
COMPLEXITÉ

B. Landelle

Table des matières

I Introduction 2

1 Problématique . 2
2 Relation de domination O . 3
3 Sommation des O . 5

II Complexité 6

1 Types de complexité . 6
2 Classes de complexité . 7
3 Coût des instructions . 7

IIICalculs de complexité 10

1 Bases de calculs . 10
2 Algorithmes classiques . 17

1

I Introduction

1 Problématique

Pour un problème informatique donné, il existe souvent plusieurs algorithmes possibles qui ré-
pondent au problème. Il est donc pertinent de pouvoir classer ces algorithmes entre eux a�n
de choisir le plus performant. Il peut aussi être utile de prévoir le temps d'exécution d'un algo-
rithme, en particulier quand l'argument fourni à l'algorithme est de très grande taille et que la
réponse n'est pas immédiate (primalité d'un nombre par exemple).

Pour ce faire, on introduit la notion de complexité dont les objectifs principaux sont :
� la comparaison d'algorithmes réalisant le même traitement ;
� la prévision du temps d'exécution d'un algorithme ;
� la prévision de l'utilisation de l'espace mémoire.

La classi�cation obtenue par étude de complexité permettra de choisir l'algorithme nécessitant :
� le moins de ressources de calculs ;
� le moins de ressources de stockage.

0 10000 20000 30000 40000 50000
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
m

ps
 (s

)

fact1
fact2

Figure 1 � Comparaison de deux implémentations du calcul de n!

B. Landelle 2 ISM MPSI/PCSI

Exemple : Considérons les fonctions geom1 et geom2 qui réalisent le calcul de
n−1∑
k=0

qk avec q

�ottant et n entier sans recours à l'opération d'exponentiation **.

def geom1(n,q):

"""geom1(n:int,q:int or float)->int or float

Calcul de 1+q+...+q^(n-1)"""

res=0

for k in range(n):

qk=1

for i in range(k):

qk*=q

res+=qk

return res

Dans la fonction geom1, le calcul de qk est refait intégralement à chaque passage dans la boucle
en k. Si on compte le nombre total de multiplication, on en e�ectue

n−1∑
k=0

k−1∑
i=0

1 =
n−1∑
k=0

k =
n(n− 1)

2

def geom2(n,q):

"""geom2(n:int,q:int or float)->int or float

Calcul de 1+q+...+q^(n-1)"""

res=0

qk=1

for k in range(n):

res+=qk

qk*=q

return res

Dans la fonction geom2, on garde en mémoire le terme qk et on passe de l'étape k à k + 1 en
multipliant par q puisque qk+1 = qk × q. On e�ectue en tout n additions et multiplications ce
qui est largement préférable à la version précédente.

2 Relation de domination O

Pour quanti�er les complexités, on utilisera relation de domination avec la notation de Landau
en � grand O �.

Dé�nition 1. La suite (un)n est dite dominée par la suite (vn)n, relation de domination que
l'on note un = O(vn) si

∃N ∈ N ∃M > 0 ∀n ⩾ N |un| ⩽ M |vn|

Remarque : La bonne notion pour l'étude de complexité n'est pas en réalité la relation de
domination. E�et, si un algorithme a une complexité temporelle en O(n), on peut tout aussi
bien annoncer qu'elle est en O(n2). C'est correct même si c'est nettement moins pertinent.
L'usage consiste donc à déterminer la domination la plus �ne qui soit ce qui équivaut à utiliser
la relation hors-programme de l'ordre de notée Θ. On note un = Θ(vn) ce qui signi�e un = O(vn)
et vn = O(un).

B. Landelle 3 ISM MPSI/PCSI

Proposition 1. La notation O(1) désigne une suite réelle bornée. Étant donnée une suite réelle
(vn)n qui ne s'annule pas, on a

un = O(vn) ⇐⇒ un = vnO(1)

Remarques : (1) La notation de Landau est générique. Par exemple

n = O(n) et 2n = O(n)

mais on n'a évidemment pas n = 2n pour n non nul. La notation désigne un certain compor-
tement asymptotique, c'est-à-dire pour n → +∞.

(2) On omet délibérément la dépendance en n dans la notation O(1) (on ne note pas (O(1)n)n∈N).

