
Page 1 sur 15 
 

Correction DS n°6 

 

Exercice 1 : Une somme directe 

 On pose :  

𝐹 = {𝑀 = (
𝑎 𝑏
𝑐 𝑑

) ∈ ℳ2(ℝ) 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑎 + 𝑑 = 0} 

𝐺 = 𝑣𝑒𝑐𝑡(𝐼2) 
1) Démontrer que 𝐹 est un espace vectoriel de dimension finie, en donner une base et sa dimension.  

2) Démontrer que :  

ℳ2(ℝ) = 𝐹⨁𝐺 

3) Décomposer la matrice 𝐴 = (
1 2
3 4

) dans 𝐹⨁𝐺. 

 

1) On a :  

𝑀 = (
𝑎 𝑏
𝑐 𝑑

) ∈ 𝐹 ⟺ 𝑑 = −𝑎 ⟺ 𝑀 = (
𝑎 𝑏
𝑐 −𝑎

) = 𝑎 (
1 0
0 −1

) + 𝑏 (
0 1
0 0

) + 𝑐 (
0 0
1 0

) 

On en déduit donc que :  

𝑭 = 𝒗𝒆𝒄𝒕((
𝟏 𝟎
𝟎 −𝟏

) , (
𝟎 𝟏
𝟎 𝟎

) , (
𝟎 𝟎
𝟏 𝟎

)) 

𝐹 est donc un espace vectoriel. De plus on a :  

ℬ = ((
1 0
0 −1

) , (
0 1
0 0

) , (
0 0
1 0

)) en est une base génératrice. Montrons qu’elle est libre.  

On résout :  

𝜆1 (
1 0
0 −1

) + 𝜆2 (
0 1
0 0

) + 𝜆3 (
0 0
1 0

) = (
0 0
0 0

) 

⟺{

𝜆1 = 0
𝜆2 = 0
𝜆3 = 0
−𝜆1 = 0

 

Donc ℬ est libre et génératrice de 𝐹, c’est donc une base et sa dimension est 3.  

2) On peut le faire de différentes façons.  

 

Méthode 1 : Montrer que 𝓑𝟐 = 𝓑 ∪ {𝑰𝟐} est une base de 𝓜𝟐(ℝ).  
 

Là encore on peut le faire de différentes façons.  

 

 𝐶𝑎𝑟𝑑(ℬ2) = 4 = dim(ℳ2(ℝ)) donc montrer que ℬ2 est une base de ℳ2(ℝ) revient à 

montrer que ℬ2 est libre.  

 

On résout :  

𝜆1 (
1 0
0 −1

) + 𝜆2 (
0 1
0 0

) + 𝜆3 (
0 0
1 0

) + 𝜆4𝐼2 = 02⟺ {

𝜆1 + 𝜆4 = 0
𝜆2 = 0
𝜆3 = 0

𝜆1 − 𝜆4 = 0

 

(𝐿1) et (𝐿4) donnent 𝜆1 = 0 = 𝜆4 

Donc  𝓑𝟐 est libre, c’est donc une base au vue de son cardinal.  

 

 𝐶𝑎𝑟𝑑(ℬ2) = 4 = dim(ℳ2(ℝ)) donc montrer que ℬ2 est une base de ℳ2(ℝ) revient à 

montrer que ℬ2 est génératrice. 

On a :  

ℳ2(ℝ) = 𝑣𝑒𝑐𝑡 ((
1 0
0 0

) , (
0 1
0 0

) , (
0 0
1 0

) , (
0 0
0 1

)) = 𝑣𝑒𝑐𝑡(𝐸1,1, 𝐸1,2, 𝐸2,1, 𝐸2,2) 

Montrer que ℬ2 est génératrice revient à montrer que les vecteurs de ℬ2 peuvent engendrer car 𝐸𝑖,𝑗 de la base 

canonique de ℳ2(ℝ). Montrons cela. Pour plus de commodité on pose :  
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ℬ = ((
1 0
0 −1

) , (
0 1
0 0

) , (
0 0
1 0

)) = (𝑀1, 𝑀2,𝑀3) 

On a :  

{
 
 

 
 𝐸1,1 =

1

2
𝐼2 +

1

2
𝑀1

𝐸1,2 = 𝑀2
𝐸2,1 = 𝑀3

𝐸2,2 =
1

2
𝐼2 −

1

2
𝑀1

 

Ainsi 𝓑𝟐 est génératrice, c’est donc une base au vue de son cardinal.   

 

Méthode 2 : Caractérisation des sommes directes. 

 

 a) Egalité des dimensions 

On a :  

dim(𝐹) + dim(𝐺) = 3 + 1 = 4 = dim(ℳ2(ℝ)) 

 b) Intersection réduit à {𝑶𝟐} 

𝑀 ∈ 𝐹 ∩ 𝐺 ⟺ {
∃𝜆 ∈ ℝ 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑀 = (

𝜆 0
0 𝜆

)

[𝑀]1,1 + [𝑀]2,2 = 0
⟺ 2𝜆 = 0 ⟺  𝑀 = 02 

Ainsi on a :  

𝐹 ∩ 𝐺 = {𝑂2} 
Par la caractérisation des sommes directes, 𝐹⨁𝐺 = ℳ2(ℝ). 

 

Méthode 3 : Analyse-synthèse 

 

 a) Analyse 

On a :  

𝑀 = (
𝑎 𝑏
𝑐 𝑑

) = (
𝑥 𝑦
𝑧 −𝑥

)⏟      
∈𝐹

+ (
𝑡 0
0 𝑡

)
⏟    
∈𝐺

  

⟺ {

𝑥 + 𝑡 = 𝑎
𝑦 = 𝑏
𝑧 = 𝑐

𝑡 − 𝑥 = 𝑑

⟺

{
 
 

 
 𝑥 =

1

2
(𝑎 − 𝑑)

𝑦 = 𝑏
𝑧 = 𝑐

𝑡 =
1

2
(𝑎 + 𝑑)

 

 b) Synthèse 

On a :  

∀𝑀 = (
𝑎 𝑏
𝑐 𝑑

) ∈ ℳ2(ℝ),𝑀 = (
𝑎 𝑏
𝑐 𝑑

) = (

1

2
(𝑎 − 𝑑) 𝑏

𝑐
1

2
(𝑑 − 𝑎)

)

⏟                
∈𝐹

+
1

2
(
𝑎 + 𝑑 0
0 𝑎 + 𝑑

)
⏟          

∈𝐺

 

On en déduit donc que :  

∀𝑀 = (
𝑎 𝑏
𝑐 𝑑

) ∈ ℳ2(ℝ), ∃! (𝑀𝐹 , 𝑀𝐺) ∈ 𝐹 × 𝐺 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑀 = 𝑀𝐺 +𝑀𝐹 

On a donc 𝓜𝟐(ℝ) = 𝑭⨁𝑮.  

 

3) D’après les questions précédentes on a :  

(
𝟏 𝟐
𝟑 𝟒

) = (
−
𝟑

𝟐
𝟐

𝟑
𝟑

𝟐

)

⏟      
∈𝑭

+(

𝟓

𝟐
𝟎

𝟎
𝟓

𝟐

)

⏟    
∈𝑮
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Exercice 2 : Une suite définie par une intégrale 

 On pose :  

∀𝑛 ∈ ℕ, 𝐼𝑛 = ∫
1

1 + 𝑥𝑛
𝑑𝑥

1

0

 

1) Expliquez pourquoi la suite (𝐼𝑛) est bien définie sur ℕ.  

