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I Introduction

1 Problématique

Pour un probléme informatique donné, il existe souvent plusieurs algorithmes possibles qui ré-
pondent au probléme. Il est donc pertinent de pouvoir classer ces algorithmes entre eux afin
de choisir le plus performant. Il peut aussi étre utile de prévoir le temps d’exécution d’un algo-
rithme, en particulier quand 'argument fourni a I'algorithme est de trés grande taille et que la
réponse n’est pas immédiate (primalité d’'un nombre par exemple).

Pour ce faire, on introduit la notion de complexité dont les objectifs principaux sont :
— la comparaison d’algorithmes réalisant le méme traitement ;
— la prévision du temps d’exécution d’un algorithme;
— la prévision de I'utilisation de 1’espace mémoire.

La classification obtenue par étude de complexité permettra de choisir 'algorithme nécessitant :
— le moins de ressources de calculs;
— le moins de ressources de stockage.
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FIGURE 1 — Comparaison de deux implémentations du calcul de n!
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n—1
Exemple : Considérons les fonctions geoml et geom2 qui réalisent le calcul de . ¢* avec ¢
k=0
flottant et n entier sans recours a 'opération d’exponentiation **.

def geoml(n,q):

"itgeoml(n:int,q:int or float)->int or float
Calcul de 1+g+...+q~(n-1)"""
res=0
for k in range(n):

gk=1

for i in range(k):

qk*=q

res+=qk

return res

Dans la fonction geomi, le calcul de ¢* est refait intégralement & chaque passage dans la boucle
en k. Si on compte le nombre total de multiplication, on en effectue

n—1lk—1 n—1 n(n—1)
l=> k= —7—>

def geom2(n,q):
"migeom2(n:int,q:int or float)->int or float
Calcul de 1+g+...+q~(n-1)"""
res=0
gk=1
for k in range(n):
res+=qk
qk*=q
return res

Dans la fonction geom2, on garde en mémoire le terme ¢* et on passe de 'étape k & k + 1 en
multipliant par ¢ puisque ¢*' = ¢* x ¢. On effectue en tout n additions et multiplications ce
qui est largement préférable a la version précédente.

2 Relation de domination O

Pour quantifier les complexités, on utilisera relation de domination avec la notation de Landau
en « grand O ».

Définition 1. La suite (u,), est dite dominée par la suite (v,),, relation de domination que
lon note u, = O(v,) si

INeN IM>0 Vn > N [un| < M |vy)

Remarque : La bonne notion pour I'étude de complexité n’est pas en réalité la relation de
domination. Effet, si un algorithme a une complexité temporelle en O(n), on peut tout aussi
bien annoncer qu’elle est en O(n?). C’est correct méme si ¢’est nettement moins pertinent.
L’usage consiste donc & déterminer la domination la plus fine qui soit ce qui équivaut a utiliser
la relation hors-programme de [’ordre de notée ©. On note u,, = ©(v,,) ce qui signifie u,, = O(v,,)
et v, = O(uy).
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Proposition 1. La notation O(1) désigne une suite réelle bornée. Etant donnée une suite réelle
(Un)n qui ne s’annule pas, on a

U, = O(vy,) <= u, =v,0(1)

Remarques : (1) La notation de Landau est générique. Par exemple
n=0(n) et 2n=0(n)

mais on n’a évidemment pas n = 2n pour n non nul. La notation désigne un certain compor-
tement asymptotique, c¢’est-a-dire pour n — +oc.

(2) On omet délibérément la dépendance en n dans la notation O(1) (on ne note pas (O(1),),,cn)-

Rappel : Une suite réelle convergente est bornée. En effet, soit (u,), suite convergente de limite
0. 11 existe un entier N tel que pour n > N, on ait |u, — ¢| < 1 d’ou par inégalité triangulaire

Vn >N || < |ty — €] + €] < 1+ |{]
Prenant M = max(|ug|, ..., |ux|,1+ |¢|), on a bien
Vn e N lun,| <M

Notation : Dans tout ce qui suit, on notera log le logarithme népérien conformément a ’'usage
en cours d’informatique.

