
ISM MPSI/PCSI, Informatique
Année 2025/2026

TP Informatique 18

Dé�nition 1. Une pile (stack en anglais) est une structure de données correspondant à un
empilement d'éléments régi par la règle � dernier arrivé, premier sorti � (LIFO en anglais, Last
In First Out).

La dernière information rangée est la première disponible. La pile correspond donc exactement
à l'image usuelle d'un empilement de livres ou d'assiettes : on ajoute des assiettes à la pile et on
ne peut accéder directement qu'à la dernière assiette.

empiler depiler

Figure 1 � Schéma d'une pile

Une pile peut être vue comme une structure abstraite que l'on va munir d'opérations permettant
d'agir sur sa composition. Avec ces opérations, on pourra alors écrire des algorithmes utilisant
des piles sans avoir besoin d'en connaître l'implémentation.

Copier le �chier ClassePile.py dans le répertoire de travail puis, pour chaque programme,
commencer par réaliser l'importation from ClassePile import * pour manipuler la classe
ClassePile. Celle-ci est munie des opérations primitives suivantes :

� Pile() qui crée une pile vide ;
� P.vide() qui renvoie True si la pile P est vide et False sinon ;
� P.empiler(x) qui empile l'élément x dans la pile P ;
� P.depiler() qui dépile le sommet de la pile non vide P.

On dispose également de l'opération P.affiche() pour a�cher le contenu de la pile P.

Exercice 1

1. Écrire une fonction taille(P) d'argument P une pile et qui renvoie sa taille. La pile P ne
doit pas être modi�ée.

2. Écrire une fonction cut(P) d'argument P une pile et qui supprime l'élément tout en bas
de la pile. La pile P est directement modi�ée.

1



Exercice 2

On s'intéresse au problème du remplissage d'un
contour dans une image. Une image sera repré-
sentée par une liste de listes contenant des zé-
ros (cases vides) et des uns (cases pleines). Un
point sera représenté par la liste de ses coor-
données [x,y] avec x le numéro de ligne et y le
numéro de colonne. Le point en haut à gauche
de l'image est le point de coordonnées [0,0].
Si la variable img contient une image, on ac-
cède au point en haut à gauche avec img[0][0].

On souhaite programmer le remplissage d'un
contour depuis un point situé à l'intérieur de
ce contour.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Figure 2 � Remplissage d'un contour

1. Copier le contenu du �chier contour.py dans votre éditeur puis exécuter ce code.

2. Écrire une fonction est_blanc(image,pt) d'arguments une image et un point et qui
renvoie True si le point de l'image est une case vide, False sinon.

3. Écrire une fonction noircit(image,pt) d'arguments une image et un point qui remplit
la case repérée par le point dans l'image. L'argument image sera directement modi�é.

4. Écrire une fonction remplir(image,pt) d'argument une image contenant un contour
à remplir et un point à l'intérieur du contour. On utilisera une pile pour empiler le
point de départ puis, tant que la pile n'est pas vide, on dépile le sommet, on le noircit
puis on empile les points voisins pas encore noircis. L'argument image sera directement
modi�é. On pourra utiliser les fonctions haut(pt), bas(pt), gauche(pt) et droite(pt)
qui renvoient respectivement les coordonnées situés en haut, en bas, à gauche, à droite
du point argument.

5. Tester la fonction remplir sur le contour proposé en exemple.

6. Écrire une nouvelle fonction remplir2(image,pt) qui remplit le contour de l'image et
qui renvoie une liste permettant de visualiser l'évolution de la taille de la pile utilisée pour
l'empilement des points. A�cher cette évolution pour le contour proposé en exemple.

Exercice 3

On s'intéresse au problème de parenthésage d'une expression.

1. Écrire une fonction parenth1(expr) d'argument une chaîne de caractère expr contenant
une expression algébrique qui teste la validité du parenthésage pour les caractères "(" et
")".
Par exemple, la chaîne est "((1+2)*3)-1" est valide mais "(1+2" ou "(1+2))" ou
"((1+2)*3" ne le sont pas.

2. Écrire une fonction parenth2(expr) d'argument une chaîne de caractère expr contenant
une expression algébrique qui teste la validité du parenthésage pour les caractères "(" et
")", "[" et "]", "{" et "}".

2


