
ISM MPSI/PCSI, Informatique
Année 2025/2026

Corrigé du TP Informatique 17

Exercice 1

1. On saisit :

def fibo1(n):

a=(1+np.sqrt(5))/2

b=a**n

if n%2==0:

s=1

else:

s=-1

return 1/np.sqrt(5)*(b-s/b)

2. On obtient :

>>> [fibo1(n) for n in range(10)]

[0.0, 1.0, 1.0, 2.0, 3.0000000000000004, 5.0000000000000009,

8.0000000000000018, 13.000000000000002, 21.000000000000004, 34.000000000000007]

Il s'agit d'un calcul �ottant avec les approximations inhérentes à ce format. Si l'argument n est
trop grand, le résultat est inutilisable du fait des limitations du format �ottant :

>>> fibo1(2000)

Warning (from warnings module):

File "D:\Drive\ITC\INT\EX004.py", line 18

b=a**n

RuntimeWarning: overflow encountered in double_scalars

inf

3. On saisit :

def expo(x,n):

res,a,e=1,x,n

while e>0:

if e%2==1:

res*=a

e//=2

a*=a

return res

4. On saisit :

1

def fibo2(n):

a=(1+np.sqrt(5))/2

if n%2==0:

s=1

else:

s=-1

b=expo(a,n)

return 1/np.sqrt(5)*(b-s/b)

5. On saisit :

def fibo3(n):

if n==0:

return 0

u,v=0,1

for k in range(2,n+1):

u,v=v,u+v

return v

6. On saisit :

while abs(fibo1(n)-fibo3(n))<1:

n+=1

print("Seuil=",n)

On trouve un seuil égal à 72.

7. On observe :

0 200 400 600 800 1000
n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ti
m

e
 (

s)

fibo1
fibo2
fibo3

Figure 1 � Tracé des temps d'exécution du calcul de (un)n

2

Le calcul avec l'exponentiation native ** est le plus rapide. On peut imaginer qu'il béné�cie d'une
implémentation optimisée. Le calcul par exponentiation rapide est très performant également. Le
calcul itératif exact avec des valeurs entières suit une tendance linéaire ce qui est cohérent avec
sa complexité temporelle en O(n). Ces écarts de performance ne doivent pas faire oublier que le
calcul �ottant n'est pas du calcul exact donc les fonctions ne sont pas réellement comparables
. . .

Exercice 2

1. On saisit :

def expo(X,n):

res=np.array([[1,0],[0,1]],dtype=object)

a,e=X,n

while e>0:

if e%2==1:

res=np.dot(res,a)

e//=2

a=np.dot(a,a)

return res

2. On saisit :

def fibo4(n):

A=np.array([[0,1],[1,1]],dtype=object)

res=expo(A,n)

return res[0,1]

3. On observe :

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

0.00

0.05

0.10

0.15

0.20

0.25

ti
m

e
 (

s)

fibo3
fibo4

Figure 2 � Tracé des temps d'exécution du calcul de (un)n

3

Le choix de l'exponentiation rapide pour le calcul de An est sans conteste béné�que. Le calcul
de complexité de fibo4 s'avère délicat car faire une hypothèse de coût constant des opérations
arithmétiques pour de grandes valeurs de n est véritablement trop simpliste ici. On constate
d'ailleurs que l'annonce d'une complexité en O(n) pour fibo3 trouve déjà ses limites avec une
tendance graphique qui ne semble plus réellement linéaire . . .

4