2) Calculer 𝐼0, 𝐼1, 𝐼2. 

3) Dans cette question on cherche à calculer 𝐼3. 

 a) Montrer que :  

𝐼3 =
1

3
ln(2) −

1

3
∫

𝑥 − 2

𝑥2 − 𝑥 + 1

1

0

𝑑𝑥 

 b) En déduire que :  

𝐼3 =
1

3
ln(2) +

√3𝜋

9
 

4)  a) Démontrer que la suite (𝐼𝑛) est croissante.  

 b) En déduire la convergence de (𝐼𝑛). 
 c) Montrer que :  

0 ≤ 1 − 𝐼𝑛 ≤
1

𝑛 + 1
 

 d) Déterminer la limite de 𝐼𝑛 quand 𝑛 → +∞ 

On va chercher à présent un équivalent de la suite (𝐼𝑛 − 1) pour savoir « à quelle vitesse » 𝐼𝑛 converge vers sa limite.  

5)  a) Démontrer, à l’aide d’une IPP que :  

𝐼𝑛 − 1 = −
ln(2)

𝑛
+
1

𝑛
∫ ln(1 + 𝑥𝑛) 𝑑𝑥

1

0

 

 b) Démontrer que :  

∀𝑥 ∈ [0; 1], ∀𝑛 ∈ ℕ, ln(1 + 𝑥𝑛) ≤ 𝑥𝑛 

 c) En déduire que :  

𝐼𝑛 = 1 −
ln(2)

𝑛
+ 𝑜 (

1

𝑛
) 

 

1) On sait que :  

𝒇𝒏: 𝒙 ↦
𝟏

𝟏 + 𝒙𝒏
∈ 𝓒𝟎([𝟎; 𝟏]) 𝑝𝑎𝑟 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 

Donc 𝑓𝑛 admet une primitive sur [0; 1] donc 𝑰𝒏 est bien définie.  

2) On a :  

𝑰𝟎 = ∫
𝟏

𝟏 + 𝒙𝟎
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟐
 

𝑰𝟐 = ∫
𝟏

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= [𝐥𝐧 (𝟏 + 𝒙)]𝟎
𝟏 = 𝐥𝐧(𝟐) 

𝑰𝟐 = ∫
𝟏

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

= [𝒂𝒓𝒄𝒕𝒂𝒏(𝒙)]𝟎
𝟏 =

𝝅

𝟒
 

3)  a) On sait que : 

∀𝑥 ∈ [0; 1], 1 + 𝑥3 = (1 + 𝑥)(𝑥2 − 𝑥 + 1) 

On décompose alors en éléments simples. On cherche (𝑎, 𝑏, 𝑐) ∈ ℝ3 tel que :  

∀𝑥 ∈ [0; 1],
1

1 + 𝑥3
=

1

(1 + 𝑥)(𝑥2 − 𝑥 + 1)
=

𝑎

1 + 𝑥
+

𝑏𝑥 + 𝑐

𝑥2 − 𝑥 + 1
 

=
𝑎(𝑥2 − 𝑥 + 1) + (𝑏𝑥 + 𝑐)(1 + 𝑥)

1 + 𝑥3
=
𝑥2(𝑎 + 𝑏) + 𝑥(𝑏 + 𝑐 − 𝑎) + 𝑎 + 𝑐

1 + 𝑥3
 

On identifie :  
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{
𝑎 + 𝑏 = 0

𝑏 + 𝑐 − 𝑎 = 0
𝑐 + 𝑎 = 1

⟺

{
 
 

 
 𝑎 =

1

3

𝑏 = −
1

3

𝑐 =
2

3

 

On a donc :  

∀𝑥 ∈ [0; 1],
1

1 + 𝑥3
=
1

3
×

1

1 + 𝑥
−
1

3
×

𝑥 − 2

𝑥2 − 𝑥 + 1
 

On a donc :  

𝐼3 = ∫
1

1 + 𝑥3
𝑑𝑥

1

0

= ∫(
1

3
×

1

1 + 𝑥
−
1

3
×

𝑥 − 2

𝑥2 − 𝑥 + 1
)𝑑𝑥

1

0

=
1

3
∫

1

1 + 𝑥
𝑑𝑥

1

0

−
1

3
∫

𝑥 − 2

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

 

=
𝟏

𝟑
𝐥𝐧(𝟐) −

𝟏

𝟑
∫

𝒙 − 𝟐

𝒙𝟐 − 𝒙 + 𝟏
𝒅𝒙

𝟏

𝟎

 

Par linéarité de l’intégrale.  

 b) On a :  

∫
𝑥 − 2

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

=
1

2
∫

2𝑥 − 4

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

=
1

2
∫

2𝑥 − 1

𝑥2 − 𝑥 + 1
−

3

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

 

=
1

2
∫

2𝑥 − 1

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

−
3

2
∫

1

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

=
1

2
[ln(𝑥2 − 𝑥 + 1)]0

1 −
3

2
∫

1

𝑥2 − 𝑥 + 1
𝑑𝑥

1

0

 

= −
3

2
∫

1

(𝑥 −
1
2
)
2

+
3
4

𝑑𝑥

1

0

= −2∫
1

(
2

√3
𝑥 −

1

√3
)
2

+ 1

𝑑𝑥

1

0

= −√3 × [arctan (
2

√3
𝑥 −

1

√3
)]
0

1

 

= −√3(arctan (
1

√3
) − arctan (

−1

√3
)) = −2√3 × arctan(

1
2

√3
2

) = −2√3 ×
𝜋

6
= −

√3𝜋

3
 

On en déduit donc que :  

𝑰𝟑 =
𝟏

𝟑
𝐥𝐧(𝟐) +

√𝟑

𝟗
𝝅 

4)  a) On a :  

𝐼𝑛+1 − 𝐼𝑛 = ∫
1

1 + 𝑥𝑛+1
𝑑𝑥

1

0

−∫
1

1 + 𝑥𝑛
𝑑𝑥

1

0

= ∫
1

1 + 𝑥𝑛+1
−

1

1 + 𝑥𝑛
𝑑𝑥

1

0

 

= ∫
𝑥𝑛(1 − 𝑥)

(1 + 𝑥𝑛+1)(1 + 𝑥𝑛)
𝑑𝑥

1

0

 

Or on a :  

∀𝑥 ∈ [0; 1], {

𝑥𝑛 ≥ 0
1 + 𝑥𝑛+1 > 0
1 + 𝑥𝑛 > 0
1 − 𝑥 > 0

⟹
𝑥𝑛(1 − 𝑥)

(1 + 𝑥𝑛+1)(1 + 𝑥𝑛)
> 0 ⟹ ∫

𝑥𝑛(1 − 𝑥)

(1 + 𝑥𝑛+1)(1 + 𝑥𝑛)
𝑑𝑥

1

0

> 0 

Par croissance de l’intégrale.  