Proposition 2. On a les propriétés suivantes :
1. C* x O(uy,) = O(uy,) ;
Si u, — +00, alors C* + O(u,) = O(uy,).
Si x, = O(yn) et yn = O(uy), alors x, = O(u,) (transitivité).
Si x, = O(uy) et y, = O(uy), alors, x, + y, = O(u,).

Si x, = O(uy) et y, = O(vy,), alors x, X y, = O(u, X v,).

Exemples : 1. On a log(n) = O(n) puisque d’aprés le théoréme des croissances comparées

log(n) 0
n n—+oo
2.0n a ik _nntl) O(n?) car
k=1 2
n(n—f—l)_l[l l} 1
2n2 2 nl no+oo 2
3. On a O(1) 4+ O(log(n)) = O(log(n)) puisque O(1) = O(log(n)) car
O(1)
— 0

log(n) n—oo

Le résultat suit par addition de grands O. On ne peut dire mieux (prendre 0 4 log(n) par
exemple).
4. On a O(n) + O(n?) = O(n?) puisque O(n) = O(n?) car

O(n) nO(1) O(1)

pr— pr— 7 O
n2 n2 N n—oo

Le résultat suit par addition de grands O. On ne peut dire mieux (prendre 0+n? par exemple).
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Remarques : (1) L’égalité O(1) = O(log(n)) est licite : elle signifie que O(1) est dominée par
o

log(n) n—oo

log(n) puisque

AEH revanche, si on inverse les roles, I'égalité O(log(n)) = O(1) est fausse (log(n) —— +o0
n—oo

donc non borné). L’égalité avec un O s’entend donc au sens de la définition (1| et non au sens
usuel d’une égalité.

(2) Quand on somme des grand O, le « plus gros » terme « digére » les autres.

(3) Si on regarde un grand O d’une expression, seul le « plus gros » terme de cette expression
est pertinent.

Exercice : Que peut-on dire des expressions suivantes :
1. O(1) +O(n)

. O(log(n)) + O(n)
3. O(n) + O(nlog(n))

n—1
o(E)

k=1
Corrigé : 1. On a O(1) + O(n) = O(n) et on ne peut dire mieux (prendre 0 + n par exemple).
2. On a O(log(n)) + O(n) = O(n) et on ne peut dire mieux (prendre 0 + n par exemple).

3. On a O(n) + O(nlog(n)) = O(nlog(n)) et on ne peut dire mieux (prendre 0 4 nlog(n) par
exemple).

4.0naO<;§k>:O<

[\]

=~

n®>—n

) = O(n?) et on ne peut dire mieux.

3 Sommation des O

Théoréme 1. Soit (u,), une suite de réels strictement positifs. On a

kz:O(uk) =0 (éuk)

n

Corollaire 1. é 0(1) = O(n) é O(K) = 0(®) 3 Olog(k)) = Ofnlog(n)

Exercice : Parmi les quantités suivantes, déterminer celles qui sont en O(1), O(log(n)), O(n),
O(nlog(n)), O(n?) :

p
1. > 0(1) avec p fixé;
i=1

n—1
2. >.O(k);
k=1

3. >.>.0(1);

i=1j=1

L5 3 o)

i=1j=i+1
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M=

[O(k) + O(log(k))];

B
Il

1

S0(1):

M:

i=1j=1
7. > 0(1).
keN | 2k<n
p
Corrigé : 1. Une somme finie de suites bornées est une suite bornée d’ou > O(1) = O(1).
i=1
n—1 n—1
2.0na > O(k)=0 <Zk> = O(n?).
k=1 k=
3.0nad30(1)=0 (f;znp) — O(n2).
i=1j=1 i=1j=1
n—1 n n—1 n n—1 n—1
4.0na ), > O(1)=0 Z1):O<Z(n—i)>:O(Zk>:O(n2).
i=1j=it1 i=1j=it+1 i=1 k=1
5 OnaZ[ (k) + O(log k)] = ZO(k)zO(Zk)zO(ﬂ?)
k=1 k=1
6. On a ZZO( ) =0 (zg) _0 (@) — O(m?)
i=1j= i=1j=1 i=1

