterminer By, B, et Bs.
b) Déterminer le degré et le coefficient dominant de B,,.
¢) Démontrer que la famille (By, ..., B,) forme une base de R, [X].

On pose dans toute la suite de ce probléme :
vn € N, b, = B,,(0)
Ces nombres sont appelés les nombres de Bernoulli.
3) a) Calculer by, by, b, et bs.

b) Montrer par récurrence que :
n
n

vn €N, B, (X) = Z (1) bnoicX®
k=0
4) On pose la suite de polynomes (C,,) définie par :
vneN,C,(X)=(-D"B,(1-X)
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a) Montrer que :

( CO =1
! ! Cp =nChq
vn €N 1
"1vn € N7,
l n J C,()dt =0
0

b) En déduire que :

vn € N, B,(X) = (-1)"B, (1 — X)

c) En déduire que :

1
Vp € N, B2p+1 (E) =0

a0 =21 (5, 5 45, (23)

Vp € N, bypy1 = 0et By(1) = by,p 22

5) a) Démontrer que :

b) En déduire que :

6) a) Montrer que :

b) En déduire que :

1) Soit P € R[X]. On pose :

Ona:

deg(P)

POO= ) pexk
k=0

deg(P) deg(P)+1
Pk Pk-1
"=P & 3ceRtel X) = g — Xkt = E — Xk
Q c el que Q(X) a 1 +c a . +c

Remarque : Toute primitive est définie a partir d’une constante.

Or on veut :

1 /deg(P)+1 deg(P)+1

1

_ Pr+1 _ _ Z Pr-1
fQ(x)dx—0=>f Z E X4+c|dx=0=c= —k(k+1)
0 0 k=1 k=1

Ainsi ¢ est déterminée et le polynome Q est unique.

2) a) On peut se servir de ce que 1’on a fait précédemment ou le faire a la main !
Po Po 1
BijX)=—X——=X—=
1(X) =7 > >

Deplusona:

Enfinona:

Enfinona:

1
(BZ)’(X)=2><<X—E)=2X—1:B2(X)=X2—X+c

1

11 1 , 1
fBz(x)dx=§—E+c=0=c=g=>Bz(X)=X —X+g
0

1 3 X
(B3)'(X) =3B,(X) =3X2 —3X+-=B;(X) =X3—=X2+—+¢
3 2 3 2 2

1

f B3 (x)dx =

0

L 0
—_—— — — e et el
4 2737€ ¢
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On a donc les 4 premiers polynomes de Bernoulli :

(1-X 1-X2 X+1-X3 3X2+X)
’ 2’ 6’ 2 2

b) On pose comme proposition :
vn € N,P(n) : deg(B,) =net CD(B,) =1"
Démontrons cela par récurrence.
Initialisation : n =0
On a By(X) =1 = deg(By) = 0 et CD(By) = 1. Donc P(0) est vraie.
Hérédité : Soit n un entier naturel fixé. On suppose vraie P(n). On a alors :
On peut donc écrire :

n—1
B,(X) =X"+ Z P Xk
k=0
n—1
= (B1)' () = (1+ DX + ) (n+ DpeX
i k=0
= Bp (X)) = X" + kzo—(nk++1)1pk Xkt 4 ¢

= deg(Bp41) =n+1etCD(Byyq) =1
Donc P(n) est héréditaire.
Conclusion : On conclut d’apres le principe de récurrence.
¢) D’apreés la question précédente la famille (B, ..., B,,) est échelonnée donc libre. De plus :
Card(By, ...,B,) =n+ 1 =dim(R,[X])

C’est donc une base de R,,[X]

3) a)Ona:
1, 1 s 3., X
=(bo,bs by, by) = 1 110)
ov1,v2,Y3) — 726’
b) On pose comme proposition :
n
n n n
vn e N, Q) : "B,(X) = 2 (k) b, . X¥
k=0

Initialisation : n = 0
Ona:

0
0
D () bo-iX® = by = 1= Bo(X)
k=0

Donc Q(0) est vraie.

Hérédité : Soit n un entier naturel fixé. On suppose vraie Q(n). On a alors :
n

Ba) = ) (o) broiX*

k=0
On a donc :

(Bren) () = (1 + DB, 0O = (4 1) Y () ik
k=0

.

