Devoir surveillé

1 Cours

1. Condition nécessaire d'extremum local en un point intérieur au domaine de définition.

- 2. Lemme de Rolle
- 3. Théorème des accroissements finis.
- 4. Fonctions lipchitziennes : définition
- 5. Caractérisation par la dérivée des fonctions lipchitziennes dans le cas de fonctions dérivables sur un intervalle.
- 6. Théorème de la limite de la dérivée.
- 7. Dérivée n-ième d'un produit : formule de Leibniz.
- 8. Opérations élémentaires et matrices : matrices de transvection, de transposition et de dilatation, interprétation des opérations élémentaires sur les lignes d'une matrice au moyen de ces matrices.

2 Sujet normal : Suite $u_{n+1} = f(u_n)$

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^{2x} + 1}$.

- 1. (a) Justifier que f est C^1 sur \mathbb{R} et étudier les variations de f.
 - (b) Montrer que l'équation f(x) = x admet une unique solution ℓ .
 - (c) Justifier que : $0 \le \ell \le \frac{1}{2}$

Données numériques : $e^{1/2} \simeq 1.65 \pm 10^{-2}$ et $e \simeq 2.72 \pm 10^{-2}$.

- (d) Montrer que pour tout réel x positif : $0 \le |f'(x)| \le f(x)$ puis que $f(x) \le \frac{1}{2}$. En déduire que $\forall x \ge 0$, $|f'(x)| \le \frac{1}{2}$.
 - En déduire que $\forall x \geqslant 0$, $|f'(x)| \leqslant \frac{1}{2}$.
- (e) Vérifier que $f\left(\left[0,\frac{1}{2}\right]\right) \subset \left[0,\frac{1}{2}\right]$
- 2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$

- (a) Montrer que, pour tout $n \in \mathbb{N}$, $u_n \in \left[0, \frac{1}{2}\right]$.
- (b) Montrer que, pour tout $n \in \mathbb{N}$:

$$|u_{n+1} - \ell| \le \frac{1}{2}|u_n - \ell|$$
 puis que $|u_n - \ell| \le \frac{1}{2^{n+1}}$

1

(c) En déduire que la suite (u_n) converge vers ℓ .

3 Sujet bis: Équations fonctionnelles

Les deux parties de cet exercice sont liées, on pourra admettre les résultats de la première partie pour traiter la deuxième.

1. Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue telle que :

$$(R) \ \forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$$

On pose a = f(1).

- (a) Montrer que f(0) = 0. En déduire que f est impaire.
- (b) Montrer que pour tous $n \in \mathbb{Z}$, $x \in \mathbb{R}$, f(nx) = nf(x).
- (c) Montrer que pour tous $r \in \mathbb{Q}$, $x \in \mathbb{R}$, f(r) = ar.
- (d) Prouver que pour tout $t \in \mathbb{R}$, f(t) = at.
- (e) Conclure l'étude de l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant (R).
- 2. Soit $g: \mathbb{R} \to]-1,1[$ une application continue telle que :

(S)
$$\forall (x,y) \in \mathbb{R}^2$$
, $g(x+y) = \frac{g(x) + g(y)}{1 + g(x)g(y)}$.

- (a) On note $\phi : \mathbb{R} \to \mathbb{R}$ la fonction définie pour tout x réel par $\phi(x) = \frac{e^x 1}{e^x + 1}$. Montrer que ϕ est une bijection de \mathbb{R} dans l'intervalle]-1,1[, et que ϕ vérifie (S).
- (b) En déduire une expression simple, si $(X,Y) \in]-1,1[^2, \text{ de } \phi^{-1}\left(\frac{X+Y}{1+XY}\right)$ en fonction de $\phi^{-1}(X)$ et $\phi^{-1}(Y)$.
- (c) On note $h = \phi^{-1} \circ g$, montrer que h vérifie la propriété (R) de la première partie de l'exercice.
- (d) Déterminer alors une expression simple de g, et conclure l'étude de l'ensemble des fonctions $g: \mathbb{R} \to \mathbb{R}$ vérifiant (S).