REPRESENTATION DES NOMBRES

B. Landelle

Table des matiéres

I Introductionl
(1 Systéme binaire| Lo oL
[2 Aspects quantitatifs de 'écriture binaire|
[3 Opérations en représentation binaire]
[4 Exponentiation rapide|

(I Les entiers dans python|
(1 Les entiers signés de taille fixe| o000
[2 Le type int| o

(IIT Nombres a virgules dans python|
(1 Arithmétique flottante]o oL

[3 Limites de codage|

I Introduction

1 Systéme binaire

C’est la base 2 encore appelé systeme binaire qui structure ’ensemble de I'information stockée
ou transmise en informatique.

Définition 1. L’unité d’information élémentaire valant 0 ou 1 s’appelle le bit (contraction de
binary digit). Une séquence de 8 bits s’appelle un octet (byte en anglais).

1 bit

—
O{{O{|L{[1[|O|[1](O]|]|L

~"

1 octet = 8 bits

FIGURE 1 — Un octet constitué de 8 bits
La numération qui nous est familiére est la numération dite décimale positionnelle. On décom-
pose par exemple
123=1x10*+2 x 10" + 3 x 10°

On peut procéder a la méme décomposition en base 2. Les chiffres ne sont plus 0,1...,9 mais
0 et 1 puisqu’on regroupe par paquets de 2. Ceci donne par exemple

122 =1x 20+ 1 x 25+ 1x2P +1x224+0x224+1x 21 +1x20

Cette décomposition s’obtient simplement par divisions euclidiennes successives par 2. Dans le
schéma qui suit, ’écriture binaire se lit de droite a gauche.

123 | 2
122 61 | 2

T 60 30 2

T 3 15| 2
0 14 7|2
T 6 3|2
T2 1
1

<_

123 = (1,1,1,1,0,1,1)

Expérimentation :

>>> bin(123)
’0b1111011°

Plus généralement, on a le résultat suivant :

B. Landelle 2 ISM MPSI/PCSI

Théoréme 1. Soit n un entier. Alors il existe un entier p non nul et un unique p-uplet
(do,...,dp—1) € {0,1}" tel que

p—1 .
1=0

Notation : On notera (d,_1,d,_o,...,d;, dy) cette écriture binaire de n.
Exemple : On a 123 =(1,1,1,1,0,1,1)
Sans autre régle, le choix de p n’est pas unique :

123 =(1,1,1,1,0,1,1) = (0,0,1,1,1,1,0,1,1)

Définition 2. Soit n un entier dont une écriture binaire donnée est n = (d,—1,dp—2, ..., dy,dp).
le chiffre d,—1 est appelé bit de poids fort tandis que dy est appelé bit de poids faible.

Excepté zéro, un entier contient nécessairement un bit égal & 1 dans son écriture binaire. On
peut, comme on le fait pour ’écriture décimale, considérer I’écriture binaire de n sans zéros a
gauche, autrement dit avec le bit de poids fort égal a 1. Avec ce formalisme, on a le résultat
plus précis suivant :

Théoréme 2. Soit n un entier non nul. Alors il existe un unique entier p non nul et un unique
p-uplet (do, ..., dp_1) € {0,1}77" x {1} tel que

p—1)
1=0

Autrement dit, pour un entier non nul, en imposant le bit de poids fort égal & 1, son écriture
binaire est unique.

Remarque : Quelques puissances de 2
20 21 22 23 24 25 26 27 28 29 210
1 2 4 8 16 32 64 128 | 256 | 512 | 1024

Exercice : Déterminer I’écriture binaire des nombres suivants : 6, 27.

Corrigé :

27 | 2
26 13 | 2
6 | 2 T 12 6] 2
6 3 | 2 T 6 3] 2
0 2 1 0 2 1
1 1
— —
6=(1,1,0) 27 = (1,1,0,1,1)

Une autre base est fréquemment utilisée en informatique méme si elle ne sera pas spécialement
utilisée dans le cadre de ce cours : la base 16.