On en déduit donc que (𝑰𝒏) est croissante.  

 b) De plus on a :  

∀𝑥 ∈ [0; 1],
1

1 + 𝑥𝑛
≤ 1 ⟹ ∫

1

1 + 𝑥𝑛
𝑑𝑥

1

0

≤ ∫1𝑑𝑥

1

0

⟹ 𝐼𝑛 ≤ 1 

Donc (𝐼𝑛) est croissante et majorée, elle converge.  

 c) On a :  
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1 − 𝐼𝑛 = 1 −∫
1

1 + 𝑥𝑛
𝑑𝑥

1

0

= ∫1𝑑𝑥

1

0

−∫
1

1 + 𝑥𝑛
𝑑𝑥

1

0

= ∫(1 −
1

1 + 𝑥𝑛
)𝑑𝑥

1

0

= ∫
𝑥𝑛

1 + 𝑥𝑛
𝑑𝑥

1

0

 

De plus on sait que :  

∀𝑥 ∈ [0; 1], 0 ≤
𝑥𝑛

1 + 𝑥𝑛
≤ 𝑥𝑛 ⟹∫0 𝑑𝑥

1

0

≤ ∫
𝑥𝑛

1 + 𝑥𝑛
𝑑𝑥

1

0

≤ ∫𝑥𝑛𝑑𝑥

1

0

 

⟹ 𝟎 ≤ 𝟏 − 𝑰𝒏 ≤
𝟏

𝒏 + 𝟏
 

 d) On a d’après le théorème des gendarmes :  

𝐥𝐢𝐦
𝒏
(𝟏 − 𝑰𝒏) = 𝟎 ⟹ 𝐥𝐢𝐦

𝒏
𝑰𝒏 = 𝐥𝐢𝐦

𝒏
∫

𝟏

𝟏 + 𝒙𝒏
𝒅𝒙

𝟏

𝟎

= 𝟏 

5)  a) On a :  

𝐼𝑛 − 1 = −∫
𝑥𝑛

1 + 𝑥𝑛
𝑑𝑥

1

0

= −∫
𝑥𝑛−1

1 + 𝑥𝑛⏟  
=𝑢′(𝑥)

× 𝑥⏟
=𝑣(𝑥)

 𝑑𝑥

1

0

 

= −[
𝑥

𝑛
× ln(1 + 𝑥𝑛)]

0

1

+
1

𝑛
∫ ln(1 + 𝑥𝑛) 𝑑𝑥

1

0

 

= −
𝐥𝐧(𝟐)

𝒏
+
𝟏

𝒏
∫ 𝐥𝐧(𝟏 + 𝒙𝒏) 𝒅𝒙

𝟏

𝟎

 

 b) On va démontrer que :  

∀𝑥 ∈ [0; 1], ln(1 + 𝑥) ≤ 𝑥 

On peut le faire en étudiant la fonction écart, en utilisant la concavité de la fonction 𝑙𝑛 car sa dérivée seconde est 

négative, ou bien à l’aide d’une intégrale !  

Méthode 1 : Fonction écart 

On pose :  

e: {
[0; 1] → ℝ

x ↦ x − ln(1 + x)
 

On sait que 𝑒 est dérivable sur [0; 1] et :  

∀x ∈ [0; 1], e′(x) = 1 −
1

1 + x
=

x

1 + x
 

On en déduit donc le tableau de variations suivant :  

 
De plus comme e(0) = 0 on en déduit donc que :  

∀x ∈ [0; 1], e(x) ≥ 0 

On a donc :  

∀𝐱 ∈ [𝟎; 𝟏], 𝐱 ≥ 𝐥𝐧(𝟏 + 𝐱) 

Méthode 2 : Par concavité 

On pose : 𝑔: 𝑥 ↦ ln(1 + 𝑥) 

∀𝑥 ∈ [0; 1], 𝑔′(𝑥) =
1

𝑥 + 1
⟹ ∀𝑥 ∈ [0; 1], g′′(𝑥) =

−1

(𝑥 + 1)2
< 0  

Ainsi 𝑔 est concave sur [0; 1] et sa courbe représentative est en-dessous de ses tangentes. Or on a :  

(𝑇0): 𝑦 = 𝑥 

On en déduit donc par concavité que :  
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∀𝒙 ∈ [𝟎; 𝟏], 𝐥𝐧(𝟏 + 𝒙) ≤ 𝒙 

Méthode 3 : Par croissante de l’intégrale 

On sait que :  

∀𝑥 ∈ [0; 1], ∀𝑡 ∈ [0; 𝑥],
1

1 + 𝑡
≤ 1 ⟹ ∫

1

1 + 𝑡
𝑑𝑡

𝑥

0

≤ ∫1𝑑𝑡

𝑥

0

⟹ ln(1 + 𝑥) ≤ 𝑥 

De plus on sait que :  

∀𝑛 ∈ ℕ, ∀𝑥 ∈ [0; 1], xn ∈ [0; 1] 
On en déduit donc que :  

∀𝒙 ∈ [𝟎; 𝟏], ∀𝒏 ∈ ℕ, 𝐥𝐧(𝟏 + 𝒙𝒏) ≤ 𝒙𝒏 

 c) On a :  

∀𝑥 ∈ [0; 1], ∀𝑛 ∈ ℕ, 0 ≤ ln(1 + 𝑥𝑛) ≤ 𝑥𝑛 ⟹∫0

1

0

𝑑𝑥 ≤ ∫ ln(1 + 𝑥𝑛) 𝑑𝑥

1

0

≤ ∫𝑥𝑛𝑑𝑥

1

0

 

⟹ 0 ≤ ∫ln(1 + 𝑥𝑛) 𝑑𝑥

1

0

≤
1

𝑛 + 1
 

On en déduit donc que :  

lim
𝑛
∫ ln(1 + 𝑥𝑛) 𝑑𝑥

1

0

= 0 ⟹
1

𝑛
∫ ln(1 + 𝑥𝑛) 𝑑𝑥

1

0

= 𝑜 (
1

𝑛
) 

On a donc :  

𝑰𝒏 = 𝟏 −
𝐥𝐧(𝟐)

𝒏
+ 𝒐(

𝟏

𝒏
) 

Remarque : On vient de faire ce que l’on appelle un développement asymptotique ! On a ainsi la convergence de 𝐼𝑛, 
et une vitesse de convergence de 𝐼𝑛 vers 1 ! Ce qui est beaucoup plus précis ! On peut par exemple en déduire que :  

(∑(1 − 𝐼𝑛)) diverge !  

 

Exercice 3 : Les polynômes et les nombres de Bernoulli 

1) Montrer que :  

∀𝑃 ∈ ℝ[𝑋], ∃! 𝑄 ∈ ℝ[𝑋] 𝑡𝑒𝑙 𝑞𝑢𝑒 {

𝑄′ = 𝑃

∫𝑄(𝑡)𝑑𝑡 = 0

1

0

 

On définie alors pare récurrence la suite unique de polynôme (𝐵𝑛) définie par :  

{
 
 

 
 

   

𝐵0 = 1

∀𝑛 ∈ ℕ∗,

{
 

 
𝐵𝑛
′ = 𝑛𝐵𝑛−1

∫𝐵𝑛(𝑡)𝑑𝑡

1

0

= 0

      

Ces polynômes sont appelés les polynômes de Bernoulli.  

2) a) Déterminer 𝐵1, 𝐵2 𝑒𝑡 𝐵3. 

 b) Déterminer le degré et le coefficient dominant de 𝐵𝑛. 

 c) Démontrer que la famille (𝐵0, … , 𝐵𝑛) forme une base de ℝ𝑛[𝑋]. 
 

 On pose dans toute la suite de ce problème :  

∀𝑛 ∈ ℕ, 𝑏𝑛 = 𝐵𝑛(0) 
Ces nombres sont appelés les nombres de Bernoulli.  

