Corrigé du devoir surveillé

1 DS normal

Exercice 1. Bases

Soient $E = \{(x, y, z) \in \mathbb{R}^3 | x + y - 2z = 0 \text{ et } 2x - y - z = 0\}$ et $F\{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0\}$ deux sous-ensembles de \mathbb{R}^3 . On admettra que F est un sous-espace vectoriel de \mathbb{R}^3 . Soient a = (1, 1, 1), b = (1, 0, 1) et c = (0, 1, 1).

- 1. Montrons que E est un s.e.v. de \mathbb{R}^3 :
 - le vecteur nul (0,0,0) est bien dans E,
 - Soient (x_1, y_1, z_1) et (x_2, y_2, z_2) deux vecteurs de E, et $(\lambda, \mu) \in \mathbb{R}^2$. On a alors :

$$\lambda(x_1, y_1, z_1) + \mu(x_2, y_2, z_2) = (\lambda x_1 + \mu x_2, \lambda y_1 + \mu y_2, \lambda z_1 + \mu z_2).$$

Vérifions alors que ce vecteur vérifie les deux équations qui définissent E:

$$-\lambda x_1 + \mu x_2 + \lambda y_1 + \mu y_2 - 2(\lambda z_1 + \mu z_2) = \lambda (x_1 + y_1 - 2z_1) + \mu (x_2 + y_2 - 2z_2) = 0$$

$$-2\lambda x_1 + 2\mu x_2 - (\lambda y_1 + \mu y_2) - (\lambda z_1 + \mu z_2) = \lambda(x_1 - y_1 - z_1) + \mu(x_2 - y_2 - z_2) = 0$$

Ainsi, E vérifie deux conditions caractérisant les s.e.v., donc c'est bien un sous-espace.

2. Pour déterminer une base de E, on va d'abord travailler sur le système d'équations définissant (E), il est équivalent après une étape de pivot de Gauss-Jordan, au système suivant :

$$\begin{cases} x+y-2z = 0 \\ -3y+3z = 0 \end{cases}$$

Puis on obtient à la deuxième étape :

$$\begin{cases} x - z = 0 \\ -y + z = 0 \end{cases}$$

Ainsi, $(x, y, z) \in E$ équivaut à x = y = z, c'est à dire (x, y, z) = x(1, 1, 1). On en déduit que le vecteur a = (1, 1, 1) forme une base de E.

- 3. Montrons que $\{b, c\}$ est une base de F:
 - La famille (b,c) est libre car, pour $(\lambda,\mu) \in \mathbb{R}^2$, $\lambda b + \mu c = 0$ équivaut au système $\begin{cases} \lambda = 0 \\ \mu = 0 \\ \lambda + \mu = 0 \end{cases}$,

dont il est clair que l'unique solution est $\lambda = \mu = 0$.

— La famille (b,c) est génératrice de F car si $(x,y,z) \in F$, on a z=x+y donc:

$$(x, y, z) = (x, y, x + y) = (x, 0, x) + (0, y, y) = xb + yc.$$

4. Soient $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tels que $\lambda a + \mu b + \nu c = (0, 0, 0)$, on a alors :

$$\begin{cases} \lambda + \mu &= 0 \\ \lambda + \nu &= 0 \\ \lambda + \mu + \nu &= 0 \end{cases},$$

On obtient après une étape de pivot :

$$\begin{cases} \lambda + \mu &= 0 \\ -\mu + \nu &= 0 \\ \nu &= 0 \end{cases},$$

1

et l'on obtient alors $\lambda = \mu = \nu = 0$, donc (a, b, c) est une famille libre de \mathbb{R}^3 .

5. A-t-on $E \oplus F = \mathbb{R}^3$?

Comme (a, b, c) forment une famille libre, E = Vect(a) et F = Vect(b, c) sont en somme directe. Il suffit de vérifier que la famille (a, b, c) est génératrice de \mathbb{R}^3 pour s'assurer que $E + F = \mathbb{R}^3$. Soit donc u = (x, y, z), résolvons le système d'inconnues (λ, μ, ν) équivalent à $u = \lambda a + \mu b + \nu c$:

$$\begin{cases} \lambda + \mu &= x \\ \lambda + \nu &= y \\ \lambda + \mu + \nu &= z \end{cases}$$

On obtient après quelques étapes de pivot :

$$\begin{cases} \lambda + \mu &= x \\ -\mu + \nu &= y - x \\ \nu &= z - x \end{cases},$$

$$\begin{cases} \lambda &= x + y - z \\ \mu &= z - y \\ \nu &= z - x \end{cases}$$

Le système admet une solution donc la famille est génératrice, et l'on a bien $E + F = \mathbb{R}^3$.

