Dérivation

Exercices sur la dérivabilité 1

Exercice 1.

Calculer la dérivée, quand elle est définie, de :

$$f(x) = \frac{1}{x} \sin\left(\frac{x+1}{x-1}\ln(x^2+3)\right).$$

(On ne cherchera pas à simplifier l'écriture de cette dérivée...)

Exercice 2.

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}^*, \quad f(x) = x^2 \sin\left(\frac{1}{x}\right) \quad \text{et} \quad f(0) = 0.$$

Montrer que f est dérivable sur \mathbb{R} et que f' n'est pas continue en 0.

Exercice 3.

On considère une fonction f dérivable sur [0,1] telle que f(0)=f(1). On définit g par :

$$\left\{ \begin{array}{ll} \forall x \in [0,1/2], & g(x) = f(2x), \\ \forall x \in]1/2,1], & g(x) = f(2x-1). \end{array} \right.$$

- 1. Montrer que g est continue sur [0,1].
- 2. A quelle condition g est-elle dérivable sur [0,1]?

Exercice 4.

Si f est une fonction dérivable de \mathbb{R} dans \mathbb{R} , montrer :

- 1. si f est paire, f' est impaire,
- 2. si f est impaire, f' est paire,
- 3. si f est T-périodique, f' est T-périodique.

Etudier les réciproques.

Exercice 5.

Calculer, à l'aide de la dérivation, les sommes suivantes, où $n \in \mathbb{N}$ et $(x,y) \in \mathbb{R}^2$:

$$S_n(x) = \sum_{k=1}^n k \cos(kx) \quad \text{et} \quad T_n(x,y) = \sum_{k=0}^n k \binom{n}{k} x^k y^{n-k}.$$

Exercice 6.

Soit
$$f: I \to \mathbb{R}$$
 une application dérivable en x_0 , point intérieur à I . Déterminer la limite de $\frac{f(x_0+h)-f(x_0-h)}{2h}$ lorsque $h \to 0$.

Exercice 7.

Soit f une fonction dérivable en x_0 . Déterminer la limite éventuelle, quand $x \to x_0$, de :

$$\frac{xf(x_0) - x_0 f(x)}{x - x_0} .$$

Exercice 8.

Soit $f:[0,1] \to [0,1]$ dérivable vérifiant $f \circ f = f$.

- 1. Soit [m, M] = f([0, 1]). Vérifier que $\forall x \in [m, M], f(x) = x$.
- 2. En raisonnant par l'absurde, montrer que si f n'est pas constante, M=1 et m=0.
- 3. Conclure: trouver toutes les $f:[0,1]\to[0,1]$ dérivables telles que $f\circ f=f$.

Exercice 9.

Déterminer les applications $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 vérifiant :

$$\forall x \in \mathbb{R}, \ (f \circ f)(x) = \frac{1}{2}x + 3.$$

Indication : on pourra calculer de deux façons différentes $f \circ f \circ f(x)$.

Théorème de Rolle et accroissements finis $\mathbf{2}$

Exercice 10.

Soient $n \in \mathbb{N}^*$ et $p, q \in \mathbb{R}$. Montrer que l'équation $x^n + px + q = 0$ admet au plus trois solutions.

Exercice 11.

Soit $f:[a,b]\to\mathbb{R}$ une application 2 fois dérivable vérifiant f(a)=f(b)=0. Soit $c\in]a,b[$.

Montrer qu'il existe $\alpha \in]a,b[$ tel que $f(c)=\frac{(c-a)(c-b)}{2}f''(\alpha)$ (Utiliser l'application $g:[a,b]\to\mathbb{R}, x\mapsto f(x)-A\frac{(x-a)(x-b)}{2}, A$ étant choisi de sorte que g(c)=0).

Exercice 12.

Soit f une fonction dérivable du segment [a, b] (avec a < b) dans \mathbb{R} . On suppose :

- $\forall x \in [a, b], f'(x) \leq M,$
- f(b) f(a) = M(b a).

Montrer que f est affine (on pourra étudier g(x) = f(x) - M(x - a)).

Exercice 13. Théorème de Darboux

Soit $f:[a,b]\to\mathbb{R}$ dérivable.

- 1. On suppose que f'(a) < 0 et f'(b) > 0. Montrer qu'il existe $c \in]a,b[$ tel que f'(c) = 0.
- 2. Montrer que f' vérifie la propriété des valeurs intermédiaires, i.e pour tout intervalle $I \subset [a, b]$, f'(I) est un intervalle.

Exercice 14.

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ dérivable à dérivée bornée. On suppose que $f(n) \to +\infty$ quand $n \to +\infty$. Montrer que $f(x) \to +\infty$ quand $x \to +\infty$.

Exercice 15.

Etudier les variations des fonctions suivantes :

$$f: \mathbb{R}^{+*} \to \mathbb{R}$$
 $x \mapsto \frac{\ln x}{x}$ et $g: \mathbb{R}^+ \to \mathbb{R}$
 $x \mapsto x^x$

2

Exercice 16.

Soient $f \in \mathcal{C}^2([-1,1],\mathbb{R})$ et:

$$g: x \in [-1,1] \quad \mapsto \quad \left\{ \begin{array}{ll} \displaystyle \frac{f(x)-f(0)}{x} & \mathrm{si} \quad x \neq 0 \\ \\ \displaystyle f'(0) & \mathrm{si} \quad x = 0 \end{array} \right.$$

Montrer que g est de classe C^1 sur [-1, 1].

Exercice 17. Généralisation du théorème de Rolle

Soit $f:[a,+\infty[\to\mathbb{R}$ une application continue, dérivable sur $]a,+\infty[$ et telle que $f(x)\to f(a)$ lorsque $x\to +\infty$.