3)  a) Calculer 𝑏0, 𝑏1, 𝑏2 𝑒𝑡 𝑏3. 

 b) Montrer par récurrence que :  

∀𝑛 ∈ ℕ, 𝐵𝑛(𝑋) = ∑ (
𝑛
𝑘
)𝑏𝑛−𝑘𝑋

𝑘

𝑛

𝑘=0

 

4) On pose la suite de polynômes (𝐶𝑛) définie par :  

∀𝑛 ∈ ℕ, 𝐶𝑛(𝑋) = (−1)
𝑛𝐵𝑛(1 − 𝑋) 
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 a) Montrer que :  

∀𝑛 ∈ ℕ,

{
 
 

 
 

𝐶0 = 1

∀𝑛 ∈ ℕ∗,

{
 

 
𝐶𝑛
′ = 𝑛𝐶𝑛−1

∫𝐶𝑛(𝑡)𝑑𝑡

1

0

= 0

 

 b) En déduire que :  

∀𝑛 ∈ ℕ, 𝐵𝑛(𝑋) = (−1)
𝑛𝐵𝑛(1 − 𝑋) 

 c) En déduire que :  

∀𝑝 ∈ ℕ, 𝐵2𝑝+1 (
1

2
) = 0 

5)  a) Démontrer que :  

∀𝑛 ∈ ℕ, 𝐵𝑛(𝑋) = 2
𝑛−1 (𝐵𝑛 (

𝑋

2
) + 𝐵𝑛 (

𝑋 + 1

2
)) 

 b) En déduire que :  

∀𝑝 ∈ ℕ∗, 𝑏2𝑝+1 = 0 𝑒𝑡 𝐵𝑝(1) = 𝑏𝑝, 𝑝 ≥ 2 

6)  a) Montrer que :  

∀𝑛 ≥ 2,∑ (
𝑛
𝑘
) 𝑏𝑛−𝑘

𝑛

𝑘=0

= 𝑏𝑛 

 b) En déduire que :  

∀𝑛 ≥ 1, 𝑏𝑛 = −
1

𝑛 + 1
×∑(

𝑛 + 1
𝑘
) 𝑏𝑘

𝑛−1

𝑘=0

 

 

1) Soit 𝑃 ∈ ℝ[𝑋]. On pose :  

𝑃(𝑋) = ∑ 𝑝𝑘𝑋
𝑘

deg(𝑃)

𝑘=0

 

On a :  

𝑄′ = 𝑃 ⟺ ∃𝑐 ∈ ℝ 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑄(𝑋) = ∑
𝑝𝑘
𝑘 + 1

𝑋𝑘+1

deg(𝑃)

𝑘=0

+ 𝑐 = ∑
𝑝𝑘−1
𝑘
𝑋𝑘

deg(𝑃)+1

𝑘=1

+ 𝑐 

Remarque : Toute primitive est définie à partir d’une constante.  

Or on veut :  

∫𝑄(𝑥)𝑑𝑥

1

0

= 0⟹ ∫( ∑
𝑝𝑘+1
𝑘
𝑋𝑘

deg(𝑃)+1

𝑘=1

+ 𝑐)𝑑𝑥

1

0

= 0⟹𝒄 = − ∑
𝒑𝒌−𝟏

𝒌(𝒌 + 𝟏)

𝐝𝐞𝐠(𝑷)+𝟏

𝒌=𝟏

 

Ainsi 𝑐 est déterminée et le polynôme 𝑸 est unique.  

2)  a) On peut se servir de ce que l’on a fait précédemment ou le faire à la main !  

𝐵1(𝑋) =
𝑝0
1
𝑋 −

𝑝0
2
= 𝑋 −

1

2
 

(𝐵2)
′(𝑋) = 2 × (𝑋 −

1

2
) = 2𝑋 − 1 ⟹ 𝐵2(𝑋) = 𝑋

2 − 𝑋 + 𝑐 

De plus on a :  

∫𝐵2(𝑥)

1

0

𝑑𝑥 =
1

3
−
1

2
+ 𝑐 = 0 ⟹ 𝑐 =

1

6
⟹ 𝐵2(𝑋) = 𝑋

2 − 𝑋 +
1

6
 

Enfin on a :  

(𝐵3)
′(𝑋) = 3𝐵2(𝑋) = 3𝑋

2 − 3𝑋 +
1

2
⟹ 𝐵3(𝑋) = 𝑋

3 −
3

2
𝑋2 +

𝑋

2
+ 𝑐 

Enfin on a :  

∫𝐵3(𝑥)

1

0

𝑑𝑥 =
1

4
−
1

2
+
1

4
+ 𝑐 = 0 ⟹ 𝑐 = 0 
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On a donc les 4 premiers polynômes de Bernoulli :  

(𝟏 ; 𝑿 −
𝟏

𝟐
 ; 𝑿𝟐 − 𝑿+

𝟏

𝟔
 ;  𝑿𝟑 −

𝟑

𝟐
𝑿𝟐 +

𝑿

𝟐
) 

 b) On pose comme proposition :  

∀𝑛 ∈ ℕ,𝒫(𝑛) ∶ deg(𝐵𝑛) = 𝑛 𝑒𝑡 𝐶𝐷(𝐵𝑛) = 1" 
Démontrons cela par récurrence.  

Initialisation : 𝑛 = 0 

On a 𝐵0(𝑋) = 1 ⟹ deg(𝐵0) = 0 𝑒𝑡 𝐶𝐷(𝐵0) = 1. Donc 𝒫(0) est vraie.  

Hérédité : Soit 𝑛 un entier naturel fixé. On suppose vraie 𝒫(𝑛). On a alors :  

On peut donc écrire :  

𝐵𝑛(𝑋) = 𝑋
𝑛 +∑𝑝𝑘𝑋

𝑘

𝑛−1

𝑘=0

 

⟹ (𝐵𝑛+1)
′(𝑋) = (𝑛 + 1)𝑋𝑛 +∑(𝑛 + 1)𝑝𝑘𝑋

𝑘

𝑛−1

𝑘=0

 

⟹𝐵𝑛+1(𝑋) = 𝑋
𝑛+1 +∑

(𝑛 + 1)𝑝𝑘
𝑘 + 1

𝑋𝑘+1
𝑛−1

𝑘=0

+ 𝑐 

⟹ deg(𝐵𝑛+1) = 𝑛 + 1 𝑒𝑡 𝐶𝐷(𝐵𝑛+1) = 1 

Donc 𝒫(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

 c) D’après la question précédente la famille (𝑩𝟎, … , 𝑩𝒏) est échelonnée donc libre. De plus :  

𝑪𝒂𝒓𝒅(𝑩𝟎, … , 𝑩𝒏) = 𝒏 + 𝟏 = 𝐝𝐢𝐦(ℝ𝒏[𝑿])  
C’est donc une base de ℝ𝒏[𝑿] 

3)  a) On a :  

(𝐵0, 𝐵1, 𝐵2, 𝐵3) = (1 ; 𝑋 −
1

2
 ;  𝑋2 − 𝑋 +

1

6
 ;   𝑋3 −

3

2
𝑋2 +

𝑋

2
) 

⟹(𝒃𝟎, 𝒃𝟏 , 𝒃𝟐, 𝒃𝟑) = (𝟏,−
𝟏

𝟐
,
𝟏

𝟔
, 𝟎)  

 b) On pose comme proposition :  

∀𝑛 ∈ ℕ, 𝒬(𝑛) ∶ "𝐵𝑛(𝑋) = ∑(
𝑛
𝑘
)𝑏𝑛−𝑘𝑋

𝑘

𝑛

𝑘=0

" 

Initialisation : 𝑛 = 0 

On a :  

∑(
0
𝑘
)𝑏0−𝑘𝑋

0

0

𝑘=0

= 𝑏0 = 1 = 𝐵0(𝑋) 

Donc 𝒬(0) est vraie.  

