ISM MPSI/PCSI, Informatique
Année 2025/2026

TP Informatique 12

AOD rappelle quun script (fichier *.py) doit étre enregistré et exécuté (touche F5) pour que
les fonctions saisies dans le script soient utilisables dans la console et que la combinaison de
touches Ctrl+C permet de casser une boucle infinie.

Exercice 1

On s’intéresse au probléme du rendu de monnaie : on souhaite rendre la monnaie en minimisant
le nombre de piéces et billets.

Par exemple, dans le cadre du systéme de la zone euro, le systéme de monnaie, en omettant les
centimes, est constitué du jeu de billets et piéces décrit par la liste

[500,200,100,50,20,10,5,2,1]

On considére dans ce qui suit qu’un systéme de monnaie est une liste triée par ordre décroissant
se terminant par 1, ce qui garantit de pouvoir rendre la monnaie sur tout montant entier.

On utilise 'algorithme glouton suivant : tant qu’il reste quelque chose a rendre, on choisit le plus
gros billet ou piéce qu’on peut rendre.

1. Ecrire une fonction rendu(v,S) d’argument un entier v, une liste S et qui renvoie la liste
des piéces ou billets a rendre pour le montant v et le systéme de monnaie S.

2. Tester la fonction rendu avec le systéme de monnaie
[400,300,100,40,30,10,4,3,1]

Minimise-t-on le nombre de piéces et billets rendus avec 'algorithme glouton ?

Exercice 2

En algorithmique, le probléme du sac & dos, parfois noté (KP) (de 'anglais Knapsack Problem)
est un probléme d’optimisation combinatoire. Il modélise une situation analogue au remplissage
d’un sac & dos, ne pouvant supporter plus d’un certain poids, avec tout ou partie d’'un ensemble
donné d’objets ayant chacun un poids et une valeur. Les objets mis dans le sac a dos doivent
maximiser la valeur totale, sans dépasser le poids maximum.

On modélise les objets a 1’aide de couples (v;,p;), 1 <i < n, ol n est le nombre d’objets, v; est
la valeur de I'objet i et p; son poids. On note P le poids total supporté par le sac a dos.
L’objectif est de maximiser la valeur totale des objets rangés dans le sac, sous la contrainte que
leur poids total reste inférieur ou égal a P. Il s’agit d'un probléme difficile[[] dont la résolution
exacte ou approchée peut étre obtenue a I'aide de nombreuses méthodes.

On s’intéresse dans cet exercice a ’application d’une stratégie gloutonne pour remplir un sac a

dos. On introduit pour cela I’efficacité de 'objet ¢ comme étant le rapport e; = Z—I

1. C’est un probléme NP-complet



1. Ecrire une fonction trieff (L) prenant en argument une liste de couples représentant les
objets a ranger dans le sac a dos, et renvoyant une liste de ces mémes objets triés par
efficacité décroissante.

On «rappelley que Uinstruction sorted(L) renvoie une liste contenant les éléments de L
triés dans l'ordre croissant. Avec les paramétres key et reverse=True, on peut obtenir
une liste triée suivant les critéres de key et dans ['ordre décroissant.

Par exemple l'instruction sorted(L, key = lambda couple : couple[0]/couple[1],
reverse=True) renvoie une liste contenant les éléments de L triés dans ['ordre décroissant
des valeurs des rapports du premier élément par le deuzieme élément des couples de L.

2. Ecrire une fonction remplissage(L,P) prenant en argument L une liste de couples re-
présentant les objets a ranger dans le sac & dos, et P le poids total supporté par le sac,
et renvoyant la liste des objets & placer dans le sac a dos, leur poids total, et la valeur
contenue dans le sac.

3. Tester la fonction précédente avec les objets définis par la liste de couples :
(1,2),(2,5),(3,7),(7,12),(10,9)

Le résultat est-il optimal ?

Exercice 3

On rappelle que la suite de Fibonacci (F),)nen est définie par la donnée de Fg =0, F; =1 et la
relation de récurrence : Vn e N, F, o = F,.1 +F,.

Théoréme de Zeckendorf :
Pour tout entier naturel non nul n, il existe un unique entier k et un unique k-uplet d’entiers
(c1y...,ck), vérifiant :

e =2

e pour tout ¢ appartenant & [1,k — 1], ¢; + 1 < ¢;11

tels que :
k
i=1

Cette décomposition s’appelle la décomposition de Zeckendorf du nombre n.

Ecrire une fonction Zeckendorf (n) prenant en argument un entier n non nul et renvoyant sa
décomposition de Zeckendorf sous forme d’une liste d’entiers.