Rappel : Une suite réelle convergente est bornée. En e�et, soit (un)n suite convergente de limite
ℓ. Il existe un entier N tel que pour n > N, on ait |un − ℓ| ⩽ 1 d'où par inégalité triangulaire

∀n > N |un| ⩽ |un − ℓ|+ |ℓ| ⩽ 1 + |ℓ|
Prenant M = max(|u0| , . . . , |uN| , 1 + |ℓ|), on a bien

∀n ∈ N |un| ⩽ M

Notation : Dans tout ce qui suit, on notera log le logarithme népérien conformément à l'usage
en cours d'informatique.

Proposition 2. On a les propriétés suivantes :

1. Cte ×O(un) = O(un) ;

2. Si un → +∞, alors Cte +O(un) = O(un).

3. Si xn = O(yn) et yn = O(un), alors xn = O(un) (transitivité).

4. Si xn = O(un) et yn = O(un), alors, xn + yn = O(un).

5. Si xn = O(un) et yn = O(vn), alors xn × yn = O(un × vn).

Exemples : 1. On a log(n) = O(n) puisque d'après le théorème des croissances comparées

log(n)

n
−−−−→
n→+∞

0

2. On a
n∑

k=1

k =
n(n+ 1)

2
= O(n2) car

n(n+ 1)

2n2
=

1

2

ï
1 +

1

n

ò
−−−−→
n→+∞

1

2

3. On a O(1) +O(log(n)) = O(log(n)) puisque O(1) = O(log(n)) car

O(1)

log(n)
−−−→
n→∞

0

Le résultat suit par addition de grands O. On ne peut dire mieux (prendre 0 + log(n) par
exemple).
4. On a O(n) +O(n2) = O(n2) puisque O(n) = O(n2) car

O(n)

n2
=

nO(1)

n2
=

O(1)

n
−−−→
n→∞

0

Le résultat suit par addition de grands O. On ne peut dire mieux (prendre 0+n2 par exemple).

B. Landelle 4 ISM MPSI/PCSI

Remarques : (1) L'égalité O(1) = O(log(n)) est licite : elle signi�e que O(1) est dominée par

log(n) puisque
O(1)

log(n)
−−−→
n→∞

0.

! En revanche, si on inverse les rôles, l'égalité O(log(n)) = O(1) est fausse (log(n) −−−→
n→∞

+∞
donc non borné). L'égalité avec un O s'entend donc au sens de la dé�nition 1 et non au sens
usuel d'une égalité.

(2) Quand on somme des grand O, le � plus gros � terme � digère � les autres.

(3) Si on regarde un grand O d'une expression, seul le � plus gros � terme de cette expression
est pertinent.

Exercice : Que peut-on dire des expressions suivantes :

1. O(1) +O(n)

2. O(log(n)) +O(n)

3. O(n) +O(n log(n))

4. O
Å

n−1∑
k=1

k

ã
Corrigé : 1. On a O(1) +O(n) = O(n) et on ne peut dire mieux (prendre 0 + n par exemple).
2. On a O(log(n)) +O(n) = O(n) et on ne peut dire mieux (prendre 0 + n par exemple).
3. On a O(n) + O(n log(n)) = O(n log(n)) et on ne peut dire mieux (prendre 0 + n log(n) par
exemple).

4. On a O
Å

n−1∑
k=1

k

ã
= O
Å
n2 − n

2

ã
= O(n2) et on ne peut dire mieux.

3 Sommation des O

Théorème 1. Soit (un)n une suite de réels strictement positifs. On a
n∑

k=1

O(uk) = O
Å

n∑
k=1

uk

ã
Corollaire 1.

n∑
k=1

O(1) = O(n)
n∑

k=1

O(k) = O(n2)
n∑

k=2

O(log(k)) = O(n log(n))

Exercice : Parmi les quantités suivantes, déterminer celles qui sont en O(1), O(log(n)), O(n),
O(n log(n)), O(n2) :

1.
p∑

i=1

O(1) avec p �xé ;

2.
n−1∑
k=1

O(k) ;

3.
n∑

i=1

n∑
j=1

O(1) ;

4.
n−1∑
i=1

n∑
j=i+1

O(1) ;

B. Landelle 5 ISM MPSI/PCSI

5.
n∑

k=1

[O(k) +O(log(k))] ;

6.
n∑

i=1

i∑
j=1

O(1) ;

7.
∑

k∈N | 2k⩽n

O(1).