Définition 3. La base 16 est appelée systéme hexadécimal. Les chiffres de cette base sont : 0,
1, ..,9 A, B, .. F.

B. Landelle 3 ISM MPSI/PCSI

On peut donc coder un octet avec deux chiffres hexadécimaux.

1110 0111 0001 0000

N/

ET710

FIGURE 2 — Du binaire vers ’hexadécimal

2 Aspects quantitatifs de I’écriture binaire

Dans cette partie, on retient la convention d’un bit de poids fort égal a 1 dans toute écriture
binaire.

Proposition 1. Le nombre de chiffres nécessaires a l’écriture binaire d’un entier non nul n’est
pas borné par une constante indépendante de [’entier en question.

Démonstration. Pour p entier, on a

2% = (1,0,...,0)
——

p zéros

dont Iécriture binaire requiert p+1 chiffres avec p qui peut étre choisi arbitrairement grand. [

Dans I’écriture binaire d’un entier non nul n = (d,_1,...,, dy), chaque chiffre binaire d; va donc
consommer un bit de mémoire pour son stockage. La mémoire physique de 'ordinateur étant
finie par nature, il est raisonnable que la représentation des entiers en machine soit également
finie. On peut donc borner p < puax dans Décriture précédente. L’ordinateur sera alors en
mesure de traiter les entiers dans la plage de valeurs [0; 2P=>x — 1] puisque

p—1 . Pmax—1 .
0< Sd2 < 91 = gpmax _ |
=0 i=0

Exercice : Avec un codage sur un octet, quelle plage de valeurs peut-on coder en binaire ?
Méme question avec un codage sur 4 octets?

Corrigé : Un octet vaut 8 bits ce qui permet de coder la plage [0; 22 — 1] = [0; 255]. Avec
4 octets (32 bits), on code de la plage [0; 232 — 1] = [0; 4294967295].

On peut aussi envisager le fait que la taille mémoire dédiée a ’écriture d’un nombre ne soit pas
bornée a priori mais fonction des ressources disponibles de la machine. Sous cette approche,
I’aspect inverse est intéressant : pour un entier n, combien de chiffres sont nécessaires a son
écriture en base 2.

Définition 4. La partie entiére d’un réel x est ['unique entier relatif noté |x| tel que

lz] <z < |z]+1

Remarque : On a les encadrements suivants (utiles en pratique) :
Ve e R lz] <z <|z]+]l <= z—-1<|z] <z
Exemple : [2.3] =2, |7] =3, |-7] =—4.

B. Landelle 4 ISM MPSI/PCSI

Y

FIGURE 3 — Graphe de la partie entiére

Définition 5. La fonction logarithme en base 2 notée log, est définie sur|0;+o00[par

1
Ve >0 logy(x) = M log désignant le logarithme népérien

log(2)’

Remarque : La fonction log, hérite de la propriété fondamentale du logarithme usuel (népé-
rien) a savoir

V(z,y) €]05+00> logy(z x y) = log,(z) + logy(y)

et de ses conséquences

W) €100 X R log, (2) = lom(e) logy(u) et logy (o) = alogy(o)

Proposition 2. Soit n entier non nul. Il faut p = [logy(n) + 1| chiffres pour son écriture
binaire.

Démonstration. Si p est le nombre de chiffres de 1’écriture binaire de n, cela signifie que

p—2)
n =214 Zdﬂ’
i=0

avec les d; € {0, 1}. Par convention, la somme vaut zéro si p < 1. Ainsi, on a ’encadrement

p—1 D __
1< Sgi = 2]
i=0 2-1

Passant au logarithme, fonction strictement croissante, on obtient

—®_1<2p

(p—1)log(2) <log(n) < plog(2) = p <logy(n) + 1 <p+1
Le résultat en découle. O

Remarque : On retrouve notamment le résultat de la propositionpuisque |logy(n)+1] — +00
pour n — +00.

