
REPRÉSENTATION DES NOMBRES

B. Landelle

Table des matières

I Introduction 2
1 Système binaire . 2
2 Aspects quantitatifs de l'écriture binaire . 4
3 Opérations en représentation binaire . 6
4 Exponentiation rapide . 7

II Les entiers dans python 8
1 Les entiers signés de taille �xe . 8
2 Le type int . 10

IIINombres à virgules dans python 11
1 Arithmétique �ottante . 11
2 La norme IEEE 754 . 12
3 Limites de codage . 13

1

I Introduction

1 Système binaire

C'est la base 2 encore appelé système binaire qui structure l'ensemble de l'information stockée
ou transmise en informatique.

Dé�nition 1. L'unité d'information élémentaire valant 0 ou 1 s'appelle le bit (contraction de
binary digit). Une séquence de 8 bits s'appelle un octet (byte en anglais).

0 0 1 1 0 1 0 1

1 octet = 8 bits

1 bit

Figure 1 � Un octet constitué de 8 bits

La numération qui nous est familière est la numération dite décimale positionnelle. On décom-
pose par exemple

123 = 1× 102 + 2× 101 + 3× 100

On peut procéder à la même décomposition en base 2. Les chi�res ne sont plus 0, 1 . . . , 9 mais
0 et 1 puisqu'on regroupe par paquets de 2. Ceci donne par exemple

123 = 1× 26 + 1× 25 + 1× 24 + 1× 23 + 0× 22 + 1× 21 + 1× 20

Cette décomposition s'obtient simplement par divisions euclidiennes successives par 2. Dans le
schéma qui suit, l'écriture binaire se lit de droite à gauche.

123 2
122
1

61 2
60
1

30 2
30
0

15 2
14
1

7 2
6
1

3 2
2
1

1

123 = ⟨1, 1, 1, 1, 0, 1, 1⟩

Expérimentation :

>>> bin(123)

'0b1111011'

Plus généralement, on a le résultat suivant :

B. Landelle 2 ISM MPSI/PCSI

Théorème 1. Soit n un entier. Alors il existe un entier p non nul et un unique p-uplet
(d0, . . . , dp−1) ∈ {0, 1}p tel que

n =
p−1∑
i=0

di 2
i

Notation : On notera ⟨dp−1, dp−2, . . . , d1, d0⟩ cette écriture binaire de n.

Exemple : On a 123 = ⟨1, 1, 1, 1, 0, 1, 1⟩
Sans autre règle, le choix de p n'est pas unique :

123 = ⟨1, 1, 1, 1, 0, 1, 1⟩ = ⟨0, 0, 1, 1, 1, 1, 0, 1, 1⟩

Dé�nition 2. Soit n un entier dont une écriture binaire donnée est n = ⟨dp−1, dp−2, . . . , d1, d0⟩.
le chi�re dp−1 est appelé bit de poids fort tandis que d0 est appelé bit de poids faible.

Excepté zéro, un entier contient nécessairement un bit égal à 1 dans son écriture binaire. On
peut, comme on le fait pour l'écriture décimale, considérer l'écriture binaire de n sans zéros à
gauche, autrement dit avec le bit de poids fort égal à 1. Avec ce formalisme, on a le résultat
plus précis suivant :

Théorème 2. Soit n un entier non nul. Alors il existe un unique entier p non nul et un unique
p-uplet (d0, . . . , dp−1) ∈ {0, 1}p−1 × {1} tel que

n =
p−1∑
i=0

di 2
i

Autrement dit, pour un entier non nul, en imposant le bit de poids fort égal à 1, son écriture
binaire est unique.

Remarque : Quelques puissances de 2

20 21 22 23 24 25 26 27 28 29 210

1 2 4 8 16 32 64 128 256 512 1024

Exercice : Déterminer l'écriture binaire des nombres suivants : 6, 27.

Corrigé :

6 2
6
0

3 2
2
1

1

27 2
26
1

13 2
12
1

6 2
6
0

3 2
2
1

1

6 = ⟨1, 1, 0⟩ 27 = ⟨1, 1, 0, 1, 1⟩
Une autre base est fréquemment utilisée en informatique même si elle ne sera pas spécialement
utilisée dans le cadre de ce cours : la base 16.

Dé�nition 3. La base 16 est appelée système hexadécimal. Les chi�res de cette base sont : 0,
1, . . ., 9, A, B, . . ., F.