Corrigé : 1. Une somme �nie de suites bornées est une suite bornée d'où
p∑

i=1

O(1) = O(1).

2. On a
n−1∑
k=1

O(k) = O
Å

n−1∑
k=1

k

ã
= O(n2).

3. On a
n∑

i=1

n∑
j=1

O(1) = O

Ç
n∑

i=1

n∑
j=1

1

å
= O(n2).

4. On a
n−1∑
i=1

n∑
j=i+1

O(1) = O

Ç
n−1∑
i=1

n∑
j=i+1

1

å
= O
Å

n−1∑
i=1

(n− i)

ã
= O
Å

n−1∑
k=1

k

ã
= O(n2).

5. On a
n∑

k=1

[O(k) +O(log k)] =
n∑

k=1

O(k) = O
Å

n∑
k=1

k

ã
= O(n2).

6. On a
n∑

i=1

i∑
j=1

O(1) = O

Ç
n∑

i=1

i∑
j=1

1

å
= O
Å

n∑
i=1

i

ã
= O(n2).

7. On a
∑

k∈N | 2k⩽n

O(1) =
∑

0⩽k⩽log2(n)

O(1) = O

Ç
⌊log2(n)⌋∑

k=0

1

å
= O(log(n)).

II Complexité

1 Types de complexité

Dé�nition 2. On appelle opération élémentaire une opération que l'ordinateur peut e�ectuer
en temps constant.

Par exemple, les opérations implémentées bas-niveau sur les processeurs comme les opérations
logiques ou arithmétiques sur des registres sont des opérations élémentaires.

Dé�nition 3. La complexité temporelle d'un algorithme désigne le nombre d'opérations élé-
mentaires réalisées par l'algorithme.

En pratique, on ne s'intéressera pas au coût exact d'un algorithme mais plutôt à une classe de
complexité décrite avec la notation de Landau.

Dé�nition 4. La complexité spatiale d'un algorithme désigne l'espace mémoire occupé lors de
l'exécution de l'algorithme.

Remarque : Ce critère est moins considéré du fait des très importantes capacités mémoires
des machines actuelles. Une des situations où ce critère reste pertinent est celui des fonctions
récursives puisque les multiples appels de la fonction par elle-même nécessitent une utilisation
importante de mémoire.

! Dans un énoncé, quand il est fait mention d'un calcul de � complexité � sans précision
additionnelle, il faut comprendre complexité temporelle.

B. Landelle 6 ISM MPSI/PCSI

Proposition 3. La complexité spatiale d'un algorithme est majorée par sa complexité temporelle
puisque chaque occupation additionnelle en mémoire implique une instruction d'écriture en
mémoire.

Dé�nition 5. La complexité temporelle dans le pire des cas est le temps d'exécution maximum
de l'algorithme, à savoir le temps d'exécution dans le cas le plus défavorable. La complexité
spatiale dans le pire des cas désigne l'espace mémoire maximum occupé par l'algorithme, à
savoir l'espace occupé dans le cas le plus défavorable.

Dé�nition 6. La complexité temporelle dans le meilleur des cas est le temps d'exécution mini-
mum de l'algorithme, à savoir le temps d'exécution dans le cas le plus favorable. La complexité
spatiale dans le meilleur des cas est l'espace mémoire minimum occupé par l'algorithme, à savoir
l'espace occupé dans le cas le plus favorable.

Remarques : (1) Ces complexités dans le pire et dans le meilleur des cas correspondent
respectivement à des bornes supérieures et inférieures des temps d'exécution ou d'occupation
en mémoire de l'algorithme.
(2) On évoque les notions de pire cas et meilleur cas quand cela est pertinent : il peut tout à
fait ne pas exister de pire et meilleur cas mais si cette distinction existe, il faut la faire.

2 Classes de complexité

Plutôt que de compter exactement le nombre d'opérations élémentaires d'un algorithme, on
cherche à classer sa complexité parmi des ordres de grandeur de référence. Cette classi�cation
est simpli�catrice tout en gardant la pertinence du coût d'un algorithme.

L'entier n désigne en général la taille de l'argument. Dans le calcul d'un algorithme portant sur
un calcul arithmétique, il peut aussi désigner l'argument lui-même.