Expérimentation : La méthode bit_length renvoie la taille de I’écriture binaire d’un nombre

B. Landelle 3 ISM MPSI/PCSI

>>> a=123

>>> bin(a)

’0b1111011°

>>> a.bit_length()

7

>>> import numpy as np
>>> int(np.log2(a)+1)
7

Pour un nombre positif, la conversion d’un flottant en entier renvoie sa partie entiére (c’est
faux pour un nombre négatif).

Exercice : Soit x un réel et n un entier non nul d’écriture binaire n = (d,_1, ..., dp). Ecrire

2" en fonction des % pour i € [0; p — 1].

p—1
Corrigé : On an =)Y d;2" d'on
i=0

" = Qj(zf;ol diQi) = pﬁl ([L‘dﬂi) = pﬁl <$2i)di
=0 =0

Cette écriture permet d’envisager un algorithme performant pour le calcul de x", algorithme
dit d’exponentiation rapide.

3 Opérations en représentation binaire

Dans cette partie, on retient la convention d’un bit de poids fort égal & 1 dans toute écriture
binaire.

Théoréme 3 (Division euclidienne). Soit (a,b) € NxN*. [l existe un unique couple (q,r) €
N x [0;b— 1] tel que a = b x g+ r. Le terme q est appelé quotient et le terme r est appelé
reste.

Remarque : C’est la division usuelle pratiquée depuis les petites classes.

L’algorithme d’addition de deux entiers binaires est identique a celui employé en écriture déci-
male. Concernant la multiplication et la division par 2, on dispose du résultat suivant :

Proposition 3. Soit n un entier non nul avec n = (d,_1,...,dy,dp). On a

2><n:<dp,1,...,d0,0) et n//2:<dp71,...,d1>

Démonstration. On a

p—1 p A
2 X <dp,1, dp,Q, R ,dl, d0> =2 X (Zd222> = Zdi,12z = <dp,1, ce ,do, O>
=0 i=1

p—1 p—2 ,

et <dp_1,dp_2,...,d1,d0> = ZdZQZ =2 X (Zdﬂ_lQl) +d0
i=0 i=0

Ainsi, d’aprés le théoréme de la division euclidienne

(dp—1,dp—2,...,d1,do)//2 = (dp-1,-..,d1)
[l

B. Landelle 6 ISM MPSI/PCSI

Remarque : La multiplication par 2 consiste donc en un décalage de I'écriture binaire de 1
bit vers la gauche et la division par 2 consiste donc en un décalage de I’écriture binaire de 1 bit
vers la droite, avec perte du bit de poids faible.

Exercice : Quelle opération mathématique transforme lentier binaire (d,_1,...,dp) en :
1. (dy—1,...,dp,0,0,0)7
2. (dp-1,...,d2) 7
Corrigé : D’aprés la proposition [3] le décalage de 3 bits a gauche correspond a une multipli-

cation par 2x2x 2 = 23 et le décalage de 2 bits a droite correspond & une division par 2x 2 = 22,

Exercice : Etablir la relation

q—1
<dp_1, dp_Q, R ,dl, do) X <€q—17 €q—2,--.,€1, €0> = Z»;[)ei X <dp_1, dp_2, R ,dl, do, 0,-. .. ,0>
1 zéros

Corrigé : On distribue le produit simplement.

q—1)
<dp_1, dp_g, . ,dl, d0> X <€q_1, €g—2;..-,€1, €0> = 26121 X <dp_1, dp_g, Ce 7d1, d0>
=0

qg—1
= Zei X <dp,1,dp,2, R ,dl,do,o, Ce ,0>
i=0 ——
1 Zeros
4 Exponentiation rapide
Soit un réel et n un entier non nul d’écriture binaire n = (d,_1,...,dp). On a
- ; p—1 . p—1 N d;
" = {L'(fZOIdiQZ) = H (ZL‘diQZ) = H (xw)dl
i=0 i=0

. . - , i . i+1 ,
Dans le produit, & i fixé dans [0; p — 2], on passe du terme z* au suivant > en élevant au
carré :

4 , N2
i+1 7 7
22T = g% = <x2)

La contribution de 22" dans le produit est déterminée par la valeur de d; : si d; = 0, le terme
n’apparait pas dans le produit et sinon il apparait. Cette écriture permet d’envisager un algo-
rithme performant pour le calcul de 2", algorithme dit d’ezponentiation rapide :

def expo(x,n):
"hexpo(x:int or float,n:int)->int or float
Calcul de x**n par exponentiation rapide"""
a,r,e=x,1,n
while e>0:
if e%2==1:
r*=a
a*x=a
e//=2

return r

B. Landelle 7 ISM MPSI/PCSI

La variable r sert au calcul du résultat final.