B. Landelle 3 ISM MPSI/PCSI

On peut donc coder un octet avec deux chi�res hexadécimaux.

1110 0111 0001 0000

E 7 1 0
Figure 2 � Du binaire vers l'hexadécimal

2 Aspects quantitatifs de l'écriture binaire

Dans cette partie, on retient la convention d'un bit de poids fort égal à 1 dans toute écriture
binaire.

Proposition 1. Le nombre de chi�res nécessaires à l'écriture binaire d'un entier non nul n'est
pas borné par une constante indépendante de l'entier en question.

Démonstration. Pour p entier, on a

2p = ⟨1, 0, . . . , 0︸ ︷︷ ︸
p zéros

⟩

dont l'écriture binaire requiert p+1 chi�res avec p qui peut être choisi arbitrairement grand.

Dans l'écriture binaire d'un entier non nul n = ⟨dp−1, . . . , , d0⟩, chaque chi�re binaire di va donc
consommer un bit de mémoire pour son stockage. La mémoire physique de l'ordinateur étant
�nie par nature, il est raisonnable que la représentation des entiers en machine soit également
�nie. On peut donc borner p ⩽ pmax dans l'écriture précédente. L'ordinateur sera alors en
mesure de traiter les entiers dans la plage de valeurs [[0 ; 2pmax − 1]] puisque

0 ⩽
p−1∑
i=0

di2
i ⩽

pmax−1∑
i=0

2i = 2pmax − 1

Exercice : Avec un codage sur un octet, quelle plage de valeurs peut-on coder en binaire ?
Même question avec un codage sur 4 octets ?

Corrigé : Un octet vaut 8 bits ce qui permet de coder la plage [[0 ; 28 − 1]] = [[0 ; 255]]. Avec
4 octets (32 bits), on code de la plage [[0 ; 232 − 1]] = [[0 ; 4294967295]].

On peut aussi envisager le fait que la taille mémoire dédiée à l'écriture d'un nombre ne soit pas
bornée a priori mais fonction des ressources disponibles de la machine. Sous cette approche,
l'aspect inverse est intéressant : pour un entier n, combien de chi�res sont nécessaires à son
écriture en base 2.

Dé�nition 4. La partie entière d'un réel x est l'unique entier relatif noté ⌊x⌋ tel que

⌊x⌋ ⩽ x < ⌊x⌋+ 1

Remarque : On a les encadrements suivants (utiles en pratique) :

∀x ∈ R ⌊x⌋ ⩽ x < ⌊x⌋+ 1 ⇐⇒ x− 1 < ⌊x⌋ ⩽ x

Exemple : ⌊2.3⌋ = 2, ⌊π⌋ = 3, ⌊−π⌋ = −4.

B. Landelle 4 ISM MPSI/PCSI

x

y

•
•

•
•

••
•

•
• y = ⌊x⌋

Figure 3 � Graphe de la partie entière

Dé�nition 5. La fonction logarithme en base 2 notée log2 est dé�nie sur] 0 ; +∞ [par

∀x > 0 log2(x) =
log(x)

log(2)
, log désignant le logarithme népérien

Remarque : La fonction log2 hérite de la propriété fondamentale du logarithme usuel (népé-
rien) à savoir

∀(x, y) ∈] 0 ; +∞ [2 log2(x× y) = log2(x) + log2(y)

et de ses conséquences

∀(x, y, α) ∈] 0 ; +∞ [2 × R log2

Å
x

y

ã
= log2(x)− log2(y) et log2(x

α) = α log2(x)

Proposition 2. Soit n entier non nul. Il faut p = ⌊log2(n) + 1⌋ chi�res pour son écriture
binaire.

Démonstration. Si p est le nombre de chi�res de l'écriture binaire de n, cela signi�e que

n = 2p−1 +
p−2∑
i=0

di2
i

avec les di ∈ {0, 1}. Par convention, la somme vaut zéro si p ⩽ 1. Ainsi, on a l'encadrement

2p−1 ⩽ n ⩽
p−1∑
i=0

2i =
2p − 1

2− 1
= 2p − 1 < 2p

Passant au logarithme, fonction strictement croissante, on obtient

(p− 1) log(2) ⩽ log(n) < p log(2) =⇒ p ⩽ log2(n) + 1 < p+ 1

Le résultat en découle.

Remarque : On retrouve notamment le résultat de la proposition 1 puisque ⌊log2(n)+1⌋ → +∞
pour n → +∞.