[loga(n)]
7.0na >, O(1)= O(1)=0 < > 1) = O(log(n)).

kEN | 2k<n 0<k<logy(n)

II Complexité

1 Types de complexité

Définition 2. On appelle opération élémentaire une opération que [’ordinateur peut effectuer
en temps constant.

Par exemple, les opérations implémentées bas-niveau sur les processeurs comme les opérations
logiques ou arithmétiques sur des registres sont des opérations élémentaires.

Définition 3. La complexité temporelle d’un algorithme désigne le nombre d’opérations élé-
mentaires réalisées par algorithme.

En pratique, on ne s’intéressera pas au cotit exact d’un algorithme mais plutét & une classe de
complexité décrite avec la notation de Landau.

Définition 4. La complexité spatiale d’un algorithme désigne l’espace mémoire occupé lors de
l’exécution de l’algorithme.

Remarque : Ce critére est moins considéré du fait des trés importantes capacités mémoires
des machines actuelles. Une des situations ol ce critére reste pertinent est celui des fonctions
récursives puisque les multiples appels de la fonction par elle-méme nécessitent une utilisation
importante de mémoire.

ADans un énoncé, quand il est fait mention d’un calcul de « complexité » sans précision
additionnelle, il faut comprendre complexité temporelle.
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Proposition 3. La complexité spatiale d’un algorithme est majorée par sa complexité temporelle
puisque chaque occupation additionnelle en mémoire implique une instruction d’écriture en
mémoire.

Définition 5. La complexité temporelle dans le pire des cas est le temps d’exécution mazimum
de lalgorithme, a savoir le temps d’exécution dans le cas le plus défavorable. La complexité
spatiale dans le pire des cas désigne l’espace mémoire maximum occupé par l’algorithme, a
savoir l'espace occupé dans le cas le plus défavorable.

Définition 6. La complexité temporelle dans le meilleur des cas est le temps d’exécution mini-
mum de ['algorithme, a savoir le temps d’exécution dans le cas le plus favorable. La complexité
spatiale dans le meilleur des cas est [’espace mémorire minimum occupé par ’algorithme, & savoir
l’espace occupé dans le cas le plus favorable.

Remarques : (1) Ces complexités dans le pire et dans le meilleur des cas correspondent
respectivement & des bornes supérieures et inférieures des temps d’exécution ou d’occupation
en mémoire de ’algorithme.

(2) On évoque les notions de pire cas et meilleur cas quand cela est pertinent : il peut tout a
fait ne pas exister de pire et meilleur cas mais si cette distinction existe, il faut la faire.

2 Classes de complexité

Plutot que de compter exactement le nombre d’opérations élémentaires d’un algorithme, on
cherche a classer sa complexité parmi des ordres de grandeur de référence. Cette classification
est simplificatrice tout en gardant la pertinence du cotit d’un algorithme.

L’entier n désigne en général la taille de 'argument. Dans le calcul d'un algorithme portant sur
un calcul arithmétique, il peut aussi désigner I'argument lui-méme.

Définition 7. On distingue les principales classes de complexité suivantes :
— O(1) : complexité constante ;
log(n)) : complexité logarithmique ;
V/n) o complexité racinaire ;
n) : complexité linéaire ;
og( )) : complezité quasi linéaire ;
) : complexité quadratique ;
nP) : complexité polynomiale ;
a") : complexité exponentielle (a > 1).
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Les complexités au plus quasi-linéaires sont raisonnables. Les complexités polynomiales, au
moins quadratiques, sont acceptables mais les complexités exponentielles sont a proscrire.