Dé�nition 7. On distingue les principales classes de complexité suivantes :
� O(1) : complexité constante ;
� O(log(n)) : complexité logarithmique ;
� O(

√
n) : complexité racinaire ;

� O(n) : complexité linéaire ;
� O(n log(n)) : complexité quasi-linéaire ;
� O(n2) : complexité quadratique ;
� O(np) : complexité polynomiale ;
� O(an) : complexité exponentielle (a > 1).

Les complexités au plus quasi-linéaires sont raisonnables. Les complexités polynomiales, au
moins quadratiques, sont acceptables mais les complexités exponentielles sont à proscrire.

3 Coût des instructions

Dé�nition 8. Les instructions suivantes sont considérées comme opérations élémentaires :
� a�ectation de types simples ;
� comparaison de types simples ;
� opérations arithmétiques et logiques +,-,*,/, //, %, and, or, not

Les opérations élémentaires sont les unités de mesure du coût d'un algorithme.

B. Landelle 7 ISM MPSI/PCSI

Remarque : Les a�ectations et comparaisons concernent les types simples.

Cette classi�cation d'opérations élémentaires est simpliste bien que nécessaire pour une pre-
mière approche. Par exemple, pour des �ottants ou de � petits � entiers (⩽ 230), la multiplication
et l'addition peuvent e�ectivement être vues comme des opérations à coûts constants.

En revanche, si on s'intéresse à de grands entiers, la multiplication est plus coûteuse que l'ad-
dition. L'algorithme naïf appris dans les petites classes con�rme intuitivement cette idée. La
réalité des implémentations est plus subtile.

Depuis les années 60, de nouvelles générations d'algorithmes de multiplication rapide ont sup-
planté la méthode naïve :

� algorithme de Karatsuba (1960) ;
� algorithme de Toom-Cook (1963) ;
� algorithme de Schönhage-Strassen (1971) ;
� algorithme de Fürer (2007) ;
� algorithme de Harvey-van der Hoeven (2019).

Pour des opérations sur des types composés (liste, chaîne de caractère, tuple), le coût peut être
fonction de la taille de l'argument. Considérons par exemple la situation suivante :

def f(n):

res=[0]*n # construit une liste de n zéros

...

On initialise la variable res en construisant une liste de n zéros où n est l'argument de la
fonction. Cette a�ectation équivaut, en coût temporel et spatial, à n a�ectations de types
simples d'où une complexité temporelle et spatiale en O(n).

Proposition 4. Les temps d'accès à un élément d'une liste en lecture/écriture sont en O(1).

Cette caractéristique combinée à une structure dynamique est un des atouts majeurs des listes
en python.

! Complexité temporelle des instructions ou méthodes sur des listes de taille n :

Opération Complexité
append O(1)∗

pop O(1)∗

==, != O(n)
in O(n)

remove O(n)
delete O(n)
count O(n)

max, min O(n)
reverse O(n)
sort O(n log(n))

(*) : il s'agit de complexité amortie (coût moyen des opérations en utilisation).

B. Landelle 8 ISM MPSI/PCSI

La taille de l'écriture binaire d'un entier n non nul est en O(log(n)) ce qu'on peut observer
expérimentalement avec l'instruction getsizeof du module sys.

0 25 50 75 100 125 150 175
log(n)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

le
n_

in
t(n

)

Figure 2 � Mémoire allouée à la représentation d'un entier

Jusqu'à 230, le coût d'écriture d'un entier est constant. Dans cette con�guration, on considère
que la complexité spatiale liée à la représentation des entiers est en O(1). Sauf mention parti-
culière, c'est une des hypothèses de travail qui est faite habituellement.

Avec cette hypothèse simpli�catrice, la complexité spatiale de l'instruction range(n) est en
O(1) tandis que celle de list(range(n)) est en O(n).

0 20 40 60 80 100

100

200

300

400

500

600

700

800
range(n)
list(range(n))

Figure 3 � Complexité spatiale : range(n) versus list(range(n))

Proposition 5. Pour les dictionnaires, les tests d'appartenance et les temps d'accès en lec-
ture/écriture à un couple (clé,valeur) sont en O(1).

Les dictionnaires en python sont une implémentation d'une structure abstraite de données
appelée table de hachage, structure qui permet une association performante clé-valeur.

B. Landelle 9 ISM MPSI/PCSI

III Calculs de complexité

1 Bases de calculs

On rappelle que l'entier n désigne la taille de l'argument ou l'argument lui-même.