Expérimentation : La méthode bit_length renvoie la taille de l'écriture binaire d'un nombre

B. Landelle 5 ISM MPSI/PCSI

>>> a=123

>>> bin(a)

'0b1111011'

>>> a.bit_length()

7

>>> import numpy as np

>>> int(np.log2(a)+1)

7

Pour un nombre positif, la conversion d'un �ottant en entier renvoie sa partie entière (c'est
faux pour un nombre négatif).

Exercice : Soit x un réel et n un entier non nul d'écriture binaire n = ⟨dp−1, . . . , d0⟩. Écrire
xn en fonction des x2i pour i ∈ [[0 ; p− 1]].

Corrigé : On a n =
p−1∑
i=0

di2
i d'où

xn = x(
∑p−1

i=0 di2
i) =

p−1∏
i=0

Ä
xdi2

i
ä
=

p−1∏
i=0

Ä
x2i
ädi

Cette écriture permet d'envisager un algorithme performant pour le calcul de xn, algorithme
dit d'exponentiation rapide.

3 Opérations en représentation binaire

Dans cette partie, on retient la convention d'un bit de poids fort égal à 1 dans toute écriture
binaire.

Théorème 3 (Division euclidienne). Soit (a, b) ∈ N×N∗. Il existe un unique couple (q, r) ∈
N × [[0 ; b − 1]] tel que a = b × q + r. Le terme q est appelé quotient et le terme r est appelé
reste.

Remarque : C'est la division usuelle pratiquée depuis les petites classes.

L'algorithme d'addition de deux entiers binaires est identique à celui employé en écriture déci-
male. Concernant la multiplication et la division par 2, on dispose du résultat suivant :

Proposition 3. Soit n un entier non nul avec n = ⟨dp−1, . . . , d1, d0⟩. On a

2× n = ⟨dp−1, . . . , d0, 0⟩ et n//2 = ⟨dp−1, . . . , d1⟩

Démonstration. On a

2× ⟨dp−1, dp−2, . . . , d1, d0⟩ = 2×
Å

p−1∑
i=0

di2
i

ã
=

p∑
i=1

di−12
i = ⟨dp−1, . . . , d0, 0⟩

et ⟨dp−1, dp−2, . . . , d1, d0⟩ =
p−1∑
i=0

di2
i = 2×

Å
p−2∑
i=0

di+12
i

ã
+ d0

Ainsi, d'après le théorème de la division euclidienne

⟨dp−1, dp−2, . . . , d1, d0⟩//2 = ⟨dp−1, . . . , d1⟩

B. Landelle 6 ISM MPSI/PCSI

Remarque : La multiplication par 2 consiste donc en un décalage de l'écriture binaire de 1
bit vers la gauche et la division par 2 consiste donc en un décalage de l'écriture binaire de 1 bit
vers la droite, avec perte du bit de poids faible.

Exercice : Quelle opération mathématique transforme l'entier binaire ⟨dp−1, . . . , d0⟩ en :

1. ⟨dp−1, . . . , d0, 0, 0, 0⟩ ?
2. ⟨dp−1, . . . , d2⟩ ?

Corrigé : D'après la proposition 3, le décalage de 3 bits à gauche correspond à une multipli-
cation par 2×2×2 = 23 et le décalage de 2 bits à droite correspond à une division par 2×2 = 22.

Exercice : Établir la relation

⟨dp−1, dp−2, . . . , d1, d0⟩ × ⟨eq−1, eq−2, . . . , e1, e0⟩ =
q−1∑
i=0

ei × ⟨dp−1, dp−2, . . . , d1, d0, 0, . . . , 0︸ ︷︷ ︸
i zéros

⟩

Corrigé : On distribue le produit simplement.

⟨dp−1, dp−2, . . . , d1, d0⟩ × ⟨eq−1, eq−2, . . . , e1, e0⟩ =
q−1∑
i=0

ei2
i × ⟨dp−1, dp−2, . . . , d1, d0⟩

=
q−1∑
i=0

ei × ⟨dp−1, dp−2, . . . , d1, d0, 0, . . . , 0︸ ︷︷ ︸
i zéros

⟩

4 Exponentiation rapide

Soit x un réel et n un entier non nul d'écriture binaire n = ⟨dp−1, . . . , d0⟩. On a

xn = x(
∑p−1

i=0 di2
i) =

p−1∏
i=0

Ä
xdi2

i
ä
=

p−1∏
i=0

Ä
x2i
ädi

Dans le produit, à i �xé dans [[0 ; p− 2]], on passe du terme x2i au suivant x2i+1
en élevant au

carré :

x2i+1
= x2×2i =

Ä
x2i
ä2

La contribution de x2i dans le produit est déterminée par la valeur de di : si di = 0, le terme
n'apparaît pas dans le produit et sinon il apparaît. Cette écriture permet d'envisager un algo-
rithme performant pour le calcul de xn, algorithme dit d'exponentiation rapide :

def expo(x,n):