3 Coit des instructions

Définition 8. Les instructions suivantes sont considérées comme opérations élémentaires :
— affectation de types simples ;
— comparaison de types simples ;
— opérations arithmétiques et logiques +,-,%,/, //, %, and, or, not

Les opérations élémentaires sont les unités de mesure du codt d’un algorithme.
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Remarque : Les affectations et comparaisons concernent les types simples.

Cette classification d’opérations élémentaires est simpliste bien que nécessaire pour une pre-
miére approche. Par exemple, pour des flottants ou de « petits » entiers (< 2°°), la multiplication
et 'addition peuvent effectivement étre vues comme des opérations a cotlits constants.

En revanche, si on s’intéresse a de grands entiers, la multiplication est plus cotiteuse que 1’ad-
dition. L’algorithme naif appris dans les petites classes confirme intuitivement cette idée. La
réalité des implémentations est plus subtile.

Depuis les années 60, de nouvelles générations d’algorithmes de multiplication rapide ont sup-
planté la méthode naive :

— algorithme de Karatsuba (1960) ;

— algorithme de Toom-Cook (1963) ;

— algorithme de Schénhage-Strassen (1971);

— algorithme de Fiirer (2007) ;

— algorithme de Harvey-van der Hoeven (2019).

Pour des opérations sur des types composés (liste, chaine de caractére, tuple), le cotit peut étre
fonction de la taille de 'argument. Considérons par exemple la situation suivante :

def f(n):
res=[0]*n # construit une liste de n zéros

On initialise la variable res en construisant une liste de n zéros ou n est I'argument de la
fonction. Cette affectation équivaut, en colt temporel et spatial, & n affectations de types
simples d’ou une complexité temporelle et spatiale en O(n).

Proposition 4. Les temps d’accés a un élément d’une liste en lecture/écriture sont en O(1). ‘

Cette caractéristique combinée a une structure dynamique est un des atouts majeurs des listes
en python.

ACompleXité temporelle des instructions ou méthodes sur des listes de taille n :

Opération | Complexité
append O(1)*
pop O(1)
==, 1= O(n)
in O(n)
remove O(n)
delete O(n)
count O(n)
max, min O(n)
reverse O(n)

sort O(nlog(n))

(*) : il s’agit de complexité amortie (coit moyen des opérations en utilisation).
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La taille de I’écriture binaire d’un entier n non nul est en O(log(n)) ce qu’on peut observer
expérimentalement avec 'instruction getsizeof du module sys.

+ u y T + r T T
0 25 50 75 100 125 150 175
log(n)

FIGURE 2 — Mémoire allouée a la représentation d’un entier

Jusqu’a 2%, le coiit d’écriture d’un entier est constant. Dans cette configuration, on considére
que la complexité spatiale liée a la représentation des entiers est en O(1). Sauf mention parti-
culiére, c’est une des hypothéses de travail qui est faite habituellement.

Avec cette hypothése simplificatrice, la complexité spatiale de 'instruction range(n) est en
O(1) tandis que celle de 1ist (range(n)) est en O(n).

—— range(n)
800 A list(range(n))

700 -
600
500
400
300 -
200 -

100 1

0 20 40 60 80 100

FIGURE 3 — Complexité spatiale : range (n) versus list (range(n))

Proposition 5. Pour les dictionnaires, les tests d’appartenance et les temps d’acceés en lec-
ture/écriture a un couple (clé,valeur) sont en O(1).

Les dictionnaires en python sont une implémentation d’une structure abstraite de données
appelée table de hachage, structure qui permet une association performante clé-valeur.
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III Calculs de complexité

1 Bases de calculs

On rappelle que U'entier n désigne la taille de 'argument ou ’argument lui-méme.

e Séquence simple

Dans tout ce qui suit, les instructions repérées par Instruction x, Test y sont de complexité
temporelle en O(1). On considére que seules les instructions en fin de bloc peuvent provoquer
des sorties (break ou return). Les entiers p, r, pl, ...pr désignent des entiers fixés indépen-

dants de entier n.