• Séquence simple

Dans tout ce qui suit, les instructions repérées par Instruction x, Test y sont de complexité
temporelle en O(1). On considère que seules les instructions en �n de bloc peuvent provoquer
des sorties (break ou return). Les entiers p, r, p1, . . .pr désignent des entiers �xés indépen-
dants de l'entier n.

La séquence d'instructions

Instruction 1

Instruction 2

...

Instruction p

avec p constant, indépendant de n, est de complexité temporelle en
p∑

i=1

O(1) = O(1)

La séquence d'instructions

if Test:

Instruction 1

...

Instruction p

avec p constant, indépendant de n, est de complexité temporelle en

O(1) ou O(1) +
p∑

i=1

O(1) = O(1)

La séquence d'instructions

if Test:

Instruction 1

...

Instruction p1

else:

Instruction p1+1

...

Instruction p1+p2

avec les pi constants, indépendants de n, est de complexité temporelle en

O(1) +
p1∑
i=1

O(1) = O(1) ou O(1) +
p2∑
i=1

O(1) = O(1)

La séquence d'instructions

B. Landelle 10 ISM MPSI/PCSI

if Test 1:

Instruction 1

...

Instruction p1

elif Test 2:

Instruction p1+1

...

Instruction p1+p2

...

elif Test r:

...

Instruction p1+...+pr

avec les pi constants, indépendants de n, est de complexité temporelle en

O(1) +
p1∑
i=1

O(1) = O(1) ou O(1) +O(1) +
p2∑
i=1

O(1) = O(1)

ou . . . ou
r∑

i=1

O(1) +
pr∑
i=1

O(1) = O(1)

• Séquence avec boucle

On considère dans un premier temps que les instruction repérées par Instruction x ne pro-
voquent pas de sortie (ni break, ni return).

La séquence d'instructions

for k in range(n):

Instruction 1

...

Instruction p

est de complexité temporelle en
n−1∑
k=0

O(1) = O
Å

n−1∑
k=0

1

ã
= O(n)

La séquence d'instructions

for x in L:

Instruction 1

...

Instruction p

avec L une liste de taille n est de complexité temporelle en
n∑

i=1

O(1) = O
Å

n∑
i=1

1

ã
= O(n)

On peut provoquer une sortie de boucle prématurée avec un return ou un break dans une
boucle for. Une sortie de boucle doit être conditionnelle sans quoi la boucle n'a plus de raison
d'être. Dans ce cas, on peut être amené à distinguer un meilleur cas et un pire cas.

B. Landelle 11 ISM MPSI/PCSI

def fonction(L):

for x in L:

if Test:

return ...

return ...

Si Test est True au premier passage dans la boucle, on a une complexité temporelle dans le
meilleur des cas en O(1). En revanche, si Test est False tout au long de la boucle, on a une
complexité temporelle dans le pire des cas en O(n).

On considère que les instruction repérées par Instruction x ne provoquent pas de sortie (ni
break, ni return).

Notant n le nombre de fois où la valeur de Test est True, la séquence d'instructions

while Test:

Instruction 1

...

Instruction p

est de complexité temporelle en
n∑

i=1

O(1) = O
Å

n∑
i=1

1

ã
= O(n)

Remarque : Il n'y a pas lieu de considérer le cas d'une sortie prématurée d'une boucle while
car c'est l'étude de la condition Test qui amène à distinguer d'éventuels pire cas/meilleur cas.

• Séquence avec boucles imbriquées

Une boucle peut contenir une boucle ou une instruction non élémentaire. Dans ce cas les com-
plexités s'additionnent.

La séquence d'instructions

for i in range(n):

for j in range(n):

Instruction 1

...

Instruction p

est de complexité temporelle en

n−1∑
i=0

n−1∑
j=0

O(1) = O

Ç
n−1∑
i=0

n−1∑
j=0

1

å
= O(n2)

De même, la séquence d'instructions

for i in range(n):

for j in range(i):

B. Landelle 12 ISM MPSI/PCSI

Instruction 1

...

Instruction p

est de complexité temporelle en

n−1∑
i=0

i−1∑
j=0

O(1) = O

Ç
n−1∑
i=0

i−1∑
j=0

1

å
= O(n2)

Remarquons que la somme triangulaire qui apparaît vaut
n−1∑
i=0

i−1∑
j=0

1 =
n−1∑
i=0

i ∼
n→+∞

n2

2

mais le facteur
1

2
est � digéré � par le symbole O.