"""expo(x:int or float,n:int)->int or float

Calcul de x**n par exponentiation rapide"""

a,r,e=x,1,n

while e>0:

if e%2==1:

r*=a

a*=a

e//=2

return r

B. Landelle 7 ISM MPSI/PCSI

La variable r sert au calcul du résultat �nal.

La variable a sert au calcul des termes x2i successifs. Elle est initialisée à x et est élevée au
carré lors de chaque passage dans la boucle.

En�n, on utilise la variable e pour connaître la valeur de di au cours du produit.

La variable e est initialisée à n = ⟨dp−1, . . . , d0⟩ et l'instruction e%2 renvoie d0, son bit de poids
faible.

Ensuite, la variable e reçoit son quotient par 2 ce qui fait qu'elle reçoit ⟨dp−1, . . . , d1⟩. Son bit
de poids faible renvoyé par e%2 est d1.

Ainsi, au cours de la boucle, l'instruction e%2 renvoie successivement d0, d1, . . . Si di = 1, la
variable r reçoit son produit par a et sinon elle n'est pas modi�ée.

On répète ce procédé tant que e>0. La boucle s'arrête puisque la taille de l'écriture binaire de
e décroît strictement.

On peut écrire une version itérative de ce code mais ceci impose de calculer la taille de l'écriture
binaire de n.

def expo(x,n):

a,r=x,1

if n>0:

p=int(np.log2(n)+1);

e=n

for k in range(p):

if e%2==1:

r*=a

a*=a;e//=2

return r

II Les entiers dans python

1 Les entiers signés de taille �xe

La plupart des langages de programmation permettent de travailler sur des entiers relatifs (on
parle d'entiers signés) dans une plage de valeurs données. Selon le langage ou l'architecture de
la machine, le codage de ces entiers se fait 32 bits, 64 bits ,. . .

Pour réaliser le codage de nombres négatifs, le bit dit de poids fort (celui le plus à gauche) sert
à coder les nombres négatifs par soustraction à un entier �xe. Cette méthode est dite méthode
de complément à 2.

B. Landelle 8 ISM MPSI/PCSI

Dé�nition 6. En méthode de complément à 2, le codage d'entiers relatifs est dé�ni par l'écri-
ture binaire

⟨dp−1, dp2 , . . . , d0⟩CPL2 = −dp−12
p−1 +

p−2∑
i=0

di2
i

− + + +

dp−1 dp−2 d1 d0

Schéma - Codage en complément à 2

Remarque : On aurait pu imaginer que le codage du signe soit réalisé par un bit, le bit de
poids fort par exemple.

⟨dp−1, dp−2, . . . , d1, d0⟩? = (−1)dp−1 ×
p−2∑
i=0

di2
i

Avec ce codage, on voit que zéro peut être codé de deux manières distinctes ce qui n'est pas
satisfaisant si l'on doit tester la nullité d'une variable. Mais surtout, cette écriture n'est pas
compatible avec l'algorithme d'addition tandis que la méthode de complément à 2 l'est.

Exemple : Avec une écriture binaire à 4 bits, on a

⟨0, 0, 0, 0⟩? = ⟨1, 0, 0, 0⟩? = 0

puis ⟨0, 0, 0, 1⟩? = 1, ⟨1, 0, 0, 1⟩? = −1

et, en appliquant naïvement l'algorithme d'addition sur ces écritures binaires, on obtient

⟨0, 0, 0, 1⟩?
+ ⟨1, 0, 0, 1⟩?
= ⟨1, 0, 1, 0⟩? ̸= ⟨0, 0, 0, 0⟩?

Ainsi, il faudrait écrire un nouvel algorithme d'addition pour gérer les entiers signés.