La séquence d’instructions

Instruction 1
Instruction 2

Instruction p

avec p constant, indépendant de n, est de complexité temporelle en

iom —0(1)

La séquence d’instructions

if Test:
Instruction 1

Instruction p

avec p constant, indépendant de n, est de complexité temporelle en
p
O(1) ou O(1)+ > 0(1) =0(1)
i=1

La séquence d’instructions

if Test:
Instruction 1

Instruction pl
else:
Instruction pl+1

Instruction pl+p2

avec les p; constants, indépendants de n, est de complexité temporelle en
P1 D2

O(1)+30(1) =0(1) ou O(1)+ > 0(1) =0(1)
=1 i=1

La séquence d’instructions
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if Test 1:
Instruction 1

Instruction pl
elif Test 2:
Instruction pil+1

Instruction pl+p2

elif Test r:

Instruction pl+...+pr

avec les p; constants, indépendants de n, est de complexité temporelle en

O(1) + 3°0(1) = 0(1) ou O(1) +0(1) + 3-0(1) = O(1)

T Pr
ou ... ou Y. O(1)+>0(1)=0(1)
i=1 i=1
e Séquence avec boucle

On considére dans un premier temps que les instruction repérées par Instruction x ne pro-
voquent pas de sortie (ni break, ni return).

La séquence d’instructions

for k in range(n):
Instruction 1

Instruction p

est de complexité temporelle en
n—1 n—1
S0 =0(£1)=om
k=0

La séquence d’instructions

for x in L:
Instruction 1

Instruction p

avec L une liste de taille n est de complexité temporelle en
3°0(1) =0 ($31) = 0(n)
i=1 i=1

On peut provoquer une sortie de boucle prématurée avec un return ou un break dans une
boucle for. Une sortie de boucle doit étre conditionnelle sans quoi la boucle n’a plus de raison
d’étre. Dans ce cas, on peut étre amené a distinguer un meilleur cas et un pire cas
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def fonction(L):
for x in L:
if Test:
return ...
return ...

Si Test est True au premier passage dans la boucle, on a une complexité temporelle dans le
meilleur des cas en O(1). En revanche, si Test est False tout au long de la boucle, on a une
complexité temporelle dans le pire des cas en O(n).

On considére que les instruction repérées par Instruction x ne provoquent pas de sortie (ni
break, ni return).

Notant n le nombre de fois ou la valeur de Test est True, la séquence d’instructions

while Test:
Instruction 1

Instruction p

est de complexité temporelle en
30(1) =0 (331) = 0(n)
i=1 i=1

Remarque : Il n’y a pas lieu de considérer le cas d’une sortie prématurée d’une boucle while
car c’est 'étude de la condition Test qui améne & distinguer d’éventuels pire cas/meilleur cas.

e Séquence avec boucles imbriquées

Une boucle peut contenir une boucle ou une instruction non élémentaire. Dans ce cas les com-
plexités s’additionnent.

La séquence d’instructions

for i in range(n):
for j in range(n):
Instruction 1

Instruction p

est de complexité temporelle en
n—Iln—1 n—1ln—1 9
>.2.0(1) =01 > > 1]=0(r%)
i=05=0 i=0=0

De méme, la séquence d’instructions

for i in range(n):
for j in range(i):
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Instruction 1

Instruction p

est de complexité temporelle en

’jziSO<> (221) O(n?)

Remarquons que la somme triangulaire qui apparait vaut

n—1i—1 7l2
E5i-Ti b

1
mais le facteur 3 est « digéré » par le symbole O.

Exceptée la situation de la programmation récursive, le nombre de variables utilisées est fixe.
Un programme qui utilise un nombre fixe de variables de tailles fixées a une complexité spatiale
en O(1). On fait en général ’hypothése simplificatrice que le stockage d’un entier est & cott
constant. C’est vrai dans une certaine mesure, pour des entiers d'un ordre < 2% (au dela, le
cout en mémoire est en O(log(n))).