Hérédité : Soit 𝑛 un entier naturel fixé. On suppose vraie 𝒬(𝑛). On a alors : 

𝐵𝑛(𝑋) = ∑(
𝑛
𝑘
) 𝑏𝑛−𝑘𝑋

𝑘

𝑛

𝑘=0

 

On a donc :  

(𝐵𝑛+1)
′(𝑋) = (𝑛 + 1)𝐵𝑛(𝑋) = (𝑛 + 1)∑ (

𝑛
𝑘
)𝑏𝑛−𝑘𝑋

𝑘

𝑛

𝑘=0

 

On en déduit donc que :  

∃𝑐 ∈ ℝ 𝑡𝑒𝑙 𝑞𝑢𝑒 ∶ 𝐵𝑛+1(𝑋) = (𝑛 + 1)∑
(
𝑛
𝑘
)𝑏𝑛−𝑘

𝑘 + 1
𝑋𝑘+1

𝑛

𝑘=0

+ 𝑐 

De plus on a :  

𝐵𝑛+1(0) = 𝑐 = 𝑏𝑛+1  
On a donc :  
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𝐵𝑛+1(𝑋) = (𝑛 + 1)∑ (
𝑛
𝑘
)

1

𝑘 + 1
𝑏𝑛−𝑘𝑋

𝑘+1

𝑛

𝑘=0

+ 𝑏𝑛+1 = ∑(𝑛 + 1) (
𝑛

𝑘 − 1
)
1

𝑘
𝑏𝑛−(𝑘−1)𝑋

𝑘

𝑛+1

𝑘=1

+ 𝑏𝑛+1 

De plus on a :  

(𝑛 + 1) (
𝑛

𝑘 − 1
)
1

𝑘
𝑏𝑛−(𝑘−1) = (𝑛 + 1) ×

𝑛!

(𝑘 − 1)! (𝑛 − (𝑘 − 1))!
×

1

𝑘 + 1
× 𝑏𝑛+1−𝑘 

=
(𝑛 + 1)!

𝑘! × (𝑛 + 1 − 𝑘)!
𝑏𝑛+1−𝑘 = (

𝑛 + 1
𝑘
) 𝑏𝑛+1−𝑘 

Enfin on a :  

𝑏𝑛+1 = (
𝑛 + 1
0
) 𝑏𝑛+1 

On a donc :  

𝐵𝑛+1(𝑋) = ∑(𝑛 + 1) (
𝑛

𝑘 − 1
)
1

𝑘
𝑏𝑛−(𝑘−1)𝑋

𝑘

𝑛+1

𝑘=1

+ 𝑏𝑛+1 = ∑(
𝑛 + 1
𝑘
) 𝑏𝑛+1−𝑘𝑋

𝑘

𝑛+1

𝑘=1

+ (
𝑛 + 1
0
)𝑏𝑛+1 

⟹𝑩𝒏+𝟏(𝑿) = ∑(
𝒏 + 𝟏
𝒌

)𝒃𝒏+𝟏−𝒌𝑿
𝒌

𝒏+𝟏

𝒌=𝟎

 

Donc 𝒬(𝑛) est héréditaire.  

Conclusion : On conclut d’après le principe de récurrence.  

4)  a) On a :  

𝑪𝟎(𝑿) = (−𝟏)
𝟎𝑩𝟎(𝟏 − 𝑿) = 𝟏 

De plus on a :  

𝐶𝑛(𝑋) = (−1)
𝑛𝐵𝑛(1 − 𝑋) ⟹

𝑃𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑠é𝑒
𝐶𝑛
′ (𝑋) = (−1)𝑛 × (−1) × (𝐵𝑛)

′(1 − 𝑋) 

= (−1)𝑛+1 × 𝑛 × 𝐵𝑛−1(1 − 𝑋) 
Or on sait que :  

(−1)𝑛+1 = (−1)𝑛−1 × (−1)2 = (−1)𝑛−1 

On a donc :  

𝑪𝒏
′ (𝑿) = 𝒏 × (−𝟏)𝒏−𝟏 × 𝑩𝒏−𝟏(𝟏 − 𝑿) = 𝒏𝑪𝒏−𝟏(𝑿) 

Enfin on a :  

∫𝐶𝑛(𝑡)𝑑𝑡

1

0

= ∫(−1)𝑛𝐵𝑛(1 − 𝑡)

1

0

𝑑𝑡 = (−1)𝑛∫𝐵𝑛(1 − 𝑡)

1

0

𝑑𝑡 

On effectue le changement de variable 𝒖 = 𝟏 − 𝒕 :  
 a) On change les bornes :  

{
𝑡 = 0 ⟹ 𝑢 = 1
𝑡 = 1 ⟹ 𝑢 = 0

 

 b) Calcul du 𝒅𝒕 

𝑡 = 1 − 𝑢 ⟹ 𝑑𝑡 = −𝑑𝑢 

 c) On remplace  

∫𝐵𝑛(1 − 𝑡)

1

0

𝑑𝑡 = ∫𝐵𝑛(𝑢)

0

1

(−𝑑𝑢) = ∫𝐵𝑛(𝑢)

1

0

𝑑𝑢 = 0 

Ainsi on a :  

∫𝑪𝒏(𝒕)𝒅𝒕

𝟏

𝟎

= 𝟎 

 b) Par unicité de la famille de polynôme 𝐵𝑛, on en déduit que ∀𝑛 ∈ ℕ, 𝐶𝑛 = 𝐵𝑛 ⟹∀𝑛 ∈ ℕ,𝐵𝑛(𝑋) =

(−1)𝑛𝐵𝑛(1 − 𝑋) 
 c) Il suffit de voir que :  

∀𝒑 ∈ ℕ,𝑩𝟐𝒑+𝟏 (
𝟏

𝟐
) = (−𝟏)𝟐𝒑+𝟏𝑩𝟐𝒑+𝟏 (𝟏 −

𝟏

𝟐
) ⟹ 𝑩𝟐𝒑+𝟏 (

𝟏

𝟐
) = −𝑩𝟐𝒑+𝟏 (

𝟏

𝟐
) ⟹ 𝑩𝟐𝒑+𝟏 (

𝟏

𝟐
) = 𝟎 

5)  a) On pose :  
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∀𝑛 ∈ ℕ, 𝑃𝑛(𝑋) = 2
𝑛−1 (𝐵𝑛 (

𝑋

2
) + 𝐵𝑛 (

𝑋 + 1

2
)) 

On va montrer que (𝑃𝑛) vérifie la même relation de récurrence que (𝐵𝑛), et comme 𝑃0 = 𝐵0, par unicité de la suite de 

polynôme (𝐵𝑛), on démontre que 𝑃𝑛 = 𝐵𝑛 ∀𝑛 ∈ ℕ.  