On en déduit donc que :

n
dc e Rtelque : By (X)) = (n+ 1)2
k=0

Deplusona:

Bn41(0) = ¢ = byyq
On adonc:
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n n+1
n 1 n 1
Bua () = 0+ D ) (1) e g bk + b = ) (4 D (" ) £ bnotenX* + bra
k=0 k=1
Deplusona:
( +1)( " )11) =(n+1)x n x x b
(n+1)! n+1
Tkx(n+1- k)!b”“"" - ( k )b"“-"
Enfinona:
+1
by = (n 0 )bn+1
On a donc :
n+1 1 n+1
n +1 +1
Bpi1(X) = Z(n +1) (k _ 1)Ebn—(k—1)Xk +bp1 = Z (n k )bn+1—ka + (n 0 )bn+1
k=1 k=1
n+1
+1
= By (X) = Z (Tl k )bn+1—ka
k=0

Donc Q(n) est héréditaire.

Conclusion : On conclut d’apres le principe de récurrence.
4) a)Ona:

lcoX) = (-1)°B,(1 — X) = 1]

Deplusona:
X)) =ED"B,(A-X) = X)) =(D"X (=D x (B (1-X)

Par composée
=(-D)"'xnxB, ;(1-X)
Or on sait que :
(_1)Tl+1 - (_1)1’1—1 X (_1)2 — (_1)1’1—1
On a donc :

Ch(X) =nx (D)™ 1 xB, ;(1-X) =nC, 1(X)

Enfinona:

1 1

1
an(t)dt = j(—l)”Bn(l —t)dt = (1" f B,(1—1t)dt
0 0 0
On effectue le changement de variableu =1 —1t:

a) On change les bornes :

{t:0=>u=1
t=1=>u=0
b) Calcul du dt

t=1—-u=dt=—-du
¢) On remplace

1 0 1
jBn(l —t)dt = an(u) (—du) = j B,(u)du =10
0 1 0
Ainsiona:
1
an(t)dt =0
0

b) Par unicité de la famille de polynéme B,,, on en déduit que Vn € N,C,, = B, = Vn € N,B,(X) =
(=1D"B,(1 - X)
¢) Il suffit de voir que :

1 _ 1 1 1 1
Vp €N, Bjpiq (E) = (—DP" Baps1 (1 - E) = Bp+1 (E) = —Bjp+1 (E) = Bjpi1 (E) =0

5) a) On pose :
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vn € N, B, (X) = 2" <B” (g) * B ()%»

On va montrer que (B,) vérifie la méme relation de récurrence que (B,,), et comme Py, = B, par unicité de la suite de
polynéme (B,,), on démontre que P, = B, Vn € N.

PO(X)=%x<80(5)+31(x+1))=%><2=1

2 2
Deplusona:

, . 1 (X (X +1 1 X 1+X
®RYX) = 2 ix=(B, (—) + B, (—) —nx2n1(B,_, (—) +Bps ( ) = P (X)
Par composée 2 2 2 2 2

Enfinona:

1 1 1 1
- t 1+t - t t
P, (t)dt =2 B, (§> + B, (T) dt =2 B, (E) dt + | Bps1 (E) dt
0 0 0 0
On pose le changement de variable u = %pour la premiére intégrale.

a) On change les bornes :

b) Calcul du dt

t=2u=dt=2du
¢) On remplace

1
1 2

an (%) dt = 2an(u) du

0 0
. t+1 e
On pose le changement de variable u = —, pour la deuxiéme intégrale.

a) On change les bornes :

{t=0=>u=

1
2
t=1=u=1

b) Calcul du dt

t=2u—1=dt =2du
¢) On remplace

1 1
an dt = Z.an(u) du
0

1
2
On en déduit donc que :

1
2

1 1 1

f dt+_[Bn+1 dt—2 an(u)du+jBn(u)du =2xan(u)du=0
0 0 1 0
2
D’apres la relation de Chasles sur les intégrales.
Ainsi P, vérifie la méme relation de récurrence que B,,, ce sont donc les mémes polyndomes :

vn € N, B, (X) = 2"1 (B" ()z_() + Bn (%»

b)Ona:

1
VD € N,bypyq1 = Bypyr(0) = 22P x <32p+1(0) + Bap+1 (E))

Or on sait d’apres la question 4,¢) que :