Avec la méthode de complément à deux, on a

⟨0, 0, 0, 1⟩CPL2 = 1, ⟨1, 1, 1, 1⟩CPL2 = −23 + 1 + 2 + 22 = −23 + 22 − 1 = −1

et avec l'algorithme usuel d'addition (le bit de poids fort étant perdu en cas de dépassement)

⟨0, 0, 0, 1⟩CPL2
+ ⟨1, 1, 1, 1⟩CPL2
= ⟨0, 0, 0, 0⟩CPL2 = 0

ce qui illustre la compatibilité de cette écriture avec l'addition de nombres binaires.

Proposition 4. La méthode de complément à 2 sur p bits permet de coder les entiers relatifs
de la plage de valeurs [[−2p−1 ; 2p−1 − 1]].

Démonstration. On a

−1× 2p−1 +
p−2∑
i=0

0× 2i ⩽ −dp−12
p−1 +

p−2∑
i=0

di2
i ⩽ 0× 2p−1 +

p−2∑
i=0

1× 2i = 2p−1 − 1

B. Landelle 9 ISM MPSI/PCSI

Exercice : Soit n = ⟨d31, . . . , d0⟩CPL2 ∈ [[−231 ; 231 − 1]].

1. Calculer 1 +
30∑
i=0

2i.

2. En déduire l'écriture binaire en méthode de complément à 2 de −n− 1.
Indication : on pourra distinguer le cas n ⩾ 0 du cas n < 0.

Corrigé : 1. On a 1 +
30∑
i=0

2i = 231 (somme géométrique).

2. Supposons n ⩾ 0. Ainsi, d31 = 0 et on a

n =
30∑
i=0

di2
i =⇒ −n = −

31∑
i=0

di2
i

Cette dernière écriture n'étant pas adaptée au codage binaire, on décale −n de 231 :

231 − n = 1 +
30∑
i=0

(1− di)︸ ︷︷ ︸
∈{0,1}

2i =⇒ −n− 1 = ⟨1, 1− d30, . . . , 1− d0⟩CPL2

Supposons ensuite n < 0. On a d31 = 1 d'où

n = −1× 231 +
30∑
i=0

di2
i =⇒ −n = 231 −

30∑
i=0

di2
i

En utilisant l'égalité la question 1, il vient

−n = 1 +
30∑
i=0

(1− di)︸ ︷︷ ︸
∈{0,1}

2i =⇒ −n− 1 = ⟨0, 1− d30, . . . , 1− d0⟩CPL2

Dans tous les cas, on a démontré que pour n = ⟨d31, d30, . . . , d1, d0⟩CPL2
−1− n = ⟨1− d31, 1− d30, . . . , 1− d1, 1− d0⟩CPL2

2 Le type int

Dé�nition 7. Un entier de type int sous Python est un entier relatif dont la taille de codage
est a priori quelconque.

Remarque : En réalité, la taille est limitée par la mémoire allouée par l'ordinateur à l'inter-
préteur python.

>>> 2

2

>>> 2**2026

770497466833853895681259076325177001010038916342627621463068614662281397315

6903003024387696152428022310428133230661873696832551753638010286113775345432348995359153119874238036096143186185277010630621347042099849766920141850142420807323001465434115045209323370942188511583227131734148456718338107853872867947081168506066403966113322922364370702470821389037685884971095480759388492753138617074551246849102286511884594850173439349555576122355853534794735339458772476012021466424660732680596614295704680316371570248760389789353846852386712703279382030103072484861279043062503243600206012393224751518620456125988864...

>>> type(2)

<class 'int'>

>>> type(2**2020)

<class 'int'>

En apparence, on n'observe aucune di�érence de traitement entre les petits et les grands entiers.
La réalité est plus complexe. Les grands entiers sont découpés en tableau d'entiers courts ce
qui rend tous les calculs sur ces nombres beaucoup plus lents.

B. Landelle 10 ISM MPSI/PCSI

Le format optimisé dans python est celui des petits entiers codés selon la méthode de complé-
ment à 2 dans la plage −230, 230 − 1. Pour l'utilisateur, le basculement hors de cette plage de
valeurs est totalement transparent mais il induit un coût en terme de performance.

III Nombres à virgules dans python

1 Arithmétique �ottante

Qu'est-ce qu'un réel ? La réponse n'est pas si simple si on veut donner un sens mathématique
précis à cette notion.