La variable a sert au calcul des termes x? successifs. Elle est initialisée a z et est élevée au

carré lors de chaque passage dans la boucle.

Enfin, on utilise la variable e pour connaitre la valeur de d; au cours du produit.

La variable e est initialisée & n = (d,_1, ..., do) et Uinstruction e%2 renvoie dy, son bit de poids
faible.
Ensuite, la variable e recoit son quotient par 2 ce qui fait qu’elle regoit (d,_1,...,d;). Son bit

de poids faible renvoyé par e%2 est d;.

Ainsi, au cours de la boucle, I'instruction e%2 renvoie successivement dy, dy, ... Si d; = 1, la
variable r recoit son produit par a et sinon elle n’est pas modifiée.

On répéte ce procédé tant que e>0. La boucle s’arréte puisque la taille de I’écriture binaire de
e décroit strictement.

On peut écrire une version itérative de ce code mais ceci impose de calculer la taille de I’écriture
binaire de n.

def expo(x,n):
a,r=x,1
if n>0:
p=int(np.log2(n)+1);
e=n
for k in range(p):
if el2==1:
r*=a
ax=a;e//=2
return r

II Les entiers dans python

1 Les entiers signés de taille fixe

La plupart des langages de programmation permettent de travailler sur des entiers relatifs (on
parle d’entiers signés) dans une plage de valeurs données. Selon le langage ou 'architecture de
la machine, le codage de ces entiers se fait 32 bits, 64 bits ;...

Pour réaliser le codage de nombres négatifs, le bit dit de poids fort (celui le plus a gauche) sert
a coder les nombres négatifs par soustraction a un entier fixe. Cette méthode est dite méthode
de complément a 2.

B. Landelle 8 ISM MPSI/PCSI

Définition 6. En méthode de complément a 2, le codage d’entiers relatifs est défini par [’écri-
ture binaire

p—2
<dp—17 dpys - - do)cpra = — p—12p71 + > .d;2°

=0
- + + +
4 [da] . 4 | d]

SCHEMA - Codage en complément & 2

Remarque : On aurait pu imaginer que le codage du signe soit réalisé par un bit, le bit de
poids fort par exemple.

p—2
<dp_1, dp_27 . ,dl, d())? = (—1)dp_1 X Zdel
i=0
Avec ce codage, on voit que zéro peut étre codé de deux maniéres distinctes ce qui n’est pas

satisfaisant si I'on doit tester la nullité d’une variable. Mais surtout, cette écriture n’est pas
compatible avec I'algorithme d’addition tandis que la méthode de complément a 2 I'est.

Exemple : Avec une écriture binaire a 4 bits, on a

(0,0,0,0), = (1,0,0,0), = 0

puis (0,0,0,1), =1, (1,0,0,1), = —1
et, en appliquant naivement l'algorithme d’addition sur ces écritures binaires, on obtient
(0,0,0,1),
+ <17 07 07 1>7

= (1,0,1,0), # (0,0,0,0),

Ainsi, il faudrait écrire un nouvel algorithme d’addition pour gérer les entiers signés.

Avec la méthode de complément a deux, on a
(0,0,0,1)gp = 1, (1,1, 1,1) g, =—2°+1+2+22=-28422 - 1=-1
et avec l'algorithme usuel d’addition (le bit de poids fort étant perdu en cas de dépassement)

(0,0,0, 1) cprs
+ (L1, 1 Dy
= (0,0,0,0)¢pr =0

ce qui illustre la compatibilité de cette écriture avec ’addition de nombres binaires.

