ISM PCSI, Informatique
Année 2025/2026 19/12/25

Corrigé du QCM n°4

1. On considére la fonction £ (L) d’argument L une liste non vide de nombres :

def f(L):
ind=0
n=len(L)
for k in range(n):
if :

return ind

Identifier les propositions cohérentes :
1. L5 : L[k]>L[ind], L6 : ind=k, résultat : indice de derniére occurrence du maximum
2. L : LOkJ>LLind], L6 : ind=k, résultat : indice de premicre occurrence du maximum
3. L5 : L[k]>L[ind], L6 : ind=k, résultat : indice de derniére occurrence du minimum

4. L5 : L[k]>L[ind], L6 : ind=k, résultat : indice de premiére occurrence du minimum

Quand on rencontre un élément strictement plus grand celui en position ind, on garde sa position
en mémoire. Comme le test est strict, on obtient I'indice de premiére occurrence du maximum
puisque on ne réaffecte pas ind & chaque occurrence du maximum.

2. On considére la fonction £ précédemment définie. Identifier les propositions cohérentes :
1. L5 : L[k]>=L[ind], L6 : ind=k, résultat : indice de premiére occurrence du maximum
2 L : LOk]>-Llind], L6 : ind=k, résultat : indice de derniore occurrence du maxinum
3. L5 : L[k]>=L[ind], L6 : ind=k, résultat : indice de premiére occurrence du minimum
4. L5 : L[k]>=L[ind], L6 : ind=k, résultat : indice de derniére occurrence du minimum

Quand on rencontre un élément plus grand celui en position ind, on garde sa position en mé-
moire. Comme le test est large, on obtient I'indice de derniére occurrence du maximum puisque
on réaffecte ind a chaque occurrence du maximum.

3. On considére la fonction £ précédemment définie. Identifier les propositions cohérentes :
1. L5 : L[k]<L[ind], L6 : ind=k, résultat : indice de premiére occurrence du maximum
2. L5 : LOKI<Llind], L6 : ind=k, résultat : indice de premiére occurrence du minimum
3. L5 : L[k]<L[ind], L6 : ind=k, résultat : indice de derniére occurrence du minimum
4. L5 : L[k]<L[ind], L6 : ind=k, résultat : indice de derniére occurrence du maximum
Quand on rencontre un élément strictement plus petit celui en position ind, on garde sa position

en mémoire. Comme le test est strict, on obtient 'indice de premiére occurrence du minimum
puisque on ne réaffecte pas ind a chaque occurrence du minimum.



4. On considére la fonction f précédemment définie. Identifier les propositions cohérentes :

1. L5 : L[k]<=L[ind], L6 : ind=k, résultat : indice de premiére occurrence du minimum
2 L5 : LIKJ<Llind], L6 : ind=k, résultat : indice de derniére occurrence du minimum
3. L5 : L[k]<=L[ind], L6 : ind=k, résultat : indice de premiére occurrence du maximum

4. L5 : L[k]<=L[ind], L6 : ind=k, résultat : indice de derniére occurrence du maximum

Quand on rencontre un élément plus petit celui en position ind, on garde sa position en mé-
moire. Comme le test est large, on obtient 'indice de derniére occurrence du minimum puisque
on réaffecte ind a chaque occurrence du minimum.

5. On considére la fonction g(L) d’arguments elt un objet et L une liste :
g g J

def g(elt,L):

n=len(L)

for k in range(n):
if L[k]==elt:

return res

Identifier les propositions cohérentes :

1. L2 : res=False, L : return True, résultat : True si elt appartient a L et False sinon
2 L2 : res=False, L6 : res=True, résultat : True si elt appartient & L ef False sinon
3. L2 : res=True, L6 : res=1, résultat : False si elt appartient a L et False sinon

4. L2 : res=True, L6 : return False, résultat : True si elt appartient a L et False sinon

On initialise res & False et si on rencontre elt dans la liste L, soit on bascule res a True, soit
on renvoie True.

6. On consideére la fonction g précédemment définie. Identifier les propositions cohérentes :
1. L2 :res=False, L6 : res=k, résultat :indice de derniére occursence de e1t 'l appartient
2. L2 : res=False, L6 : return k, résultat : indice de premiere occurrence de elt il

3. L2 : res=False, L6 : return k, résultat : indice de derniére occurrence de elt s’il appar-
tient a L et False sinon

4. L2 :res=False, L6 : res=k, résultat : indice de premiére occurrence de elt s’il appartient
a L et False sinon

On initialise res a False. Si on mémorise k dans res a chaque occurrence de elt dans L, alors
on renvoie 'indice de sa derniére occurrence. Si on effectue un renvoi quand on rencontre elt
dans L, le return casse la boucle et renvoie la premiére occurrence.



7. On considére la fonction g précédemment définie. Identifier les propositions cohérentes :
1. L2 : res=0, L6 : return k, résultat : nombres d’occurrences de elt dans L
2 L2 :res=0, L6 : rest=1, résultat : nombres d'occurrences de elt dans L
3. L2 : res=0, L6 : res+=k, résultat : nombres d’occurrences de elt dans L
4. L2 : res=0, L6 : res=1, résultat : nombres d’occurrences de elt dans L

Pour compter le nombre d’occurrence de elt dans L, on initialise res a zéro et on incrémente
res a chaque nouvelle occurrence de elt dans L.

8. On considere la fonction g précédemment définie. Identifier les propositions cohérentes :

1 L2 :res=[1, L6 : res+=[k], résultat - liste des indices de toutes les occurrences de elt
dans L

2. L2 :res=[1, L6 : return [k], résultat : liste des indices de toutes les occurrences de elt
dans L

3. L2 :res=[], L6 : res.append(k), résultat : liste des indices de toutes les occurrences
de €1t dans L

4. L2 : res=[], L6 : res=[k], résultat : liste des indices de toutes les occurrences de elt
dans L

Pour avoir la liste de toutes les occurrences de elt dans L, on initialise res par une liste vide et on
ajoute l'indice de chaque nouvelle occurrence dans res, soit par append, soit par concaténation.