𝑃0(𝑋) =
1

2
× (𝐵0 (

𝑋

2
) + 𝐵1 (

𝑋 + 1

2
)) =

1

2
× 2 = 1 

De plus on a :  

(𝑃𝑛)
′(𝑋) =

𝑃𝑎𝑟 𝑐𝑜𝑚𝑝𝑜𝑠é𝑒
2𝑛−1 ×

1

2
(𝐵𝑛′ (

𝑋

2
) + 𝐵𝑛′ (

𝑋 + 1

2
)) = 𝑛 × 2𝑛−1 (𝐵𝑛−1 (

𝑋

2
) + 𝐵𝑛−1 (

1 + 𝑋

2
)) = 𝑛𝑃𝑛−1(𝑋) 

Enfin on a :  

∫𝑃𝑛(𝑡)𝑑𝑡

1

0

= 2𝑛−1∫(𝐵𝑛 (
𝑡

2
) + 𝐵𝑛 (

1 + 𝑡

2
))𝑑𝑡

1

0

= 2𝑛−1(∫𝐵𝑛 (
𝑡

2
) 𝑑𝑡

1

0

+∫𝐵𝑛+1 (
𝑡

2
)𝑑𝑡

1

0

) 

On pose le changement de variable 𝑢 =
𝑡

2
 pour la première intégrale. 

 a) On change les bornes :  

{
𝑡 = 0 ⟹ 𝑢 = 0

𝑡 = 1 ⟹ 𝑢 =
1

2

 

 b) Calcul du 𝒅𝒕 

𝑡 = 2𝑢 ⟹ 𝑑𝑡 = 2𝑑𝑢 

 c) On remplace  

∫𝐵𝑛 (
𝑡

2
) 𝑑𝑡

1

0

= 2∫𝐵𝑛(𝑢)

1
2

0

𝑑𝑢 

On pose le changement de variable 𝑢 =
𝑡+1

2
 pour la deuxième intégrale. 

 a) On change les bornes :  

{𝑡 = 0 ⟹ 𝑢 =
1

2
 

𝑡 = 1 ⟹ 𝑢 = 1

 

 b) Calcul du 𝒅𝒕 

𝑡 = 2𝑢 − 1 ⟹ 𝑑𝑡 = 2𝑑𝑢 

 c) On remplace  

∫𝐵𝑛 (
𝑡 + 1

2
) 𝑑𝑡

1

0

= 2∫𝐵𝑛(𝑢)

1

1
2

𝑑𝑢 

On en déduit donc que :  

∫𝐵𝑛 (
𝑡

2
) 𝑑𝑡

1

0

+∫𝐵𝑛+1 (
𝑡

2
)𝑑𝑡

1

0

= 2

(

 
 
∫𝐵𝑛(𝑢)

1
2

0

𝑑𝑢 + ∫𝐵𝑛(𝑢)

1

1
2

𝑑𝑢

)

 
 
= 2 ×∫𝐵𝑛(𝑢)

1

0

𝑑𝑢 = 0 

D’après la relation de Chasles sur les intégrales.  

Ainsi 𝑃𝑛 vérifie la même relation de récurrence que 𝐵𝑛, ce sont donc les mêmes polynômes : 

∀𝒏 ∈ ℕ,𝑩𝒏(𝑿) = 𝟐
𝒏−𝟏 (𝑩𝒏 (

𝑿

𝟐
) + 𝑩𝒏 (

𝑿 + 𝟏

𝟐
)) 

 b) On a :  

∀𝑝 ∈ ℕ, 𝑏2𝑝+1 = 𝐵2𝑝+1(0) = 2
2𝑝 × (𝐵2𝑝+1(0) + 𝐵2𝑝+1 (

1

2
)) 

Or on sait d’après la question 4,c) que :  

∀𝑝 ∈ ℕ, 𝐵2𝑝+1 (
1

2
) = 0 
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On en déduit donc que :  

∀𝑝 ∈ ℕ, 𝑏2𝑝+1 = 2
2𝑝𝑏2𝑝+1⟹ 𝑏2𝑝+1(1 − 4

𝑝) = 0  

Par intégrité de ℝ on en déduit donc que :  

∀𝒑 ∈ ℕ∗, 𝒃𝟐𝒑+𝟏 = 𝟎  

On sait que :  

∀𝑛 ∈ ℕ, 𝐵𝑛(𝑋) = (−1)
𝑛𝐵𝑛(1 − 𝑋) ⟹ ∀𝑛 ∈ ℕ, 𝑏𝑛 = 𝐵𝑛(0) = (−1)

𝑛𝐵𝑛(1) 
Si 𝑛 = 2𝑝 on a :  

∀𝑝 ∈ ℕ, 𝑏2𝑝 = 𝐵2𝑝(1) 

De plus si 𝑛 = 2𝑝 + 1, 𝑝 ≥ 1 on a :  

𝐵𝑛(𝑋) = 2
𝑛−1 (𝐵𝑛 (

𝑋

2
) + 𝐵𝑛 (

𝑋 + 1

2
)) ⟹ 𝐵2𝑝+1(1) = 4

𝑝 (𝐵2𝑝+1 (
1

2
) + 𝐵2𝑝+1(1)) 

Or on sait que :  

∀𝑝 ∈ ℕ∗, 𝐵2𝑝+1 (
1

2
) = 0 

On a donc :  

∀𝑝 ∈ ℕ∗, 𝐵2𝑝+1(1) = 4
𝑝𝐵2𝑝+1(1) ⟹ ∀𝑝 ∈ ℕ∗, 𝐵2𝑝+1(1) = 0 = 𝑏2𝑝+1  

On a donc :  

𝑩𝒑(𝟏) = 𝒃𝒑, 𝒑 ≥ 𝟐 

6)  a) On sait que :  

∀𝑛 ≥ 0, 𝐵𝑛(𝑋) = ∑(
𝑛
𝑘
)𝑏𝑛−𝑘𝑋

𝑘

𝑛

𝑘=0

⟹ ∀𝑛 ≥ 0, 𝐵𝑛(1) = ∑(
𝑛
𝑘
)𝑏𝑛−𝑘

𝑛

𝑘=0

 

Or on sait que :  

∀𝑛 ≥ 2, 𝐵𝑛(1) = 𝐵𝑛(0) = 𝑏𝑛 

On en déduit donc que :  

∀𝒏 ≥ 𝟐,∑ (
𝒏
𝒌
)𝒃𝒏−𝒌

𝒏

𝒌=𝟎

= 𝒃𝒏 

 b) On sait d’après la question précédente que :  

∀𝑛 ≥ 1,∑ (
𝑛 + 1
𝑘
) 𝑏𝑛+1−𝑘

𝑛+1

𝑘=0

= 𝑏𝑛+1 

Or on sait que :  

∀𝑛 ≥ 0,∀𝑘 ∈ ⟦0; 𝑛 + 1⟧, (
𝑛 + 1
𝑘
) = (

𝑛 + 1
𝑛 + 1 − 𝑘

)  

On en déduit donc que :  

∑(
𝑛 + 1
𝑘
)𝑏𝑛+1−𝑘

𝑛+1

𝑘=0

= ∑(
𝑛 + 1

𝑛 + 1 − 𝑘
)𝑏𝑛+1−𝑘

𝑛+1

𝑘=0

= ∑(
𝑛 + 1
𝑘
) 𝑏𝑘

𝑛+1

𝑘=0

= 𝑏𝑛+1 + (
𝑛 + 1
𝑛

) 𝑏𝑛 +∑(
𝑛 + 1
𝑘
) 𝑏𝑘

𝑛−1

𝑘=0

 

Or on sait que :  

∑(
𝑛 + 1
𝑘
)𝑏𝑛+1−𝑘

𝑛+1

𝑘=0

= 𝑏𝑛+1 

On en déduit donc que :  

𝑏𝑛+1 + (
𝑛 + 1
𝑛

) 𝑏𝑛 +∑(
𝑛 + 1
𝑘
) 𝑏𝑘

𝑛−1

𝑘=0

= 𝑏𝑛+1 

⟹ 𝒃𝒏 = −
𝟏

𝒏 + 𝟏
×∑(

𝒏+ 𝟏
𝒌

)𝒃𝒌

𝒏−𝟏

𝒌=𝟎
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Problème 1 : DL de la fonction tangente à tout ordre 

 

 Le but de ce problème est de déterminer un algorithme nous permettant de déterminer le développement 

limité de 𝑡𝑎𝑛 à l’ordre 2𝑛, avec 𝑛 ∈ ℕ.  