Proposition 4. La méthode de complément a 2 sur p bits permet de coder les entiers relatifs
de la plage de valeurs [—2P~1; 271 —1].

Démonstration. On a

p—2) p—2) p—2]
I X2 ES0x 2 —dy 2P A2 Ox 2T Y I x 2 =20]
i=0 i=0 i=0

B. Landelle 9 ISM MPSI/PCSI

Exercice : Soit n = <d31, . ,do)chQ S [[—231 ; 231 — 1]]
30
1. Calculer 14 > 2.
i=0
2. En déduire I’écriture binaire en méthode de complément a 2 de —n — 1.
Indication : on pourra distinguer le cas n > 0 du cas n < 0.

30

Corrigé : 1. On a 1+ > 2 = 23! (somme géométrique).
=0

2. Supposons n > 0. Ainsi, d3; = 0 et on a

30) 31)
n = ZdiQZ — —n = —Zdz2l
i=0 i=

7 0

Cette derniére écriture n’étant pas adaptée au codage binaire, on décale —n de 23! :

30)
231—n:1+2(1—di>21i—n—1:<1,1—d30,...,1—d0>ch2
i=0 S=—~—

€{0,1}

Supposons ensuite n < 0. On a d3; = 1 d’ou

30 30
n=-1x2"4+3d2 = —n=2%_-5d2
=0

1=0

En utilisant 1’égalité la question 1, il vient

30 .
—n:1+2(1—d1)21:>—n—1: <0,1—d30,...,1—d0>ch2
i=0~=——~—
€{0,1}
Dans tous les cas, on a démontré que pour n = (dsy,dso, . . ., d1, do)cpra

—1—=n={(1—ds,1 —ds,...,1—dy,1—dp)epra

2 Le type int

Définition 7. Un entier de type int sous Python est un entier relatif dont la taille de codage
est a priori quelconque.

Remarque : En réalité, la taille est limitée par la mémoire allouée par 'ordinateur a l'inter-
préteur python.

>>> 2

2

>>> 2%%x2026
770497466833853895681259076325177001010038916342627621463068614662281397315
690300302438769615242802231042813323066187369683255175363801028611377534543234
>>> type(2)
<class ’int’>

>>> type (2%x2020)
<class ’int’>

En apparence, on n’observe aucune différence de traitement entre les petits et les grands entiers.
La réalité est plus complexe. Les grands entiers sont découpés en tableau d’entiers courts ce
qui rend tous les calculs sur ces nombres beaucoup plus lents.

B. Landelle 10 ISM MPSI/PCSI

899535915

Le format optimisé dans python est celui des petits entiers codés selon la méthode de complé-
ment & 2 dans la plage —239, 230 — 1. Pour 'utilisateur, le basculement hors de cette plage de
valeurs est totalement transparent mais il induit un cofit en terme de performance.

IIT Nombres & virgules dans python

1 Arithmétique flottante

Qu’est-ce qu'un réel? La réponse n’est pas si simple si on veut donner un sens mathématique
précis a cette notion.

A 4

A

V2

On se contentera d’admettre leur existence et surtout leur représentation décimale. Ainsi, un
réel x peut s’écrire en base 10
Tr = irepep_l ... €0, d1d2d3 ..

ou les e; et les d; désignent des entiers entre 0 et 9. L'entier e, . .. ey est la partie entiére de |z|.
Les entiers d; sont appelées les décimales de x. La « plupart » des nombres réels possédent un
nombre infini de décimales. La mémoire d’un ordinateur étant finie par nature, on ne peut pas
coder fidélement des nombres réels sur une machine.

Expérimentation :

>>> import numpy as np
>>> 1/3
0.3333333333333333

>>> np.sqrt(2)
1.4142135623730951

>>> np.pi
3.141592653589793

Le calcul des décimales de 7 est un théme de recherche toujours trés actif (202 billions de
décimales en juin 2024).

Définition 8. Un nombre décimal est un réel x tel qu’il existe n entier naturel avec x x 10"
entier relatif.