Pour la complexité spatiale, on s’intéresse plus précisément a la taille des variables de type
chaine ou liste créées. Un programme qui utilise une ou plusieurs variables dont la taille croit
a pour complexité spatiale un grand O de la somme de ses tailles. Enfin, on ne compte pas
I’argument dans la complexité spatiale d’une fonction : celui-ci est un apport extérieur a la
fonction, il n’est pas considéré comme une ressource de mémoire requise par la fonction. En
revanche, si on duplique 'argument dans une variable locale, alors celui-ci doit étre pris en
compte dans le calcul.

Exemples : 1. Calcul de (Z) avec k, n entiers et k € [0; n].

def binom(n,k):
"""hinom(n:int,k:int)->int
Renvoie le nombre de combinaisons de k parmi n"""
res=1
for i in range(k):
res=res*(n-i)//(i+1)
return res

La complexité temporelle est en O(k). La fonction utilise un nombre fixe de variables de tailles
fixées d’ott une complexité spatiale en O(1).

2. Retournement d’une liste sans slicing.

def renv_list(L):
"""renv_list(L:1list)->list
Renvoie une nouvelle liste qui est le retournement de la liste L"""
n=len(L)
res=[]
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for k in range(n-1,-1,-1):
res.append (L[k])
return res

La complexité temporelle de renv_1list est en
n—1
kZOO(l) = O(n)

La variable res contient la liste obtenue par retournement de la liste L. Les autres variables n
et k sont de taille fixée. Par conséquent, la complexité spatiale de renv_list est en O(n).

0.07 4

[l

0.05 4

0.04 - //N

0.03 - ,_/
0.02 - J’/

200 400 600 800 1000

time (s)

FIGURE 4 — Complexité linéaire de renv_list

On observe bien la tendance linéaire de la complexité temporelle de renv_1list. Une partie des
pics dans le tracé est vraisemblablement imputable au comportement de append : celle-ci est en
moyenne en O(1) mais de temps a autre, il y a une allocation mémoire additionnelle a effectuer
qui cotite plus en temps de traitement d’ott un pic lors de cet événement.

3. Retournement d’une chaine sans slicing.

def renv_string(S):
"""renv_string(S:string)->string
Renvoie une chaine qui est le retournement de la chaine S"""
n=len(S)
res=""
for k in range(n):
res=S[k]+res
return res

Lors du i-iéme passage, dans la boucle for (avec ¢ = k + 1, le premier passage correspondant a
k =0), on a concaténé i — 1 caractéres dans res ce qui signifie que la chaine est de taille i — 1
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et la concaténation avec un nouveau caractére induit la création d’une nouvelle chaine de taille
i d’ott un coit en O(7). Ainsi, la complexité temporelle est en

n n
3°0() = 0 (351 = o(n?)
i=1 i=1

La variable res contient une chaine obtenue par retournement de la chaine S. Les autres va-
riables n et k sont de taille fixée. Par conséquent, la complexité spatiale de renv_string est en

O(n).

J
S

0.20 N
z l\/
2 015 //‘

0.10

0.05 4 /\V/_//\/

#

2000 4000 6000 8000 10000
n

FIGURE 5 — Complexité quadratique de renv_string

4. Ecriture binaire d’un entier.

def binaire(n):
"""hinaire(n:int)->list
Renvoie la liste de 1’&criture binaire de n"""
res=[]
a=n
while a>0:
res.append (a%2)
a//=2

return res

Soit n entier non nul d’écriture binaire n = (d,_1, ..., dp). La variable a regoit n comme valeur
initiale puis, a chaque passage dans la boucle while, est quotientée par deux. Il s’ensuit que
la taille de I’écriture binaire de a décroit de un a chaque passage dans la boucle. Comme la
taille initiale de a est [logy(n) 4+ 1], on en déduit une complexité temporelle en O(log(n)). La
variable res recoit, sous forme de liste, I’écriture binaire de taille |log,(n) + 1| et la variable a
regoit n en valeur initiale dont le stockage en mémoire est celui de son écriture binaire (on ne
le néglige pas ici puisqu’il est du méme ordre que celui de la variable res). On en déduit une
complexité spatiale en O(log(n)).
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FIiGURE 6 — Complexité de binaire