Exceptée la situation de la programmation récursive, le nombre de variables utilisées est �xe.
Un programme qui utilise un nombre �xe de variables de tailles �xées à une complexité spatiale
en O(1). On fait en général l'hypothèse simpli�catrice que le stockage d'un entier est à coût
constant. C'est vrai dans une certaine mesure, pour des entiers d'un ordre ⩽ 230 (au delà, le
coût en mémoire est en O(log(n))).

Pour la complexité spatiale, on s'intéresse plus précisément à la taille des variables de type
chaîne ou liste créées. Un programme qui utilise une ou plusieurs variables dont la taille croît
a pour complexité spatiale un grand O de la somme de ses tailles. En�n, on ne compte pas
l'argument dans la complexité spatiale d'une fonction : celui-ci est un apport extérieur à la
fonction, il n'est pas considéré comme une ressource de mémoire requise par la fonction. En
revanche, si on duplique l'argument dans une variable locale, alors celui-ci doit être pris en
compte dans le calcul.

Exemples : 1. Calcul de
(
n
k

)
avec k, n entiers et k ∈ [[0 ; n]].

def binom(n,k):

"""binom(n:int,k:int)->int

Renvoie le nombre de combinaisons de k parmi n"""

res=1

for i in range(k):

res=res*(n-i)//(i+1)

return res

La complexité temporelle est en O(k). La fonction utilise un nombre �xe de variables de tailles
�xées d'où une complexité spatiale en O(1).

2. Retournement d'une liste sans slicing.

def renv_list(L):

"""renv_list(L:list)->list

Renvoie une nouvelle liste qui est le retournement de la liste L"""

n=len(L)

res=[]

B. Landelle 13 ISM MPSI/PCSI

for k in range(n-1,-1,-1):

res.append(L[k])

return res

La complexité temporelle de renv_list est en
n−1∑
k=0

O(1) = O(n)

La variable res contient la liste obtenue par retournement de la liste L. Les autres variables n
et k sont de taille �xée. Par conséquent, la complexité spatiale de renv_list est en O(n).

200 400 600 800 1000
n

0.01

0.02

0.03

0.04

0.05

0.06

0.07

tim
e

(s
)

Figure 4 � Complexité linéaire de renv_list

On observe bien la tendance linéaire de la complexité temporelle de renv_list. Une partie des
pics dans le tracé est vraisemblablement imputable au comportement de append : celle-ci est en
moyenne en O(1) mais de temps à autre, il y a une allocation mémoire additionnelle à e�ectuer
qui coûte plus en temps de traitement d'où un pic lors de cet événement.

3. Retournement d'une chaîne sans slicing.

def renv_string(S):

"""renv_string(S:string)->string

Renvoie une chaîne qui est le retournement de la chaîne S"""

n=len(S)

res=""

for k in range(n):

res=S[k]+res

return res

Lors du i-ième passage, dans la boucle for (avec i = k+1, le premier passage correspondant à
k = 0), on a concaténé i− 1 caractères dans res ce qui signi�e que la chaîne est de taille i− 1

B. Landelle 14 ISM MPSI/PCSI

et la concaténation avec un nouveau caractère induit la création d'une nouvelle chaîne de taille
i d'où un coût en O(i). Ainsi, la complexité temporelle est en

n∑
i=1

O(i) = O
Å

n∑
i=1

i

ã
= O(n2)

La variable res contient une chaîne obtenue par retournement de la chaîne S. Les autres va-
riables n et k sont de taille �xée. Par conséquent, la complexité spatiale de renv_string est en
O(n).

2000 4000 6000 8000 10000
n

0.05

0.10

0.15

0.20

0.25

tim
e

(s
)

Figure 5 � Complexité quadratique de renv_string

4. Écriture binaire d'un entier.

def binaire(n):

"""binaire(n:int)->list

Renvoie la liste de l'écriture binaire de n"""

res=[]

a=n

while a>0:

res.append(a%2)

a//=2

return res

Soit n entier non nul d'écriture binaire n = ⟨dp−1, . . . , d0⟩. La variable a reçoit n comme valeur
initiale puis, à chaque passage dans la boucle while, est quotientée par deux. Il s'ensuit que
la taille de l'écriture binaire de a décroît de un à chaque passage dans la boucle. Comme la
taille initiale de a est ⌊log2(n) + 1⌋, on en déduit une complexité temporelle en O(log(n)). La
variable res reçoit, sous forme de liste, l'écriture binaire de taille ⌊log2(n) + 1⌋ et la variable a
reçoit n en valeur initiale dont le stockage en mémoire est celui de son écriture binaire (on ne
le néglige pas ici puisqu'il est du même ordre que celui de la variable res). On en déduit une
complexité spatiale en O(log(n)).