6. Soit u=(x,y,z) , on vient d'exprimer u dans la base $\{a,b,c\}$ à la question précédente :

$$u = (x + y - z)a + (z - y)b + (z - x)c.$$

Exercice 2. Une application linéaire sur un espace de matrices

Dans cet exercice, le corps de base est noté K, pouvant désigner indifféremment \mathbb{R} ou \mathbb{C} . On note $E = \mathcal{M}_2(K)$, $A = \begin{pmatrix} a_{1,1} & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ deux éléments de E. On munit E de sa base canonique :

$$e = \begin{pmatrix} E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

Soit enfin f l'endomorphisme de E défini par :

$$f: E \longrightarrow E$$
$$f: M \longmapsto AM - MB$$

1. Calculons la matrice $F \in \mathcal{M}_4(K)$ de f dans la base canonique e de E.

$$f(E_{1,1}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$
$$f(E_{1,1}) = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} - \begin{pmatrix} e & f \\ 0 & 0 \end{pmatrix}$$
$$f(E_{1,1}) = \begin{pmatrix} a - e & -f \\ c & 0 \end{pmatrix}$$

On calcule de même :

$$f(E_{1,2}) = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix} - \begin{pmatrix} g & h \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -g & a-h \\ 0 & c \end{pmatrix}$$
$$f(E_{2,1}) = \begin{pmatrix} b & 0 \\ d & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ e & f \end{pmatrix} = \begin{pmatrix} b & 0 \\ d-e & -f \end{pmatrix}$$

$$f(E_{2,2}) = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ g & h \end{pmatrix} = \begin{pmatrix} 0 & b \\ -g & d - h \end{pmatrix}$$

On obtient enfin:

$$F = \begin{pmatrix} a - e & -g & b & 0 \\ -f & a - h & 0 & b \\ c & 0 & d - e & -g \\ 0 & c & -f & d - h \end{pmatrix}$$

2. f est l'application linéaire nulle si et seulement si tous les coefficients de sa matrice sont nuls. On voit alors que les termes b, c, f, g sont tous nuls. Grâce à la diagonale de la matrice de f, on obtient a = e = h = d. En notant λ cette valeur commune, on obtient finalement $A = B = \lambda I_2$.

Exercice 3. Etude d'un endomorphisme nilpotent à l'aide de changements de bases

On munit \mathbb{R}^3 de sa base canonique $e=(e_1,e_2,e_3)$ et l'on considère l'endomorphisme u dont la matrice dans cette base est :

$$M = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

- 1. (a) Calculons $M^2=\begin{pmatrix}1&1&1\\-2&-2&-2\\1&1&1\end{pmatrix}$, on vérifie aisément que $M^3=0$.
 - (b) Calculons $(I_3 M)(I_3 + M + M^2) = I_3 + M + M^2 M M^2 M^3 = I_3$. $I_3 M$ est donc inversible avec comme inverse $(I_3 + M + M^2) = \begin{pmatrix} 4 & 2 & 1 \\ -5 & -2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$.
- 2. (a) Le rang de u est le rang de M. On observe que les colonnes de M ne sont pas colinéaires, ceci signifie que le rang de M est au moins 2. Le rang de u peut donc être 2 ou 3. Si c'était 3, M serait inversible et u serait un isomorphisme. On ne pourrait alors avoir $M^2=0$ donc le rang de u est forcément 2. On en déduit d'après le théorème du rang que le noyau de u est de dimension 1.
 - (b) Montrons que si $x \in \mathbb{R}^3 \setminus \text{Ker } u^2$, alors la famille $(x, u(x), u^2(x))$ est libre : Soient $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tels que $\lambda x + \mu u(x) + \nu u^2(x) = 0$, on obtient en composant cette relation par u^2

$$\lambda u^{2}(x) + \mu u^{3}(x) + \nu u^{4}(x) = 0$$

donc $\lambda u^2(x) = 0$ (puisque $u^3 = u^4 = 0$) ce qui entraı̂ne $\lambda = 0$. On peut alors composer la relation $\mu u(x) + \nu u^2(x) = 0$ par u pour montrer que $\mu = 0$ d'où l'on déduit enfin $\nu = 0$. La famille $(x, -u(x), u^2(x))$ est donc libre quand $x \in \mathbb{R}^3 \setminus \text{Ker } u^2$, c'est alors une base de \mathbb{R}^3 puisque son cardinal est 3.