-3 -2 -1 0 1 2 3

√
2 e πR

On se contentera d'admettre leur existence et surtout leur représentation décimale. Ainsi, un
réel x peut s'écrire en base 10

x = +− epep−1 . . . e0, d1d2d3 . . .

où les ei et les di désignent des entiers entre 0 et 9. L'entier ep . . . e0 est la partie entière de |x|.
Les entiers di sont appelées les décimales de x. La � plupart � des nombres réels possèdent un
nombre in�ni de décimales. La mémoire d'un ordinateur étant �nie par nature, on ne peut pas
coder �dèlement des nombres réels sur une machine.

Expérimentation :

>>> import numpy as np

>>> 1/3

0.3333333333333333

>>> np.sqrt(2)

1.4142135623730951

>>> np.pi

3.141592653589793

Le calcul des décimales de π est un thème de recherche toujours très actif (202 billions de
décimales en juin 2024).

Dé�nition 8. Un nombre décimal est un réel x tel qu'il existe n entier naturel avec x × 10n

entier relatif.

Remarque : Un nombre décimal est donc un nombre dont l'écriture décimale est �nie. Par
exemple, on a

1.234 = 1234× 10−3 ⇐⇒ 1.234× 103 = 1234

Cette écriture sous forme de produit est intéressante : le nombre 1234× 1010 est aussi facile à
écrire que 1.234 alors que son écriture décimale complète est très grande. Ainsi, en séparant la
contribution puissance de 10 du reste du nombre, on obtient une représentation concise pour
des nombres très grands ou très petits. Cette démarche a donc inspiré la représentation décrite
par le théorème suivant :

B. Landelle 11 ISM MPSI/PCSI

Théorème 4. Soit x réel non nul. Il existe un unique triplet (ε,m, e) ∈ {−1, 1} × [1 ; 2 [× Z
tel que

x = ε×m× 2e

Exemple : Codage de x = 11.8 selon le théorème 4.
On a clairement ε = 1. Puis, il vient

|x| = m× 2e =⇒ e = log2 (|x|)− log2(m)

Comme e est un entier, il s'ensuit que e = ⌊log2 (|x|)⌋ donc ici e = 3 et m s'en déduit avec

m =
x

2e
=

11.8

23
= 1.475. On a obtenu

11.8 = 1× 1.475× 23

Expérimentation :

>>> x=11.8

>>> e=np.floor(np.log2(x))

>>> m=x/(2**3)

>>> m,e

(1.475, 3.0)

>>> 1.475*2**3

11.8

2 La norme IEEE 754

La norme IEEE 1 754 dé�nit le format de nombres en virgule �ottante en s'appuyant sur le
théorème 4. Ainsi, pour coder un réel en machine, on va coder le triplet (ε,m, e) et obtenir le
format virgule �ottante.

Dé�nition 9. La norme IEEE 754 dé�nit le format de nombres en virgule �ottante en base 2
de la forme

(−1)s ×M× 2E−1023

où s ∈ {0, 1} code le signe sur 1 bit, E est un entier non nul appelé exposant codé sur 11 bits
et M est un nombre binaire à virgule dans [1 ; 2 [appelé mantisse codé sur 52 bits.

Remarque : Ce codage en virgule �ottante dit à double précision nécessite 1 + 52 + 11 = 64
bits.

mantisseexposantsigne

05263

Expérimentation :

>>> type(1/3)

<class 'float'>

>>> type(np.pi)

<class 'float'>

1. Institute of Electrical and Electronical Engineers

B. Landelle 12 ISM MPSI/PCSI

>>> type(1.1)

<class 'float'>

>>> type(1.)

<class 'float'>

Notons m1, . . . ,m52 les bits codant la mantisse. Comme M ∈ [1 ; 2 [, le chi�re des unités de M
est nécessairement 1 et ne nécessite donc pas un bit de stockage. Seules les puissances négatives
de 2 sont codées avec

M = 1 +
52∑
i=1

mi

2i

L'exposant est un entier binaire codé conformément à la description qui en a été faite précé-
demment à savoir

E = ⟨e10, . . . , e0⟩ =
10∑
i=0

ei2
i

Vocabulaire : L'appellation virgule �ottante se comprend par opposition à virgule �xe : comme
l'exposant n'est pas �xé, la virgule n'est pas à une position �xe (contrairement à celle de la
mantisse), elle � �otte �.