B. Landelle 15 ISM MPSI/PCSI

20 40 60 80 100
log(n)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

tim
e

(s
)

Figure 6 � Complexité de binaire

L'expérimentation ne permet d'observer le comportement annoncé. Le tracé logarithmique du
temps d'exécution de binaire pour n en fonction de log(n) peut sembler linéaire au début mais
pas vraiment pour la courbe dans son intégralité. Comme il s'agit d'observer un comportement
asymptotique pour n → +∞, on expérimente avec de grandes valeurs de n ce qui met en défaut
les hypothèses faites sur les opérations arithmétiques : on ne pas considérer raisonnablement
que celles-ci soient en O(1) sur de grandes valeurs.

Exercice : Soit x réel et P =
n−1∑
k=0

akX
k ∈ R[X]. L'algorithme de Horner consiste à calculer

e�cacement P(x) en observant

P(x) =
n−1∑
k=0

akx
k = (. . . (((0× x+ an−1)x+ an−2)x+ an−3)x+ . . .)x+ a0

d'où l'implémentation :

def poly(x,P):

"""Calcul de P(x) suivant l'algorithme de Horner

x : flottant

P : [a_0, ..., a_{n-1}] liste de flottants"""

res=0

n=len(P)

for k in range(n-1,-1,-1):

res=x*res+P[k]

return res

Déterminer la complexité temporelle et spatiale de la fonction poly.

Corrigé : On e�ectue n passages dans la boucle avec, lors de chaque passage une multiplication
et une addition qu'on suppose à coût constant d'où une complexité temporelle en

B. Landelle 16 ISM MPSI/PCSI

n−1∑
k=0

O(1) = O(n)

La fonction poly utilise un nombre �xe de variables de taille �xée d'où une complexité spatiale
en O(1).

Exercice : Pour n entier non nul, il existe un unique couple d'entiers (α, b) tel que

n = 2α(2b+ 1)

La quantité α s'appelle la 2-valuation de n et désigne la plus grande puissance de 2 factorisable
dans n.

def val2(n):

"""val2(x:int)->int

Renvoie la 2-valuation de x"""

a=n

k=0

while a%2==0:

k+=1

a//=2

return k

Déterminer la complexité temporelle et spatiale de val2.

Corrigé : Si l'entier n est impair, on ne rentre pas dans la boucle. Au contraire, si n est
une puissance 2 i.e. n = 2α, on rentre α = log2(n) fois dans la boucle. On en déduit que la
complexité temporelle est en O(1) dans le meilleur des cas et en O(log(n)) dans le pire des cas.
La fonction val2 utilise un nombre �xe de variables de taille �xée d'où une complexité spatiale
en O(1).

2 Algorithmes classiques

• Test d'appartenance

La fonction detect(elt,L) d'argument elt un objet et L une liste de taille n renvoie True si
elt est présent dans L et False sinon.

def detect(elt,L):

"""detect(elt:any,L:list)->bool

Renvoie test de présence de elt dans L"""

for x in L:

if elt==x:

return True

return False

Si elt est présent en première position de la liste L, le return provoque une sortie de boucle
prématurée après le premier passage. Si elt est absent de L, la boucle est e�ectuée intégra-
lement. On en déduit une complexité temporelle en O(1) dans le meilleur des cas et en O(n)
dans le pire des cas. La fonction utilise un nombre �xe de variables de taille �xée d'où une

B. Landelle 17 ISM MPSI/PCSI

complexité spatiale en O(1).

