Programme des colles du 11/12 au 15/12

1. Equations différentielles

- Ordre 1
 - Résolution de l'équation homogène d'ordre 1, y' = ay, où $a: I \to \mathbb{R}$ est une fonction continue sur l'intervalle I : connaître précisément la propriété qui décrit l'ensemble des solutions à l'aide d'une primitive A de a et savoir la prouver.
 - Solutions de l'équation avec second membre à l'aide d'une solution particulière.
 - Méthode de variation de la constante pour déterminer une solution par intégration.
 - Existence et unicité de la solution d'un problème de Cauchy.
- - Equation différentielle linéaire homogène d'ordre 2 à coefficients constants.
 - Description des solutions de l'équation homogène : cas complexe, cas réel.
 - Description des solutions de l'équation avec second membre à l'aide d'une solution particulière de l'équation.
 - Solution particulière dans le cas d'un second membre exponentiel ou trigonométrique.
- 2. Logique et raisonnement
 - Définition d'une proposition logique : énoncé qui est soit vrai, soit faux.
 - Quantificateurs et prédicats.
 - Connecteurs logiques : et, ou, \Rightarrow , \Leftrightarrow .
 - Négation d'assertions avec des quantificateurs, "et", "ou", ⇒.
 - Ensembles, inclusion et égalité d'ensembles.
 - Raisonnement par contraposée : pour $n \in \mathbb{N}$, on a n^2 pair $\Rightarrow n$ pair puis par l'absurde :
 - Raisonnement par analyse-synthèse : toute fonction $f:\mathbb{R}\to\mathbb{R}$ s'écit d'une seule manière comme somme d'une fonction paire et d'une fonction impaire.
 - Récurrences.
 - Fonctions injectives, surjectives, bijectives.
 - Une composée d'injections est injective, une composée de surjections est surjective.
- 3. Sommes et produits avec notations Σ et Π
 - Symbole $\sum_{k=m}^{n} a_k$ où m et n sont deux entiers relatifs tels que $m \leq n$, convention que la somme est nulle sinon, nombre de termes d'une telle somme : n-m+1.
 - Linéarité de la somme.
 - Sommes télescopiques.
 - Sommes géométriques

 - Sommes geometriques

 Factorisation de $a^n b^n$ par a b.

 $\sum_{k=0}^n k = \frac{n(n+1)}{2}$; $\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$; $\sum_{k=0}^n k^3 = \frac{n^2(n+1)^2}{4}$.

 Sommes doubles $\sum_{m \leq i, j \leq n} a_{i,j}$, $\sum_{m \leq i \leq j \leq n} a_{i,j}$ ou $\sum_{m \leq i < j \leq n} a_{i,j}$ à savoir écrire comme deux sommes imbriquées et calculer sur des exemples
 - Produits
 - Changement d'indice dans une somme : $j = \alpha + k$ ou $j = \alpha k$ ($\alpha \in \mathbb{Z}$).
 - Coefficients binomiaux, formules :

$$(i) \binom{n}{k} = \binom{n}{n-k}$$

$$(ii) \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

$$(iii) k \binom{n}{k} = n \binom{n-1}{k-1}$$

NB: ces formules sont valables pour toutes valeurs entière relative de k et entière naturelle de n avec la convention que $\binom{n}{k} = 0$ lorsque l'inégalité $0 \le k \le n$ n'est pas respectée.

- Formule du binôme de Newton.