 

Partie A : On pose le problème 

1) Pourquoi 𝑡𝑎𝑛 admet un développement limité tout ordre en 0 ? 
 Dans le reste de l’exercice on pose la suite (𝑡𝑛) définie par :  

tan(𝑥) =
𝑥→0

∑𝑡𝑘𝑥
𝑘

𝑛

𝑘=0

+ 𝑜(𝑥𝑛) 

2) Déterminer la valeur de 𝑡0 et de 𝑡1. 

3) Expliquez pourquoi on sait que :  

∀𝑘 ∈ ⟦0; 2𝑛⟧, 𝑡2𝑘 = 0 
4) Démontrer que :  

∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ , tan(𝑥) = −𝑖 ×

𝑒2𝑖𝑥 − 1

𝑒2𝑖𝑥 + 1
 

Dans tout le reste de l’exercice on pose :  

𝑔: {

ℝ → ℝ

𝑥 ↦
𝑒2𝑥 − 1

𝑒2𝑥 + 1

 

On a donc :  

∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ , tan(𝑥) = −𝑖 × 𝑔(𝑖𝑥) 

5) Pourquoi 𝑔 ∈ 𝒞∞(ℝ) ? 
6) Démontrer que :  

∀𝑘 ∈ [0; 2𝑛], 𝑡𝑘 = −𝑖
𝑘+1 ×

𝑔(𝑘)(0)

𝑘!
 

 Dans le reste du problème on pose la suite (𝑢𝑛) définie par :  

∀𝑛 ∈ ℕ, 𝑢𝑛 =
𝑔(𝑛)(0)

𝑛!
 

Partie B : Etude de la suite (𝒖𝒏) 
1) Démontrer que :  

∀𝑥 ∈ ℝ,𝑔′(𝑥) = 1 − 𝑔2(𝑥) 
2) En déduire que :  

∀𝑛 ∈ ℕ∗, ∀𝑥 ∈ ℝ,𝑔(𝑛+1)(𝑥) = −∑(
𝑛
𝑘
)𝑔(𝑘)(𝑥)𝑔(𝑛−𝑘)(𝑥)

𝑛

𝑘=0

 

3) En déduire que :  

∀𝑛 ∈ ℕ∗, (𝑛 + 1)𝑢𝑛+1 = −∑𝑢𝑘𝑢𝑛−𝑘

𝑛

𝑘=0

 

4) En déduire que :  

∀𝑛 ∈ ℕ∗, (𝑛 + 1)𝑡𝑛+1 =∑ 𝑡𝑘𝑡𝑛−𝑘

𝑛

𝑘=0

 

5) Déterminer le 𝐷𝐿6(0) de tan(𝑥).  
6) Ecrire une fonction Python qui en entrée demande une valeur de 𝑛 et en sortie renvoie la liste [𝑡0, … , 𝑡𝑛]. 

 

Partie A :  

1) On sait que :  

∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ , tan(𝑥) =

sin(𝑥)

cos(𝑥)
 

Par quotient, on en déduit que 𝑡𝑎𝑛 ∈ 𝒞∞ (]−
𝜋

2
;
𝜋

2
[) donc on peut écrire d’après Taylor :  

𝐭𝐚𝐧(𝒙) =
𝒙→𝟎

∑
𝐭𝐚𝐧(𝒌)(𝟎)

𝒌!

𝒏

𝒌=𝟎

𝒙𝒌 + 𝒐(𝒙𝒏) 
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Ainsi tan admet un 𝐷𝐿 à tout ordre.  

2) On a :  

tan(𝑥) =
sin(𝑥)

cos(𝑥)
=
𝑥 + 𝑜(𝑥)

1 + 𝑜(𝑥)
= 𝑥 + 𝑜(𝑥) 

Ainsi 𝒕𝟎 = 𝟎 𝒆𝒕 𝒕𝟏 = 𝟏. 

3) On sait que 𝑡𝑎𝑛 est impaire, donc le développement polynômiale de 𝑡𝑎𝑛 est aussi impaire donc :  

∀𝒌 ∈ ⟦𝟎; 𝟐𝒏⟧, 𝒕𝟐𝒌 = 𝟎 

4) On a :  

∀𝒙 ∈ ]−
𝝅

𝟐
;
𝝅

𝟐
[ , 𝐭𝐚𝐧(𝒙) =

𝐬𝐢𝐧(𝒙)

𝐜𝐨𝐬(𝒙)
=

𝒆𝒊𝒙 − 𝒆−𝒊𝒙

𝟐𝒊
𝒆𝒊𝒙 + 𝒆−𝒊𝒙

𝟐

= −𝒊 ×
𝒆−𝒊𝒙(𝒆𝟐𝒊𝒙 − 𝟏)

𝒆−𝒊𝒙(𝒆𝟐𝒊𝒙 + 𝟏)
= −𝒊 ×

𝒆𝟐𝒊𝒙 − 𝟏

𝒆𝟐𝒊𝒙 + 𝟏
 

5) On sait que 𝑥 ↦ 𝑒𝑥 ∈ 𝒞∞(ℝ) et que : ∀𝑥 ∈ ℝ, 𝑒2𝑥 + 1 ≠ 0.  

Par composée et quotient on en déduit donc que 𝒈 ∈ 𝓒∞(ℝ).  

6) D’après la formule de Taylor et l’unicité du 𝐷𝐿, on sait que :  

∀𝑘 ∈ ⟦0; 2𝑛⟧, 𝑡𝑘 =
tan(𝑘)(0)

𝑘!
 

De plus on sait d’après la question 4) que :  

∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ , tan(𝑥) = −𝑖 × 𝑔(𝑖𝑥) 

Par récurrence immédiate ou par itération du procédé, on a :  

∀𝑥 ∈ ]−
𝜋

2
;
𝜋

2
[ , ∀𝑘 ∈ ℕ, tan(𝑘)(𝑥) = −(𝑖)𝑘+1𝑔(𝑘)(𝑖𝑥) 

On en déduit donc que :  

∀𝑘 ∈ ℕ, tan(𝑘)(0) = −(𝑖)𝑘+1𝑔(𝑘)(0) 

⟹∀𝒌 ∈ ℕ, 𝒕𝒌 =
𝐭𝐚𝐧(𝒌)(𝟎)

𝒌!
= −

(𝒊)𝒌+𝟏𝒈(𝒌)(𝟎)

𝒌!
 