- 3. On pose $e'_1 = u^2(e_3)$, $e'_2 = -u(e_3)$ et $e'_3 = e_3$.
 - (a) D'après la question précédente, la famille $e'=(e'_1,e'_2,e'_3)$ est une base de \mathbb{R}^3 à condition que $u^2(e_3) \neq 0$. Or $u^2(e_3) = e_1 2e_2 + e_3 \neq 0$ d'après le calcul de M^2 . La matrice de passage P de la base e à la base e' donne simplement les coordonnées des trois vecteurs (e'_1,e'_2,e'_3)

dans la base canonique : $P = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

(b) En calculant, on obtient $P^2 = I_3$ d'où l'on déduit que P est inversible et que $P^{-1} = P$.

3

(c) Les formules de changement de base permettent de calculer la matrice M' de u dans la base

$$e': M' = P^{-1}MP = PMP$$
. On trouve finalement $M' = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

(d) On désigne par σ l'endomorphisme dont la matrice dans la base e est P. Puisque $P^2 = I_3$, on a $\sigma^2 = Id_{\mathbb{R}^3}$ donc σ est une symétrie. En remarquant que $P - I_3 = \begin{pmatrix} 0 & 0 & 0 \\ -2 & -2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$, on voit que son noyau est le sous espace dont une base est $(e_1 - e_2, e_3)$.

En calculant $P + I_3 = \begin{pmatrix} 2 & 0 & 0 \\ -2 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix}$, on remarque que son noyau est la droite vectorielle dirigée par $e_3 - 2e_2$.

Ainsi, σ est la symétrie par rapport à $\text{Vect}(e_1 - e_2, e_3)$ parallèlement à $\text{Vect}(e_3 - 2e_2)$.

(e) Dans la base $(e_1 - e_2, e_3, e_3 - 2e_2)$ de \mathbb{R}^3 , la matrice de σ est :

$$P' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

2 DSbis: Endomorphismes nilpotents

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et E un \mathbb{K} -e.v. de dimension finie non nulle. On note $O_{\mathcal{L}(E)}$ l'endomorphisme nul de E et Id_E l'endomorphisme identité de E.

Pour $n \in \mathbb{N}$ et f un endomorphisme de E, on définit par récurrence l'endomorphisme f^n par :

$$f^0 = \mathrm{Id}_E$$
 et pour tout $n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$.

Un endomorphisme f de E est dit nilpotent si et seulement s'il existe $n \in \mathbb{N}^*$ tel que $f^n = O_{\mathcal{L}(E)}$.

- 1. Deux exemples.
 - (a) Dans cette question, $E = \mathbb{K}^n$ et l'on note $\phi : \mathbb{K}^n \to \mathbb{K}^n$ l'application définie par :

$$\phi: (x_1, x_2, \cdots, x_n) \mapsto (0, x_1, \cdots, x_{n-1}).$$

i. Justifier que ϕ est un endomorphisme de \mathbb{K}^n , donner la matrice de ϕ dans la base canonique de \mathbb{K}^n .

Soient (x_1, x_2, \dots, x_n) et (y_1, y_2, \dots, y_n) deux vecteurs de E, λ et μ deux scalaires. On a alors :

$$\phi(\lambda(x_1, x_2, \dots, x_n) + \mu(y_1, y_2, \dots, y_n)) = \phi(\lambda x_1 + \mu y_1, \lambda x_2 + \mu y_2, \dots, \lambda x_n + \mu y_n)$$

$$\phi(\lambda(x_1, x_2, \dots, x_n) + \mu(y_1, y_2, \dots, y_n)) = (0, \lambda x_1 + \mu y_1, \dots, \lambda x_{n-1} + \mu y_{n-1})$$

$$\phi(\lambda(x_1, x_2, \dots, x_n) + \mu(y_1, y_2, \dots, y_n)) = \lambda(0, x_1, \dots, x_{n-1}) + \mu(0, y_1, \dots, y_{n-1})$$

$$\phi(\lambda(x_1, x_2, \dots, x_n) + \mu(y_1, y_2, \dots, y_n)) = \lambda\phi(x_1, x_2, \dots, x_n) + \mu\phi(y_1, y_2, \dots, y_n).$$

 ϕ est donc linéaire, c'est un morphisme. C'est un endomorphisme puisque l'on a : ϕ : $\mathbb{K}^n \to \mathbb{K}^n$. Sa matrice est :

$$\begin{bmatrix} 0 & 0 & \cdots & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & \cdots & \cdots & \vdots \\ 0 & 1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}$$

- ii. Déterminer la dimension de l'image et du noyau de l'endomorphisme ϕ . Le noyau est Vect $((0,\cdots,0,1))$ donc de dimension 1. D'après le théorème du rang, l'image est donc de dimension n-1.
- iii. Montrer que ϕ est nilpotent. Pour k < n un entier, on remarque que :

$$\phi^k : (x_1, x_2, \dots, x_n) \mapsto (0, \dots, 0, x_1, x_2, \dots, x_{n-k}).$$

Et pour ϕ^n , on observe alors que c'est l'application nulle donc ϕ est nilpotent.