Remarque : Un nombre décimal est donc un nombre dont I’écriture décimale est finie. Par
exemple, on a

1.234 = 1234 x 1073 <= 1.234 x 103 = 1234

Cette écriture sous forme de produit est intéressante : le nombre 1234 x 10 est aussi facile &
écrire que 1.234 alors que son écriture décimale compléte est trés grande. Ainsi, en séparant la
contribution puissance de 10 du reste du nombre, on obtient une représentation concise pour
des nombres trés grands ou trés petits. Cette démarche a donc inspiré la représentation décrite
par le théoréme suivant :

B. Landelle 11 ISM MPSI/PCSI

Théoréme 4. Soit x réel non nul. Il existe un unique triplet (e,m,e) € {—1,1} x [1;2[x Z
tel que

=X m X 2°

Exemple : Codage de x = 11.8 selon le théoréme
On a clairement € = 1. Puis, il vient

|x| = m x 2° = e = log, (|z]) — logy(m)

Comme e est un entier, il s’ensuit que e = |log, (|z|)| donc ici e = 3 et m s’en déduit avec

11.8
m = % =3 = 1.475. On a obtenu
11.8 =1 x 1.475 x 23
Expérimentation :

>>> x=11.8

>>> e=np.floor(np.log2(x))
>>> m=x/(2%%*3)

>>> m,e

(1.475, 3.0)

>>> 1.475%2%%3

11.8

2 La norme IEEE 754

La norme IEEE[] 754 définit le format de nombres en wvirgule flottante en s’appuyant sur le
théoréme . Ainsi, pour coder un réel en machine, on va coder le triplet (¢,m,e) et obtenir le
format virgule flottante.

Définition 9. La norme IEEE 754 définit le format de nombres en virgule flottante en base 2
de la forme

(_1)5 % M x 2E—1023

ot s € {0,1} code le signe sur 1 bit, E est un entier non nul appelé exposant codé sur 11 bits
et M est un nombre binaire a virgule dans [1;2[appelé mantisse codé sur 52 bits.

Remarque : Ce codage en virgule flottante dit & double précision nécessite 1 4+ 52 + 11 = 64
bits.

signe exposant mantisse

HENERNERENRENE NN NN ERNERENRNRNRRNRRENREE
63 52 0

Expérimentation :

>>> type(1/3)

<class ’float’>
>>> type(np.pi)
<class ’float’>

1. Institute of Electrical and Electronical Engineers

B. Landelle 12 ISM MPSI/PCSI

>>> type(1.1)
<class ’float’>
>>> type(1l.)
<class ’float’>

Notons my, ..., msy les bits codant la mantisse. Comme M € [1;2], le chiffre des unités de M
est nécessairement 1 et ne nécessite donc pas un bit de stockage. Seules les puissances négatives
de 2 sont codées avec

L’exposant est un entier binaire codé conformément A la description qui en a été faite précé-
demment & savoir

10)
E= <€10, c. 7€0> = Z€i2l
=0

Vocabulaire : L’appellation virgule flottante se comprend par opposition & virgule fixe : comme
lexposant n’est pas fixé, la virgule n’est pas & une position fixe (contrairement a celle de la
mantisse), elle « flotte ».

Proposition 5. Un nombre en virgule flottante suivant la norme IEEE 75/ s’écrit
(_1)5 x M % 2E—1023
52 m, 10
avec s € {0,1}, M = 1+Z? ot lesm; € {0,1} et E = (e19,...,e0) = > €;2" ot lese; € {0,1}
i=1 '

=0
sont non tous nuls.

‘ S ‘610‘69‘... ...‘61‘60‘m52‘m5;1‘... ‘mg‘ml‘

AExceptions

Si la mantisse commence toujours par 1, alors on ne peut en principe pas coder zéro (ennuyeux
...) On fixe par convention qu'un nombre vaut zéro si tous les bits de l'exposant et de sa
mantisse sont a zéro (le bit de signe n’est pas contraint, d’on deux codages de zéro selon cette
convention). On dit que zéro est un nombre dénormalisé, il ne suit pas la norme. Il existe
d’autres nombres dénormalisés recensés précisément.

