Devoir surveillé

Exercice 1. Premier exemple d'analyse-synthèse, Slovénie 1999.

On cherche à préciser quelles sont les fonctions $f: \mathbb{R} \to \mathbb{R}$ qui vérifient pour tous x et y réels :

$$f(x - f(y)) = 1 - x - y.$$

Indications:

- On pourra commencer par supposer qu'une fonction f donnée vérifie cette équation fonctionnelle, puis montrer alors que l'on a une constante a telle que pour tout nombre t réel, f(t) = a t.
- On pourra alors regarder à quelle(s) condition(s) sur le réel a la fonction $f: \mathbb{R} \to \mathbb{R}$ définie pour tout réel x par f(x) = a x est effectivement une solution de l'équation fonctionnelle.

Exercice 2. Logique mathématique

- 1. Écrire avec des quantificateurs les propositions suivantes (où f est une fonction définie de \mathbb{R} dans \mathbb{R}), puis leurs négations :
 - (a) f est la fonction nulle;
 - (b) f est l'identité de \mathbb{R} ;
 - (c) f est croissante sur \mathbb{R} .
- 2. Soit E un ensemble et $(A, B, C) \in \mathcal{P}(E)^3$. Montrer l'égalité suivante :

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

3. Démontrer que l'application

$$f: \mathbb{C}\backslash\{-3\} \to \mathbb{C}\backslash\{i\}$$

$$z \mapsto \frac{iz-i}{z+3}$$

est une bijection et déterminer sa bijection réciproque.

Exercice 3. Sommes doubles

Soit $n \in \mathbb{N}^*$, on rappelle que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$, calculer les sommes suivantes :

$$S_1 = \sum_{0 \le i, j \le n} (i+j)$$

$$S_2 = \sum_{0 \le i \le j \le n} (i+j)$$

$$S_3 = \sum_{0 \le i < j \le n} (i+j)$$

Exercice 4. Approximation du nombre d'or.

On appelle nombre d'or et on note ϕ la solution positive réelle de l'équation d'inconnue réelle x:

$$x^2 - x - 1 = 0.$$

En particulier, on a $\phi = \sqrt{1+\phi}$.

- 1. Justifier, sans calculatrice, que $1 < \phi < 2$.
- 2. On considère la suite (u_n) définie sur \mathbb{N}^* par :

$$u_1 = \sqrt{1}, \ u_2 = \sqrt{1 + \sqrt{1}}, \ u_3 = \sqrt{1 + \sqrt{1 + \sqrt{1}}}$$

et ainsi de suite,

$$u_n = \sqrt{1 + \dots + \sqrt{1 + \sqrt{1}}}$$

avec n radicaux.

Exprimer, pour tout entier n supérieur ou égal à 1, u_{n+1} en fonction de u_n .

3. Montrer que, pour tout $n \geq 1$,

$$1 \le u_n \le \phi.$$

- 4. Montrer que la suite (u_n) est croissante.
- 5. Démontrer que (u_n) converge vers ϕ . Indication : on pourra utiliser le fait que si $u_n \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}$, on a aussi $u_{n+1} \underset{n \to +\infty}{\longrightarrow} l$.
- 6. Montrer que, pour tout entier $n \ge 1$,

$$|u_{n+1} - \phi| \le \frac{1}{2}|u_n - \phi|.$$

7. En déduire que, pour tout $n \ge 1$,

$$|u_n - \phi| \le \frac{1}{2^{n-1}}.$$