(b) Dans cette question, $E = \mathbb{K}_n[X]$ avec $n \in \mathbb{N}^*$.

Soit $\Delta : \mathbb{K}_n[X] \to \mathbb{K}_n[X]$ l'application définie par :

$$\Delta: P(X) \mapsto P(X+1) - P(X).$$

i. Justifier que Δ est un endomorphisme de $\mathbb{K}_n[X]$. Si P et Q sont dans $\mathbb{K}_n[X]$, λ et μ deux scalaires, on a :

$$\Delta (\lambda P(X) + \mu Q(X)) = \lambda P(X+1) + \mu Q(X+1) - (\lambda P(X) + \mu Q(X))$$

$$\Delta (\lambda P(X) + \mu Q(X)) = \lambda (P(X+1) - P(X)) + \mu (Q(X+1) - Q(X))$$

$$\Delta (\lambda P(X) + \mu Q(X)) = \lambda \Delta (P(X)) + \mu \Delta (Q(X)).$$

Ainsi, Δ est un morphisme et c'est un endomorphisme car si P est un polynôme de degré inférieur ou égal à n, il en est de même de P(X+1) et donc de $\Delta(P(X))$.

- ii. Soit $P \in \mathbb{K}_n[X]$. Déterminer le degré de $\Delta(P)$ en distinguant les cas selon que P est ou non un polynôme constant.
 - Si P est un polynôme constant, $\Delta(P) = 0$.
 - Si P n'est pas un polynôme constant, on a donc $P = a_d X^d + a_{d-1} X^{d-1} + \cdots$, où $a_d \neq 0$ et $d \in \mathbb{N}^*$. On a alors en n'écrivant pas les termes de degré strictement inférieurs à d-1:

$$P(X+1) = a_d(X+1)^d + a_{d-1}(X+1)^{d-1} + \cdots$$

$$P(X+1) = a_d(X^d + dX^{d-1} + \cdots) + a_{d-1}X^{d-1} + \cdots$$

$$P(X+1) - P(X) = a_d dX^{d-1} + \cdots$$

d'où l'on déduit que d° $(\Delta(P)) = d^{\circ}(P) - 1$.

iii. Déterminer le noyau, le rang puis l'image de Δ .

Le noyau de Δ est constitué des polynômes constants d'après la question précédente. Son rang est donc n d'après le théorème du rang puisque l'espace $\mathbb{K}_n[X]$ est de dimension n+1. Or tout polynôme de $\mathbb{K}_n[X]$ a son image dans $\mathbb{K}_{n-1}[X]$ d'après la question précédente. Puisque l'image de Δ est de dimension n, on en déduit que $\mathrm{Im}\Delta = \mathbb{K}_{n-1}[X]$.

iv. Montrer que Δ est un endomorphisme nilpotent.

Puisque le degré d'un polynôme diminue de 1 à chaque fois qu'on applique Δ à un polynôme non constant, on aura pour tout polynôme P de $\mathbb{K}_n[X]$ que le degré de $\Delta^n(P)$ est inférieur ou égal à 0. Ainsi, $\Delta^{n+1}(P) = 0$ pour tout tel polynôme donc Δ est nilpotent.

- 2. Etude générale
 - (a) Soient f et g des endomorphismes de E.
 - i. Justifier que si f est nilpotent et que f et g commutent, alors $f \circ g$ est nilpotent. Si f et g commutent, on a en effet pour tout entier naturel $n: (fg)^n = f^ng^n$. En particulier, si n est un entier tel que $f^n = 0$, on a donc $(fg)^n = 0g^n = 0$.