SCHEMA - Codage du type float

Exercice : Combien de nombres dans [1;2 [peuvent étre codés fidélement au format flottant ?

52 17
Corrigé : Pour un nombre flottant dans la plage [1;2[,onas =0, E=1023et M = 1+ %
i=1
avec (m;)ie[1:52 € {0, 1}°% On peut donc coder fidélement Card {0,1}** = 252 nombres dans
[1;2] ce qui est beaucoup en pratique, mais peu au regard de I'infinité de valeurs de [1;2].

3 Limites de codage

Les nombres a virgule flottante étant codés sur un nombre fini de bits, ils sont nécessairement
en nombre fini. Il est donc clair qu’on va se heurter a des limitations numériques intrinséques
au codage. Typiquement, si 'exposant est trop grand ou trop petit, il sera impossible & coder
avec le nombre de bit prévu a cet effet. On parle d’overflow quand 'exposant est trop grand
et d’underflow quand il est trop petit.

B. Landelle 13 ISM MPSI/PCSI

Si I'exposant peut étre correctement codé, il n’en demeure pas moins une limitation majeure.
Le codage de la mantisse

52 .y

52 m 217’)%2

M=1+ ?:1%—2_7 avec les m; € {0, 1}
i=1

k
permet de coder les éléments de la forme 1 + 52 avec k € [0; 252 — 1] mais ne permet donc

pas un codage de n’importe quel nombre réel de l'intervalle [1;2].

Expérimentation :

>>> 0.1
0.1
>>> 0.2
0.2

En apparence, tout va bien : les nombres sont correctement affichés par 'interpréteur.

>>> 0.1+0.2
0.30000000000000004

Tout se gate. Python se « trompe » sur une opération trés simple. On est exactement dans la
situation ou le codage de la mantisse sur un nombre fini de bits entraine une troncature : il
faudrait un nombre infini de bits pour coder les mantisses de 0.1 et de 0.2 d’out une approxi-
mation stockée en machine et 'erreur de calcul grossiére qui en découle.

>>> print (format(.1,".20f"))
0.10000000000000000555
>>> print(format(.2,".20f"))
0.20000000000000001110

En exigeant plus de décimales dans 'affichage des flottants 0.1 et 0.2, on constate clairement
qu’ils ne sont pas codés fidélement a leur écriture décimale. Ceci est inévitable et structurel :
la mantisse est codée en puissances négatives de 2 et non de 10. La fraction binaire du nombre
0.1 s’écrit
0.1gec = 0.0001100110011001100110011001100110011001100110011001100 . . .pin
Cette égalité signifie
B 0 0 0 1 1 0 0 1 1 0
0.1—0+§+ﬁ—i-?—'—?—f—?—f‘?‘i‘?—f‘%—f‘?—i-ﬁﬁ-.”
Par conséquent, dés la saisie des flottants, le « mal » est fait. Ils ne sont qu’imparfaitement
codés en machine méme si I'affichage (partiel) laisse croire le contraire.

. k
En revanche, des opérations sur des flottants de la forme 1 + o5 avec k € [0; 2% — 1] se
déroulent impeccablement.

B. Landelle 14 ISM MPSI/PCSI

Expérimentation :

>>> 0.5-0.25
0.25

>>> 0.25-0.125
0.125

>>> 1/2%%x10-1/2%%7
-0.0068359375

Sans mettre en défaut le codage de la mantisse, on peut détecter si I'on est dans ou hors du
champ de précision du codage flottant. On parle d’erreur par absorption.

>>> 1+2%%(-10) -1==2%%(-10)
True

>>> 1+2%%(-100) -1==2%%(-100)
False

Exercice : Soient a et b des entiers. Comparer les opérations a//b et int (a/b).