1
Vp € N, sz+1 (E) = O
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On en déduit donc que :
Vp € N, b2p+1 = 22prp+1 = b2p+1(1 - 4p) =0
Par intégrité de R on en déduit donc que :

|Vp € N*,bzp_l_l = 0|

On sait que :
vneN,B,(X) = (-1)"B,(1-X) =vneN,b, =B,(0) =(—-1)"B,(1)
Sin=2pona:
Vp € N, by, = B,,(1)
Deplussin=2p+1,p=1lona:
X X+1 1
By() = 27 (Bn (3)+ 8 (T)) = By (1) = 4 <32p+1 (5)+ BZp+1(1))

Or on sait que :

1
Vp € N*, B2p+1 (E) =0

On a donc :
Vp € N, Bypy1(1) = 4PB5p 41 (1) = Vp € N*, By 1 (1) = 0 = bypyy
On a donc :

IB,(1) =b,,p =2

6) a) On sait que :

n n
Vn > 0,B,(X) = Z () bricX* = ¥ = 0,B,(1) = Z (2) bas
k=0 k=0
Or on sait que :
vn = 2,B,(1) = B,(0) = b,
On en déduit donc que :
n
n
vn > Z’Z (%) Buic = b
k=0
b) On sait d’aprés la question précédente que :
n+1
n+1
vn =1, z ( k )bn+1—k = bpy1
k=0
Or on sait que :
. n+1\_( n+l
vz ovkelon+1,(" ) =( "T7,)
On en déduit donc que :
n+1 n+1 n+1 n-1
n+1 _ n+1 _ n+1 _ n+1 n+1
DY b= (T b= (" b= buar + (P ) b Y (M)
k=0 k=0 k=0 k=0
Or on sait que :
n+1
n+1
Z ( k )bn+1—k = bpy1
k=0
On en déduit donc que :
n-1
n+1 n+1
b+ (" ) bat ) (" 7) b= bua
k=0
n-1
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|Pr0bléme 1 : DL de la fonction tangente a tout 0rdre|

limité de tan a I’ordre 2n, avec n € N.

Partie A : On pose le probléme
1) Pourquoi tan admet un développement limité tout ordre en 0 ?
Dans le reste de I’exercice on pose la suite (t,,) définie par :
n

tan(x) = Z tx® + o(x™)
X—

k=0

2) Déterminer la valeur de t, et de t;.
3) Expliquez pourquoi on sait que :
Vk € [0;2n],t,, =0
4) Démontrer que :
T Coe?r 1
Vx € ]—E;E[,tan(x) =—-1X m
Dans tout le reste de 1’exercice on pose :
R—->R
2x
g: e -1
SRPY?
On adonc:
T ) _
Vx € ]—E;E[,tan(x) = —i X g(ix)
5) Pourquoi g € C*(R) ?
6) Démontrer que :
&0
vk € [0; 2n], t, = —i**1 x gk_'()

Dans le reste du probléme on pose la suite (u,,) définie par :

g™ (0)
n!

vneNu, =

Partie B : Etude de la suite (u,)
1) Démontrer que :

VxER,g'(x) =1—g2(x)

2) En déduire que : .
vn € N, vx € R, g™V (x) = — Z (Z) g®(x) g™ (x)
3) En déduire que : k=0 i
vne N, (n+ Duyy = — z UpUp—k
4) En déduire que : :=0
vne N, (n+ Dty = Z trtn_rk
k=0

5) Déterminer le DL (0) de tan(x).

6) Ecrire une fonction Python qui en entrée demande une valeur de n et en sortie renvoie la liste [t ...

Le but de ce probléme est de déterminer un algorithme nous permettant de déterminer le développement

Partie A :
1) On sait que :
T T sin(x)
Vx € |—=;—=|,tan(x) =
] 2 2[ ) cos(x)
Par quotient, on en déduit que tan € C* (]— g ; gD donc on peut écrire d’apres Taylor :

n

tan®(0) .
tan(x) o Z Tx + o(x™)
k=0 '
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Ainsi tan admet un DL a tout ordre.

2)Ona:

sin(x) x+o(x)
cos(x) 1+o(x)

tan(x) = x + o(x)

Ainsitp =0ett; =1.