L’expérimentation ne permet d’observer le comportement annoncé. Le tracé logarithmique du
temps d’exécution de binaire pour n en fonction de log(n) peut sembler linéaire au début mais
pas vraiment pour la courbe dans son intégralité. Comme il s’agit d’observer un comportement
asymptotique pour n — +00, on expérimente avec de grandes valeurs de n ce qui met en défaut
les hypothéses faites sur les opérations arithmétiques : on ne pas considérer raisonnablement
que celles-ci soient en O(1) sur de grandes valeurs.

n—1

Exercice : Soit x réel et P = > ;X" € R[X]. L’algorithme de Horner consiste a calculer
k=0

efficacement P(z) en observant

n—1
P(z) = Sapt* = (.. (0 X &+ ap 1)@+ an2) @ +an3)x+...)T+a
k=0

d’ou I'implémentation :

def poly(x,P):
"""Calcul de P(x) suivant 1’algorithme de Horner
x : flottant
P : [a_0, ..., a_{n-1}] liste de flottants"""
res=0
n=len(P)
for k in range(n-1,-1,-1):
res=x*res+P [k]
return res

Déterminer la complexité temporelle et spatiale de la fonction poly.

Corrigé : On effectue n passages dans la boucle avec, lors de chaque passage une multiplication
et une addition qu’on suppose a coiit constant d’otl une complexité temporelle en
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n—1
>_0(1) = O(n)
k=0
La fonction poly utilise un nombre fixe de variables de taille fixée d’ott une complexité spatiale
en O(1).
Exercice : Pour n entier non nul, il existe un unique couple d’entiers (a, b) tel que
n=2%2b+1)

La quantité « s’appelle la 2-valuation de n et désigne la plus grande puissance de 2 factorisable
dans n.

def val2(n):
"Milyal2(x:int)->int
Renvoie la 2-valuation de x"""
a=n
k=0
while a%2==0:
k+=1
a//=2

return k

Déterminer la complexité temporelle et spatiale de val2.

Corrigé : Si l'entier n est impair, on ne rentre pas dans la boucle. Au contraire, si n est
une puissance 2 i.e. n = 2%, on rentre o = log,(n) fois dans la boucle. On en déduit que la
complexité temporelle est en O(1) dans le meilleur des cas et en O(log(n)) dans le pire des cas.
La fonction val2 utilise un nombre fixe de variables de taille fixée d’oli une complexité spatiale

en O(1).
2 Algorithmes classiques
e Test d’appartenance

La fonction detect(elt,L) d’argument elt un objet et L une liste de taille n renvoie True si
elt est présent dans L et False sinon.

def detect(elt,L):
"nidetect(elt:any,L:1list)->bool
Renvoie test de présence de elt damns L"""
for x in L:
if elt==x:
return True
return False

Si elt est présent en premiére position de la liste L, le return provoque une sortie de boucle
prématurée aprés le premier passage. Si elt est absent de L, la boucle est effectuée intégra-
lement. On en déduit une complexité temporelle en O(1) dans le meilleur des cas et en O(n)
dans le pire des cas. La fonction utilise un nombre fixe de variables de taille fixée d’oul une
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complexité spatiale en O(1).
e Liste d’occurrences

La fonction pos(elt,L) d’arguments elt un objet et L une liste de taille n renvoie une liste
des indices de elt dans L. Si elt est absent de L, la fonction renvoie la liste vide.