Proposition 5. Un nombre en virgule �ottante suivant la norme IEEE 754 s'écrit

(−1)s ×M× 2E−1023

avec s ∈ {0, 1}, M = 1+
52∑
i=1

mi

2i
où les mi ∈ {0, 1} et E = ⟨e10, . . . , e0⟩ =

10∑
i=0

ei2
i où les ei ∈ {0, 1}

sont non tous nuls.

s e10 e9 e1 e0 m52 m51 m2 m1

Schéma - Codage du type float

! Exceptions
Si la mantisse commence toujours par 1, alors on ne peut en principe pas coder zéro (ennuyeux
. . .) On �xe par convention qu'un nombre vaut zéro si tous les bits de l'exposant et de sa
mantisse sont à zéro (le bit de signe n'est pas contraint, d'où deux codages de zéro selon cette
convention). On dit que zéro est un nombre dénormalisé, il ne suit pas la norme. Il existe
d'autres nombres dénormalisés recensés précisément.

Exercice : Combien de nombres dans [1 ; 2 [peuvent être codés �dèlement au format �ottant ?

Corrigé : Pour un nombre �ottant dans la plage [1 ; 2 [, on a s = 0, E = 1023 et M = 1+
52∑
i=1

mi

2i

avec (mi)i∈[[1 ; 52]] ∈ {0, 1}52. On peut donc coder �dèlement Card {0, 1}52 = 252 nombres dans
[1 ; 2 [ce qui est beaucoup en pratique, mais peu au regard de l'in�nité de valeurs de [1 ; 2 [.

3 Limites de codage

Les nombres à virgule �ottante étant codés sur un nombre �ni de bits, ils sont nécessairement
en nombre �ni. Il est donc clair qu'on va se heurter à des limitations numériques intrinsèques
au codage. Typiquement, si l'exposant est trop grand ou trop petit, il sera impossible à coder
avec le nombre de bit prévu à cet e�et. On parle d'over�ow quand l'exposant est trop grand
et d'under�ow quand il est trop petit.

B. Landelle 13 ISM MPSI/PCSI

Si l'exposant peut être correctement codé, il n'en demeure pas moins une limitation majeure.
Le codage de la mantisse

M = 1 +
52∑
i=1

mi

2i
= 1 +

52∑
i=1

mi2
52−i

252
avec les mi ∈ {0, 1}

permet de coder les éléments de la forme 1 +
k

252
avec k ∈ [[0 ; 252 − 1]] mais ne permet donc

pas un codage de n'importe quel nombre réel de l'intervalle [1 ; 2 [.

Expérimentation :

>>> 0.1

0.1

>>> 0.2

0.2

En apparence, tout va bien : les nombres sont correctement a�chés par l'interpréteur.

>>> 0.1+0.2

0.30000000000000004

Tout se gâte. Python se � trompe � sur une opération très simple. On est exactement dans la
situation où le codage de la mantisse sur un nombre �ni de bits entraîne une troncature : il
faudrait un nombre in�ni de bits pour coder les mantisses de 0.1 et de 0.2 d'où une approxi-
mation stockée en machine et l'erreur de calcul grossière qui en découle.

>>> print(format(.1,".20f"))

0.10000000000000000555

>>> print(format(.2,".20f"))

0.20000000000000001110

En exigeant plus de décimales dans l'a�chage des �ottants 0.1 et 0.2, on constate clairement
qu'ils ne sont pas codés �dèlement à leur écriture décimale. Ceci est inévitable et structurel :
la mantisse est codée en puissances négatives de 2 et non de 10. La fraction binaire du nombre
0.1 s'écrit

0.1dec = 0.0001100110011001100110011001100110011001100110011001100 . . .bin

Cette égalité signi�e

0.1 = 0 +
0

2
+

0

22
+

0

23
+

1

24
+

1

25
+

0

26
+

0

27
+

1

28
+

1

29
+

0

210
+ . . .

Par conséquent, dès la saisie des �ottants, le � mal � est fait. Ils ne sont qu'imparfaitement
codés en machine même si l'a�chage (partiel) laisse croire le contraire.

En revanche, des opérations sur des �ottants de la forme 1 +
k

252
avec k ∈ [[0 ; 252 − 1]] se

déroulent impeccablement.

B. Landelle 14 ISM MPSI/PCSI

Expérimentation :

>>> 0.5-0.25

0.25

>>> 0.25-0.125

0.125

>>> 1/2**10-1/2**7

-0.0068359375

Sans mettre en défaut le codage de la mantisse, on peut détecter si l'on est dans ou hors du
champ de précision du codage �ottant. On parle d'erreur par absorption.

>>> 1+2**(-10)-1==2**(-10)

True

>>> 1+2**(-100)-1==2**(-100)

False

Exercice : Soient a et b des entiers. Comparer les opérations a//b et int(a/b).