• Liste d'occurrences

La fonction pos(elt,L) d'arguments elt un objet et L une liste de taille n renvoie une liste
des indices de elt dans L. Si elt est absent de L, la fonction renvoie la liste vide.

def pos(elt,L):

"""pos(elt:any,L:list)->list

Renvoie la liste des indices des occurrences de elt dans L"""

res=[]

n=len(L)

for k in range(n):

if L[k]==elt:

res.append(k)

return res

La boucle est parcourue intégralement et quel que soit le résultat du test, les instructions dans
la boucle sont en O(1) puisque la méthode append est à coût constant. On en déduit une com-
plexité temporelle en O(n). Les variables n et k sont de taille �xées (variables à valeurs entières).
Si elt est absent de la liste L, la variable res demeure une liste vide. En revanche, si la liste
L est une répétition de elt, alors res reçoit la liste de toutes les positions de 0 à n − 1. On
en déduit une complexité spatiale en O(1) dans le meilleur des cas et en O(n) dans le pire des cas.

• Recherche dichotomique

On rappelle le principe de la recherche dichotomique d'un objet elt dans une liste triée L de
taille n :

� on considère l'élément au milieu de L ;
� si c'est elt, on s'arrête ;
� si elt est plus petit que l'élément du milieu, on se place sur la moitié de gauche, sinon

on se place sur la moitié de droite ;
� on poursuit ce processus tant qu'on n'a pas rencontré elt et que la zone de recherche

n'est pas vide.

def rech_dicho(elt,L):

"""rech_dicho(elt:int,L:list)->(bool,int)

Renvoie le résultat de la recherche dichotomique

de elt dans L liste triée :

* si L[k]==elt -> (True,k)

* si elt absent de L -> (False,k)"""

deb=0

fin=len(L)-1

trouve=False

while not trouve and deb<=fin:

milieu=(deb+fin)//2

if L[milieu]==elt:

trouve=True

elif L[milieu]>elt:

B. Landelle 18 ISM MPSI/PCSI

fin=milieu-1

else:

deb=milieu+1

return trouve,milieu

Si l'élément est présent au milieu de la liste, on ne rentre qu'une fois dans la boucle. Sinon,
lors de chaque passage dans la boucle, la zone de recherche est au moins divisée par deux.
L'écriture binaire de la taille de la zone de recherche est donc au moins décrémentée de un à
chaque itération. Comme la taille initiale de la zone de recherche est n dont l'écriture binaire
est de taille ⌊log2(n) + 1⌋, on en déduit une complexité temporelle en O(1) dans le meilleur des
cas et en O(log(n)) dans le pire des cas. La fonction utilise un nombre �xe de variables de taille
�xée d'où une complexité spatiale en O(1).

• Exponentiation rapide

Soit x un réel et n un entier non nul d'écriture binaire n = ⟨dp−1, . . . , d0⟩. On a

xn = x(
∑p−1

i=0 di2
i) =

p−1∏
i=0

Ä
xdi2

i
ä
=

p−1∏
i=0

Ä
x2i
ädi

Dans le produit, à i �xé dans [[0 ; p− 2]], on passe du terme x2i au suivant x2i+1
en élevant au

carré :

x2i+1
= x2×2i =

Ä
x2i
ä2

La contribution de x2i dans le produit est déterminée par la valeur de di : si di = 0, le terme
n'apparaît pas dans le produit et sinon il apparaît. Cette écriture permet d'envisager un algo-
rithme performant pour le calcul de xn, algorithme dit d'exponentiation rapide :

def expo(x,n):

"""expo(x:int or float,n:int)->int or float

Calcul de x**n par exponentiation rapide"""

a,r,e=x,1,n

while e>0:

if e%2==1:

r*=a

a*=a

e//=2

return r

La variable e reçoit n comme valeur initiale dont l'écriture binaire est de taille ⌊log2(n) + 1⌋
et est quotientée par deux à chaque passage dans la boucle. La taille de son écriture binaire
décroît donc de un à chaque passage. Comme les opérations arithmétiques réalisées à l'intérieur
de la boucle sont à coût constant, on en déduit une complexité temporelle en O(log(n)). La
fonction utilise un nombre �xe de variables de taille �xée d'où une complexité spatiale en O(1).

! Remarque : Ce calcul est simpliste. L'hypothèse d'un coût constant est valide pour des
nombres �ottants ou dans le cadre d'une exponentiation modulaire mais pour des entiers avec
n potentiellement très grand, cette hypothèse ne tient plus vraiment la route. . .

B. Landelle 19 ISM MPSI/PCSI

	Introduction
	Problématique
	Relation de domination
	Sommation des

	Complexité
	Types de complexité
	Classes de complexité
	Coût des instructions

	Calculs de complexité
	Bases de calculs
	Algorithmes classiques