def pos(elt,L):
"iipos(elt:any,L:1ist)->list
Renvoie la liste des indices des occurrences de elt dans L"""

res=[]

n=len(L)

for k in range(n):
if Llk]==elt:

res.append (k)
return res

La boucle est parcourue intégralement et quel que soit le résultat du test, les instructions dans
la boucle sont en O(1) puisque la méthode append est a coiit constant. On en déduit une com-
plexité temporelle en O(n). Les variables n et k sont de taille fixées (variables a valeurs entiéres).
Si elt est absent de la liste L, la variable res demeure une liste vide. En revanche, si la liste
L est une répétition de elt, alors res recoit la liste de toutes les positions de 0 & n — 1. On
en déduit une complexité spatiale en O(1) dans le meilleur des cas et en O(n) dans le pire des cas.

e Recherche dichotomique

On rappelle le principe de la recherche dichotomique d’un objet elt dans une liste triée L de
taille n :
— on consideére I’élément au milieu de L;
— si c’est elt, on s’arréte;
— si elt est plus petit que I’élément du milieu, on se place sur la moitié de gauche, sinon
on se place sur la moitié de droite ;
— on poursuit ce processus tant qu’on n’a pas rencontré elt et que la zone de recherche
n’est pas vide.

def rech_dicho(elt,L):
""hrech_dicho(elt:int,L:1ist)->(bool,int)
Renvoie le résultat de la recherche dichotomique
de elt dans L liste triée :

* si L[k]==elt -> (True,k)
* si elt absent de L -> (False,k)"""
deb=0

fin=len(L)-1
trouve=False
while not trouve and deb<=fin:
milieu=(deb+fin)//2
if L[milieul==elt:
trouve=True
elif L[milieul>elt:
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fin=milieu-1

else:
deb=milieu+1
return trouve,milieu

Si I’élément est présent au milieu de la liste, on ne rentre qu'une fois dans la boucle. Sinon,
lors de chaque passage dans la boucle, la zone de recherche est au moins divisée par deux.
L’écriture binaire de la taille de la zone de recherche est donc au moins décrémentée de un a
chaque itération. Comme la taille initiale de la zone de recherche est n dont I’écriture binaire
est de taille |log,(n) + 1], on en déduit une complexité temporelle en O(1) dans le meilleur des
cas et en O(log(n)) dans le pire des cas. La fonction utilise un nombre fixe de variables de taille
fixée d’oti une complexité spatiale en O(1).

e Exponentiation rapide

Soit  un réel et n un entier non nul d’écriture binaire n = (d,_1,...,dp). On a
1 ) p—1 ) p—1 - ds
o = (0 di2) _ I1 (mdﬂz) =11 <x22> '
=0 1=0

. .. , i . i+1 ,
Dans le produit, & i fixé dans [0; p — 2], on passe du terme 2% au suivant 2~ en élevant au

carré :
. . -\ 2
i+1 7 7
22T = g% = <332 )

La contribution de 22" dans le produit est déterminée par la valeur de d; : si d; = 0, le terme
n’apparait pas dans le produit et sinon il apparait. Cette écriture permet d’envisager un algo-
rithme performant pour le calcul de 2", algorithme dit d’ezponentiation rapide :

def expo(x,n):
""texpo(x:int or float,n:int)->int or float
Calcul de x**n par exponentiation rapide"""
a,r,e=x,1,n
while e>0:
if el2==1:
rx=a
ax=a
e//=2

return r

La variable e recoit n comme valeur initiale dont I'écriture binaire est de taille |log,(n) + 1]
et est quotientée par deux a chaque passage dans la boucle. La taille de son écriture binaire
décroit donc de un a chaque passage. Comme les opérations arithmétiques réalisées a 'intérieur
de la boucle sont a colt constant, on en déduit une complexité temporelle en O(log(n)). La
fonction utilise un nombre fixe de variables de taille fixée d’oti une complexité spatiale en O(1).

ARemarque : Ce calcul est simpliste. L’hypothése d’un coftit constant est valide pour des
nombres flottants ou dans le cadre d’une exponentiation modulaire mais pour des entiers avec
n potentiellement trés grand, cette hypothése ne tient plus vraiment la route. ..
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