Corrigé : L'opération a//b est une opération exacte e�ectuée sur des entiers. En revanche,
l'opération a/b est à valeurs dans les �ottants et peut donc donner lieu à des erreurs d'exécution
en cas de dépassement ou pire, donner lieu à des erreurs de calculs, même après conversion en
entier. Ainsi, on observe

>>> (2**54+2)//2

9007199254740993

>>> int((2**54+2)/2)

9007199254740992

avec un second résultat faux du fait d'un débordement dans la mantisse pour le codage en
�ottant de (254 + 2)/2.

La représentation �ottante doit donc in�uer sur notre façon de considérer ces nombres. Ainsi,
tester x = 0 avec x à virgule �ottante n'a, en général, pas de sens du fait de possibles erreurs
d'arrondi. Il est beaucoup plus pertinent d'envisager de tester |x| < ε où ε est un seuil de
précision �xé par l'utilisateur en fonction des données du problème.

! x==0 abs(x)<eps

Expérimentation :

Considérons le polynôme P = (X− 0.1)2 = X2 − 0.2X + 0.01

Testons la nullité du discriminant.

B. Landelle 15 ISM MPSI/PCSI

>>> a=1

>>> b=-.2

>>> c=.01

>>> delta=b**2-4*a*c

>>> delta==0

False

>>> delta

6.938893903907228e-18

Le phénomène de cancellation (ou élimination) se produit lors de la soustraction de deux
nombres très proches. Calculons un taux d'accroissement de la fonction t 7→ t en 1.

>>> h=1e-15

>>> (1+h-1)/h

1.1102230246251565

Le calcul du taux d'accroissement est médiocre. La soustraction de deux nombres proches révèle
les approximations de leurs représentations �ottantes. Le nombre 1+h n'est pas codé �dèlement
et l'imprécision dans la di�érence 1+h− 1 est exacerbée quand on la divise par h qui est petit.

On rencontre parfois de bonnes surprises avec le format �ottant :

>>> (1/3)*3

1.0

>>> (1/3)*3==1

True

et de moins bonnes :

>>> 10*(1/3)-1/3

2.9999999999999996

>>> np.sqrt(10)**2

10.000000000000002

Considérons un réel x et son codage �ottant x′ sous Python. Le signe et l'exposant de x et x′

sont égaux puisque leurs codages ne requièrent aucune troncature. L'erreur de codage entre x
et x′ vient donc de la mantisse. On trouve :

|x− x′| = 2E−1023 × |M−M′|
où M et M′ désignent les mantisses respectives de x et x′. On a

M′ = 1 +
52∑
i=1

mi

2i
et M = 1 +

52∑
i=1

mi

2i
+

m53

253
+

m54

254
+ . . .

d'où |M−M′| ⩽ 1

253
+

1

254
+ . . . = lim

n→+∞

1

253

Å
1 +

1

2
+ . . .+

1

2n

ã
=

1

252

et donc |x− x′| ⩽ 2E−1023−52

B. Landelle 16 ISM MPSI/PCSI

Exercice : Écrire un programme en langage python qui détecte la plus petite puissance de 2
pouvant s'écrire en format �ottant (il s'agit d'un nombre dénormalisé).

Corrigé : On exécute le code suivant :

a=1

n=0

while a>0:

n+=1

a/=2

et on trouve

>>> n

1075

Ainsi, la plus petite puissance de 2 accessible en format �ottant est 2−1074, soit une puissance
beaucoup plus petite que celle prévue par la norme IEEE qui devrait être 2−1023. En fait, le 1
de la mantisse interdit toute représentation �ottante entre 0 et 2−1023. Pour accéder à de plus
petites puissances, on a dénormalisé l'écriture avec

(−1)s ×
Å

52∑
i=1

mi

2i

ã
× 2E−1023

d'où un minimum de 2−52+1−1023 = 2−1074 que l'on peut véri�er expérimentalement.

>>> 2**(-1074)

5e-324

>>> 2**(-1075)

5e-324

B. Landelle 17 ISM MPSI/PCSI

	Introduction
	Système binaire
	Aspects quantitatifs de l'écriture binaire
	Opérations en représentation binaire
	Exponentiation rapide

	Les entiers dans python
	Les entiers signés de taille fixe
	Le type int

	Nombres à virgules dans python
	Arithmétique flottante
	La norme IEEE 754
	Limites de codage