Montrer qu'il existe $c \in]a, +\infty[$ tel que f'(c) = 0.

(On pourra utiliser $g:[\arctan(a), \frac{\pi}{2}[\to \mathbb{R}, t \mapsto f(\tan(t)), \text{ mais ce n'est pas indispensable}).$

3 Dérivées *n*-ièmes

Exercice 18. Zéros de la dérivée n-ième

Soit f une fonction n fois dérivable sur \mathbb{R} avec $n \geq 1$. On suppose que f s'annule en au moins p points distincts de \mathbb{R} avec $p \geq n + 1$. Montrer que $f^{(n)}$ s'annule en au moins p - n points distincts de \mathbb{R} .

Exercice 19. Leibniz

Calculer les dérivées nième de $f: x \mapsto x^2 \sin x$ et $g: x \mapsto e^x \cos x$.

Exercice 20. Dérivées n-ièmes par récurrence

Montrer que, pour $n \in \mathbb{N}^*$:

$$\frac{d^n}{dx^n} \left(x^{n-1} \ln x \right) = \frac{(n-1)!}{x} \qquad \text{et} \qquad \frac{d^n}{dx^n} \left(x^{n-1} e^{1/x} \right) = \frac{(-1)^n}{x^{n+1}} e^{1/x}.$$

Exercice 21. Application C^{∞} avec toutes ses dérivées nulles

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par : $f(x) = e^{-\frac{1}{x}}$ si x > 0, f(x) = 0 si $x \le 0$.

1. Prouver l'existence d'une suite $(P_n)_{n\in\mathbb{N}^*}$ de polynômes telle que :

$$\forall n \in \mathbb{N}^*, \forall x \in]0, +\infty[, \quad f^{(n)}(x) = \frac{P_n(x)}{x^{2n}} e^{-\frac{1}{x}}.$$

- 2. Montrer que f est de classe C^{∞} sur \mathbb{R} .
- 3. Montrer qu'il existe une fonction $g : \mathbb{R} \to \mathbb{R}$ de classe C^{∞} telle que g(x) = 0 si $|x| \ge 2$ et g(x) = 1 si $|x| \le 1$.

Exercice 22.

Soit $f:[0,1]\to\mathbb{R}$ de classe C^2 telle que f(0)=0.

1. Montrer qu'il existe $M \ge 0$ tel que :

$$\forall x \in [0, 1], \qquad |f(x) - xf'(0)| \le Mx^2.$$

2. On pose, pour $n \in \mathbb{N}^*$:

$$u_n = \sum_{k=1}^n f\left(\frac{k}{n^2}\right).$$

Montrer que (u_n) est convergente et déterminer sa limite.

3. On pose, pour $n \in \mathbb{N}^*$:

$$v_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$$
 et $w_n = \sum_{k=1}^n \sin\left(\frac{k}{n^2}\right)$.

3

Etudier (v_n) et (w_n) .

Exercice 23. Inégalité de Landau

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 . On suppose que f et f'' sont bornées sur \mathbb{R} et on pose :

$$M_0 = \sup_{x \in \mathbb{R}} |f(x)|$$
 et $M_2 = \sup_{x \in \mathbb{R}} |f''(x)|$.

1. Montrer, si $x \in \mathbb{R}$ et t > 0, que :

$$\left|f'(x)\right| \le \frac{1}{t}M_0 + \frac{t}{2}M_2.$$

- 2. En déduire que f' est bornée sur \mathbb{R} .
- 3. On pose:

$$M_1 = \sup_{x \in \mathbb{R}} |f'(x)|.$$

Montrer que : $M_1^2 \leq 2M_0M_2$.

4 Points fixes attractifs de suites récurrentes

Exercice 24.

Soit f une fonction définie sur [0,4] par $f(x) = \sqrt{4+x}$.

- 1. Montrer que l'intervalle [0,4] est stable par f, et que f admet un unique point fixe α sur [0,4] que l'on calculera.
- 2. La suite (u_n) est définie par

$$u_0 \in [0,4]$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

Montrer que si $n \in \mathbb{N}$,

$$|u_n - \alpha| \le \left(\frac{1}{4}\right)^n |u_0 - \alpha|.$$

Qu'en déduit-on sur le comportement de (u_n) ?

Exercice 25. Valeur approchée de ln 2

Soient $f, g: \mathbb{R}_+ \to \mathbb{R}$ définies par

$$g(x) = (x-2)e^{2x} + (x+2)e^x$$
, $f(x) = \frac{x}{e^x - 1}$ si $x \neq 0$ et $f(0) = 1$.

- 1. Démontrer que $g \geq 0$ sur \mathbb{R}_+ .
- 2. Démontrer que f est de classe C^1 sur \mathbb{R}_+ . Que vaut f'(0)?
- 3. Vérifier que $f''(x) = \frac{g(x)}{(e^x 1)^3}$. En déduire que $|f'(x)| \le 1/2$ sur \mathbb{R}_+^* .
- 4. On définit une suite (u_n) par $u_0 = 0$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n. Prouver que, pour tout $n \in \mathbb{N}$, on a

$$|u_n - \ln 2| \le \left(\frac{1}{2}\right)^n \ln 2.$$

Exercice 26.

On considère la suite récurrente définie par $u_0 \in \mathbb{R}^*$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, où f la fonction définie par $f(x) = 1 + \frac{1}{4}\sin\frac{1}{x}$.

- 1. Déterminer $I = f(\mathbb{R}^*)$, et montrer que I est stable par f.
- 2. Étudier la suite (u_n) .