
ISM MPSI/PCSI, Informatique
Année 2025/2026

Corrigé du TP Informatique 14

Exercice 1

1. On saisit :

def binaire(n):

"""Conversion dec->bin"""

res=[]

a=n

while a>0:

res.append(a%2)

a//=2

return res

On teste :

>>> binaire(123)

[1, 1, 0, 1, 1, 1, 1]

>>> bin(123)

'0b1111011'

2. On saisit :

def decimale(L):

"""Conversion bin->dec selon Horner"""

n=len(L)

res=0

for k in range(n-1,-1,-1):

res=res*2+L[k]

return res

On teste :

>>> decimale(binaire(123))

123

3. On saisit :

tn=[123,2020,2**20]

for n in tn:

print(len(binaire(n)),int(np.log2(n))+1)

print(binaire(n))

print(binaire(2*n))

print(binaire(n//2))

On observe :

1

7 7

[1, 1, 0, 1, 1, 1, 1]

[0, 1, 1, 0, 1, 1, 1, 1]

[1, 0, 1, 1, 1, 1]

...

Exercice 2

1. On saisit :

def dec_bin8(n):

"""Conversion dec->bin sur 8 bits"""

res,a=[],n

for k in range(8):

res.append(a%2)

a//=2

return res

2. On saisit :

def bin8_dec(L):

"""Conversion bin sur 8 bits->dec selon schéma de Horner"""

res=0

for k in range(7,-1,-1):

res=res*2+L[k]

return res

3. On saisit :

def add8(L1,L2):

"""Addition de deux entiers codés en binaire 8 bits"""

res=[]

carry=False # carry : booléen de retenue

for k in range(8):

if L1[k]!=L2[k]: # cas 0/1 ou 1/0

if carry:

res.append(0)

else:

res.append(1)

else: # cas 0/0 ou 1/1

if carry:

res.append(1)

else:

res.append(0)

if L1[k]==0: # cas 0/0 : perte de retenue

carry=False

else: # cas 1/1 : retenue systématique

carry=True

return res

2

4. On teste :

print("Plage : [0,",bin8_dec([1]*8),"]")

for c in [(12,29),(100,70),(200,55),(200,56),(200,200)]:

a,b=c

ta,tb=dec_bin8(a),dec_bin8(b)

print(a+b,bin8_dec(add8(ta,tb)))

Exercice 3

1. On saisit :

def dec_sign8(n):

"""Conversion dec->bin signé sur 8 bits"""

res=[]

a=n

for k in range(7):

res.append(a%2)

a//=2

res.append(int(a<0))

return res

2. On saisit :

def sign8_dec(L):

"""Conversion bin signé sur 8 bits->dec"""

res=-L[-1]

for k in range(6,-1,-1):

res=res*2+L[k]

return res

3. On teste :

print("Plage : [",sign8_dec([0]*7+[1]),",",sign8_dec([1]*7+[0]),"]")

for c in [(1,-1),(15,20),(-100,27),(100,27),(100,-27),(-100,-28)]:

a,b=c

ta,tb=dec_sign8(a),dec_sign8(b)

print(a+b,sign8_dec(add8(ta,tb)))

On observe :

Plage : [-128 , 127]

0 0

35 35

...

Ainsi, la fonction add8 prévue initialement pour l'addition de deux entiers non signés codés
sur 8 bits fonctionne parfaitement sur des entiers signés codés sur 8 bits. La compatibilité de
l'algorithme d'addition est l'argument décisif pour le choix du codage en complément à 2.

3