Corrigé : L’opération a//b est une opération exacte effectuée sur des entiers. En revanche,
Iopération a/b est a valeurs dans les flottants et peut donc donner lieu & des erreurs d’exécution
en cas de dépassement ou pire, donner lieu a des erreurs de calculs, méme aprés conversion en
entier. Ainsi, on observe

>>> (2x%x54+2)//2
9007199254740993
>>> int ((2%*54+2) /2)
9007199254740992

avec un second résultat faux du fait d’'un débordement dans la mantisse pour le codage en
flottant de (2% + 2)/2.

La représentation flottante doit donc influer sur notre facon de considérer ces nombres. Ainsi,
tester z = 0 avec x a virgule flottante n’a, en général, pas de sens du fait de possibles erreurs
d’arrondi. Tl est beaucoup plus pertinent d’envisager de tester |z| < e ou ¢ est un seuil de
précision fixé par l'utilisateur en fonction des données du probléme.

A abs (x)<eps

Expérimentation :
Considérons le polynome P=(X-0.1)=X*-0.2X+0.01

Testons la nullité du discriminant.

B. Landelle 15 ISM MPSI/PCSI

>>> a=1

>>> b=-.2

>>> ¢=.01

>>> delta=b**x2-4xa*c
>>> delta==0

False

>>> delta
6.938893903907228e-18

Le phénoméne de cancellation (ou élimination) se produit lors de la soustraction de deux
nombres trés proches. Calculons un taux d’accroissement de la fonction ¢ — ¢ en 1.

>>> h=1le-15
>>> (1+h-1)/h
1.1102230246251565

Le calcul du taux d’accroissement est médiocre. La soustraction de deux nombres proches révéle
les approximations de leurs représentations flottantes. Le nombre 14 h n’est pas codé fidélement
et I'imprécision dans la différence 14+ h — 1 est exacerbée quand on la divise par h qui est petit.

On rencontre parfois de bonnes surprises avec le format flottant :

>>> (1/3)*3
1.0

>>> (1/3)*3==
True

et de moins bounnes :

>>> 10%(1/3)-1/3

2.9999999999999996
>>> np.sqrt(10)**2
10.000000000000002

Considérons un réel x et son codage flottant x’ sous Python. Le signe et 'exposant de = et 2’
sont égaux puisque leurs codages ne requiérent aucune troncature. L’erreur de codage entre x
et 2’ vient donc de la mantisse. On trouve :

’IL’ _ x/l — 2E—1023 % ‘M _ M/|

ou M et M désignent les mantisses respectives de z et /. On a

52mi 52mi Ms3 Msy
M =1 — e M=1 — t et
+i:1 91 ¢ _I_z:Zl 2 + 9253 + 954 +
s 1 1 : 1 1 1 1
ot M€ g g o=l (145) = g
et donc |x_$/| < 2E71023*52

B. Landelle 16 ISM MPSI/PCSI

Exercice : Ecrire un programme en langage python qui détecte la plus petite puissance de 2
pouvant s’écrire en format flottant (il s’agit d’'un nombre dénormalisé).

Corrigé : On exécute le code suivant :

a=1

n=0

while a>0:
n+=1
a/=2

et on trouve

>>>n
1075

Ainsi, la plus petite puissance de 2 accessible en format flottant est 27197 soit une puissance
beaucoup plus petite que celle prévue par la norme IEEE qui devrait étre 271923, En fait, le 1
de la mantisse interdit toute représentation flottante entre 0 et 27123, Pour accéder & de plus
petites puissances, on a dénormalisé 1’écriture avec

52 1)

(—1)* x (Z%) « 9E-1023
i=1

2752+171023 — 271074

d’ott un minimum de que 'on peut vérifier expérimentalement.

>>> 2%x(-1074)
be-324
>>> 2%%(-1075)
be-324

B. Landelle 17 ISM MPSI/PCSI

	Introduction
	Système binaire
	Aspects quantitatifs de l'écriture binaire
	Opérations en représentation binaire
	Exponentiation rapide

	Les entiers dans python
	Les entiers signés de taille fixe
	Le type int

	Nombres à virgules dans python
	Arithmétique flottante
	La norme IEEE 754
	Limites de codage