3) On sait que tan est impaire, donc le développement polynomiale de tan est aussi impaire donc :
vk € [0; 2n], t,; = 0

4)Ona:
ix _ e—ix ] ] ]
T sin(x) ——o7 — . eTix(e?x — 1) L |
Vx € |—=;=|, tan(x) = = — — = - X—————t = —[ X ——
] 2 2[ () cos(x) e*x+eix e ix(e2ix 4 1) eix 41
2
5) On sait que x — e* € C®°(R) et que : Vx € R,e?* + 1 # 0.
Par composée et quotient on en déduit donc que g € C*(R).
6) D’apres la formule de Taylor et I’unicité du DL, on sait que :
tan® (0)

Vk € [0;2n],t;, = ]

De plus on sait d’apres la question 4) que :

Vx € ]—EE[ tan(x) = —i X g(ix)
2 ] 2 ) - g
Par récurrence immédiate ou par itération du procédé, on a :
T
Vx € ]_E;E['Vk € N, tan® (x) = —()**1 g™ (ix)
On en déduit donc que :
vk € N, tan®(0) = —()**1g*)(0)

tan(0) __ ©H**1g®(0)

— Vk € N, t, = Ll Il
Partie B :
1)Ona:
e?* -1 2e%*(e?* +1) — 2e**(e?* — 1) 4e%%
vx € R = = VxeRgW™= —
XER YW =y T VR ERY (€% + 1)?2 (eZ* +1)2

Deplusona:
(er _ 1)2 3 (er + 1)2 _ (eZX _ 1)2 B 462)6
(e2¥ +1)2 (e?¥ 4+ 1)2 T (e2¥ +1)2

1-g*(x)=1-

On en déduit donc que :

vx ER g'(x) =1— g*(x)|

2)Ona:

VXER,g'(x) =1-g*(x) = —(g(x) - D(g(x) + 1)
D’apres la formule de Leibniz on a :
n

vn=>1,Vx € R,w = —kzzo (Z) (g(x) — 1)(k)(g(x) + 1)(n—k)
Orona:

vk =1, (gx) — 1D)® = gl (x) — 100 = g (x)
Demémeona:
vk <n—1,(g() + DO = gr B () 4108 = g ()

Ainsiona:
> (1) @ = DB + D =
k=0 i
= (90 = D@ + D™ + > (1) (90) (9) "™ + (9 - DM (g + 1)
Orona: =

vn 2 1,(g(x) = D) + D™ + (g(x) = DP(g) + 1) = g(x) g™ (x) — g™ () + g™ (%) + g™ (x) g (x)
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= (;) 9099 + (1) 9™ 9

Ainsiona:
n-1
d*(g’ n-
vnz1vxe R% =-( () 990 + kzl (2) (90 “(9@) ™™ + () g™ 9 0)
- - ,Z (3) 8% @g™ @)
3) On sait que : )
()
vneNu, = g nl(O)

De plus on sait que :
n

dn !
vn>1,vx € R,% = gD (x) = - Z (Z) 9 () g™ (x)

n

k=0
e N o — 3 IP@ MO S
—vn>1,g 1)(0)——;(k)g(k>(0)g( k>(0)——<n!)k2=0 R T ——(n!)kzzoukun_k

On a donc :

NgE

vneN, (n+ Duyps = —) ) upy_k

0

NgEh

= VneN, (n+Duy,q =— ) W,k

=
Il

0

4) On sait que :

n
vn € N t, = —()" u, et (M + Dupyq = — Z UpUp—k

k=0
n
. M+ Ditpyq Lk tn—k
= VneN T _n+z == Z —jk+1 7 _jn—k+1
k=0
n
(n+ 1)t 1
= VneN,— nlo i2+nz titnk
k=0

n
— Vn € N, (n + 1)tn+1 = Z etk
k=n

5) On sait que :
tan(x) = to + tx + tox? + t3x3 + tx* + tsx® + tex® + 0(x®)
De plus par imparité on a :
t0=t2=t4=t6=08tt1=1
De plus d’aprés la question précédente on a :
3ty=ti=1=t; =
2

t5=ﬁ

1

3
Sxt5=t1xt3+t3xt1=§=>
On a donc :

1 2
_ 3 5 6
tan(x)—x+§x +ozx + o(x9)

6)Ona:
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def dltan(n):

u=[@,1]

for 1 in range(2,n+1):

. t=8
for j in range(i):
; t=t+u[j]*u[1-1-7]
t=t/1
u.append(t)

return u

On peut tester et on trouve :

*** python 3.4.5 |Continuum Analytics, Inc.| (default, Jul 5 281

»»» dltan(g)
[@, 1, ©.8, B.3333333333333333, 8.0, ©.13333333333333333, 0.0]

33 |




