ISM MPSI/PCSI, Informatique
Année 2025/2026

Corrigé du TP Informatique 17

Exercice 1

1. On saisit :

def fibol(n):
a=(1+np.sqrt(5))/2
b=ax**n
if n%2==0:
s=1
else:
=-1
return 1/np.sqrt(5)*(b-s/b)

2. On obtient :

>>> [fibol(n) for n in range(10)]
[0.0, 1.0, 1.0, 2.0, 3.0000000000000004, 5.0000000000000009,
8.0000000000000018, 13.000000000000002, 21.000000000000004, 34.000000000000007]

Il s’agit d’un calcul flottant avec les approximations inhérentes a ce format. Si 'argument n est
trop grand, le résultat est inutilisable du fait des limitations du format flottant :

>>> £ibo1(2000)

Warning (from warnings module):
File "D:\Drive\ITC\INT\EX004.py", line 18
b=ax**n
RuntimeWarning: overflow encountered in double_scalars
inf

3. On saisit :

def expo(x,n):
res,a,e=1,x,n
while e>0:
if e¥%2==1:
res*=a
e//=2
ax=a
return res

4. On saisit :

def fibo2(n):
a=(1+np.sqrt(5))/2

b=expo(a,n)
return 1/np.sqrt(5)*(b-s/b)

5. On saisit :

def fibo3(n):
if n==0:
return O
u,v=0,1
for k in range(2,n+1):
u,v=v,ut+v
return v

6. On saisit :

while abs(fibol(n)-fibo3(n))<1:
n+=1
print("Seuil=",n)

On trouve un seuil égal & 72.

7. On observe :

0.12 ‘
— fibol
: : : — fibo2
020 vt fibo3 |

0,08} L

time (s)
o
o
>

0,02 oo

| | | |
0 200 400 600 800 1000

FIGURE 1 — Tracé des temps d’exécution du calcul de (uy,),

Le calcul avec 'exponentiation native ** est le plus rapide. On peut imaginer qu’il bénéficie d’une
implémentation optimisée. Le calcul par exponentiation rapide est trés performant également. Le
calcul itératif exact avec des valeurs entiéres suit une tendance linéaire ce qui est cohérent avec
sa complexité temporelle en O(n). Ces écarts de performance ne doivent pas faire oublier que le
calcul flottant n’est pas du calcul exact donc les fonctions ne sont pas réellement comparables

Exercice 2

1. On saisit :

def expo(X,n):

res=np.array([[1,0],[0,1]],dtype=object)
a,e=X,n
while e>0:

if e¥2==1:

res=np.dot (res,a)

e//=2

a=np.dot(a,a)
return res

2. On saisit :

def fibo4(n):
A=np.array([[0,1],[1,1]],dtype=object)
res=expo(A,n)
return res[0,1]

3. On observe :

‘| — fibo3
| — fibo4

time (s)

0,05 o

O'OO | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

FIGURE 2 — Tracé des temps d’exécution du calcul de (uy,),

Le choix de I'exponentiation rapide pour le calcul de A™ est sans conteste bénéfique. Le calcul
de complexité de fibo4 s’avére délicat car faire une hypothése de cotlit constant des opérations
arithmétiques pour de grandes valeurs de n est véritablement trop simpliste ici. On constate
d’ailleurs que I'annonce d’une complexité en O(n) pour £ibo3 trouve déja ses limites avec une
tendance graphique qui ne semble plus réellement linéaire . ..