Partie B :  

1) On a :  

∀𝑥 ∈ ℝ, 𝑔(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
⟹ ∀𝑥 ∈ ℝ,𝑔′(𝑥) =

2𝑒2𝑥(𝑒2𝑥 + 1) − 2𝑒2𝑥(𝑒2𝑥 − 1)

(𝑒2𝑥 + 1)2
=

4𝑒2𝑥

(𝑒2𝑥 + 1)2
 

De plus on a :  

1 − 𝑔2(𝑥) = 1 −
(𝑒2𝑥 − 1)2

(𝑒2𝑥 + 1)2
=
(𝑒2𝑥 + 1)2 − (𝑒2𝑥 − 1)2

(𝑒2𝑥 + 1)2
=

4𝑒2𝑥

(𝑒2𝑥 + 1)2
 

On en déduit donc que :  

∀𝒙 ∈ ℝ,𝒈′(𝒙) = 𝟏 − 𝒈𝟐(𝒙) 
2) On a :  

∀𝑥 ∈ ℝ,𝑔′(𝑥) = 1 − 𝑔2(𝑥) = −(𝑔(𝑥) − 1)(𝑔(𝑥) + 1) 
D’après la formule de Leibniz on a :  

∀𝑛 ≥ 1, ∀𝑥 ∈ ℝ,
𝑑𝑛(𝑔′(𝑥))

𝑑𝑥𝑛
= −∑(

𝑛
𝑘
) (𝑔(𝑥) − 1)(𝑘)(𝑔(𝑥) + 1)(𝑛−𝑘)

𝑛

𝑘=0

 

Or on a :  

∀𝑘 ≥ 1, (𝑔(𝑥) − 1)(𝑘) = 𝑔(𝑘)(𝑥) − 1(𝑘) = 𝑔(𝑘)(𝑥) 
De même on a :  

∀𝑘 ≤ 𝑛 − 1, (𝑔(𝑥) + 1)(𝑛−𝑘) = 𝑔(𝑛−𝑘)(𝑥) + 1(𝑛−𝑘) = 𝑔(𝑛−𝑘)(𝑥) 
Ainsi on a :  

∑(
𝑛
𝑘
) (𝑔(𝑥) − 1)(𝑘)(𝑔(𝑥) + 1)(𝑛−𝑘)

𝑛

𝑘=0

= 

= (𝑔(𝑥) − 1)(𝑔(𝑥) + 1)(𝑛) +∑(
𝑛
𝑘
) (𝑔(𝑥))

(𝑘)
(𝑔(𝑥))

(𝑛−𝑘)
𝑛−1

𝑘=1

+ (𝑔(𝑥) − 1)(𝑛)(𝑔(𝑥) + 1) 

Or on a :  

∀𝑛 ≥ 1, (𝑔(𝑥) − 1)(𝑔(𝑥) + 1)(𝑛) + (𝑔(𝑥) − 1)(𝑛)(𝑔(𝑥) + 1) = 𝑔(𝑥)𝑔(𝑛)(𝑥) − 𝑔(𝑛)(𝑥) + 𝑔(𝑛)(𝑥) + 𝑔(𝑛)(𝑥)𝑔(𝑥) 
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= (
𝑛

0
)  𝑔(𝑥)𝑔(𝑛)(𝑥) + (

𝑛
𝑛
)𝑔(𝑛)(𝑥)𝑔(𝑥)  

Ainsi on a :  

∀𝑛 ≥ 1, ∀𝑥 ∈ ℝ,
𝑑𝑛(𝑔′(𝑥))

𝑑𝑥𝑛
= −((

𝑛

0
)  𝑔(𝑥)𝑔(𝑛)(𝑥) +∑ (

𝑛
𝑘
) (𝑔(𝑥))

(𝑘)
(𝑔(𝑥))

(𝑛−𝑘)
𝑛−1

𝑘=1

+ (
𝑛
𝑛
)𝑔(𝑛)(𝑥)𝑔(𝑥)) 

= −∑(
𝒏
𝒌
)𝒈(𝒌)(𝒙)𝒈(𝒏−𝒌)(𝒙)

𝒏

𝒌=𝟎

 

3) On sait que :  

∀𝑛 ∈ ℕ, 𝑢𝑛 =
𝑔(𝑛)(0)

𝑛!
 

De plus on sait que :  

∀𝑛 ≥ 1, ∀𝑥 ∈ ℝ,
𝑑𝑛(𝑔′(𝑥))

𝑑𝑥𝑛
= 𝑔(𝑛+1)(𝑥) = −∑(

𝑛
𝑘
)𝑔(𝑘)(𝑥)𝑔(𝑛−𝑘)(𝑥)

𝑛

𝑘=0

 

⟹∀𝑛 ≥ 1, 𝑔(𝑛+1)(0) = −∑(
𝑛
𝑘
)𝑔(𝑘)(0)𝑔(𝑛−𝑘)(0)

𝑛

𝑘=0

= −(𝑛!)∑
𝑔(𝑘)(0)

𝑘!

𝑔(𝑛−𝑘)(0)

(𝑛 − 𝑘)!
 

𝑛

𝑘=0

= −(𝑛!)∑ 𝑢𝑘𝑢𝑛−𝑘

𝑛

𝑘=0

 

On a donc :  

∀𝑛 ∈ ℕ∗, (𝑛 + 1)! 𝑢𝑛+1 = −(𝑛!)∑ 𝑢𝑘𝑢𝑛−𝑘

𝑛

𝑘=0

 

⟹∀𝒏 ∈ ℕ∗, (𝒏 + 𝟏)𝒖𝒏+𝟏 = −∑𝒖𝒌𝒖𝒏−𝒌

𝒏

𝒌=𝟎

 

4) On sait que :  

∀𝑛 ∈ ℕ∗, 𝑡𝑛 = −(𝑖)
𝑛+1𝑢𝑛 𝑒𝑡 (𝑛 + 1)𝑢𝑛+1 = −∑𝑢𝑘𝑢𝑛−𝑘

𝑛

𝑘=0

 

⟹ ∀𝑛 ∈ ℕ∗,
(𝑛 + 1)𝑡𝑛+1
−𝑖𝑛+2

= − ∑
𝑡𝑘

−𝑖𝑘+1
×

𝑡𝑛−𝑘
−𝑖𝑛−𝑘+1 

 

𝑛

𝑘=0

 

⟹ ∀𝑛 ∈ ℕ∗,
(𝑛 + 1)𝑡𝑛+1

𝑖𝑛
= −

1

𝑖2+𝑛
∑𝑡𝑘𝑡𝑛−𝑘

𝑛

𝑘=0

 

⟹∀𝒏 ∈ ℕ∗, (𝒏 + 𝟏)𝒕𝒏+𝟏 =∑𝒕𝒌𝒕𝒏−𝒌

𝒏

𝒌=𝟎

  

5) On sait que :  

tan(𝑥) = 𝑡0 + 𝑡1𝑥 + 𝑡2𝑥
2 + 𝑡3𝑥

3 + 𝑡4𝑥
4 + 𝑡5𝑥

5 + 𝑡6𝑥
6 + 𝑜(𝑥6) 

De plus par imparité on a :  

𝑡0 = 𝑡2 = 𝑡4 = 𝑡6 = 0 𝑒𝑡 𝑡1 = 1 

De plus d’après la question précédente on a :  

3𝑡3 = 𝑡1
2 = 1⟹ 𝑡3 =

1

3
 

5 × 𝑡5 = 𝑡1 × 𝑡3 + 𝑡3 × 𝑡1 =
2

3
⟹ 𝑡5 =

2

15
 

On a donc :  

𝐭𝐚𝐧(𝒙) = 𝒙 +
𝟏

𝟑
𝒙𝟑 +

𝟐

𝟏𝟓
𝒙𝟓 + 𝒐(𝒙𝟔) 

6) On a :  
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On peut tester et on trouve :  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