ii. Justifier que si $f \circ g$ est nilpotent, il en est de même de $g \circ f$. Ceci résulte d'une observation :

$$(g \circ f)^2 = g \circ f \circ g \circ f = g \circ (f \circ g) \circ f$$
$$(g \circ f)^3 = g \circ f \circ g \circ f \circ g \circ f = g \circ (f \circ g)^2 \circ f,$$

et l'on démontre alors aisément par récurrence sur $n \in \mathbb{N}^*$ que $(g \circ f)^{n+1} = g \circ (f \circ g)^n \circ f$. Ainsi, si n est tel que $(f \circ g)^n = 0$, on a donc :

$$(g \circ f)^{n+1} = g \circ (f \circ g)^n \circ f = g \circ 0 \circ f = 0,$$

d'où l'on déduit que $g\circ f$ est nilpotent.

iii. On suppose que f est nilpotent, donc que $f^n = 0_{\mathcal{L}(E)}$ pour un certain entier n non nul. Montrer que Id - f est inversible d'inverse :

$$Id + f + f^2 + \dots + f^{n-1}$$
.

On calcule simplement :

$$(Id-f) \circ \left(Id+f+f^2+\cdots+f^{n-1}\right) = Id+f+f^2+\cdots+f^{n-1}-f-f^2-\cdots-f^{n-1}-f^n$$

$$(Id-f) \circ \left(Id+f+f^2+\cdots+f^{n-1}\right) = Id+f+f^2+\cdots+f^{n-1}-f-f^2-\cdots-f^{n-1}-0$$

$$(Id-f) \circ \left(Id+f+f^2+\cdots+f^{n-1}\right) = Id$$

(b) Soit f un endomorphisme nilpotent de E.

Justifier l'existence d'un plus petit entier $n \in \mathbb{N}^*$ tel que $f^n = 0_{\mathcal{L}(E)}$.

Le sous-ensemble $K = \{k \in \mathbb{N}^* | f^k = 0\}$ des entiers naturels est non vide puisque f est nilpotent, il admet donc un minimum $n \in \mathbb{N}^*$.

Cet entier est appelé l'indice de nilpotence de f, on le notera $\nu(f)$.

(c) Soit f un endomorphisme nilpotent de E.

L'objectif de cette question est de prouver que $\nu(f) \leq \text{Dim } E$.

A cette fin, on note pour tout $p \in \mathbb{N} : N_p = \text{Ker } f^p$.

i. Déterminer $N_{\nu(f)}$.

 $N_{\nu(f)} = E$ puisque $f^{\nu(f)}$ est l'endomorphisme nul.

ii. Montrer que pour tout $p \in \mathbb{N}$, $N_p \subset N_{p+1}$.

Soit $x \in N_p$, on a donc $f^p(x) = 0$. Ansi, $f^{p+1}(x) = f(f^p(x)) = f(0) = 0$ d'où $x \in N_{p+1}$.

iii. Montrer que s'il existe $p \in \mathbb{N}$ tel que Dim $N_p = \text{Dim } N_{p+1}$, alors pour tout $q \in \mathbb{N}$, $N_p = N_{p+q}$.

On le prouve par récurrence sur $q \in \mathbb{N}^*$:

- Pour q=1, on sait que Dim $N_p=$ Dim N_{p+1} donc, puisque $N_p\subset N_{p+1},\ N_p=N_{p+1}.$
- On suppose ceci vérifié pour $q \in \mathbb{N}^*$. On prouve alors que l'on a : $N_p = N_{p+q+1}$. On raisonne par équivalences :

$$x \in N_p \Leftrightarrow x \in N_{p+q}$$

$$x \in N_p \Leftrightarrow f^{p+q}(x) = 0$$

$$x \in N_p \Leftrightarrow f^p(f^q(x)) = 0$$

$$x \in N_p \Leftrightarrow f^q(x) \in N_p$$

$$x \in N_p \Leftrightarrow f^q(x) \in N_{p+1}$$

$$x \in N_p \Leftrightarrow f^{p+1}(f^q(x)) = 0$$

$$x \in N_p \Leftrightarrow f^{p+q+1}(x) = 0$$

$$x \in N_p \Leftrightarrow x \in N_{p+q+1}$$

6

L'hérédité étant vérifiée, la propriété est vraie pour tout entier q.

iv. Conclure.

La suite $(u_p)_{p\in\mathbb{N}}$ telle que $u_p=\mathrm{Dim}\ N_p$ est une suite croissante d'entiers puisque l'on sait que pour tout $p\in\mathbb{N},\ N_p\subset N_{p+1}$.

Cette suite est stationnaire en la valeur Dim E à partir de l'indice $p = \nu(f)$. Pour les indices $p \in [0, \nu(f)]$, la suite est strictement croissante. Prouvons ceci par l'absurde : s'il y a avait une valeur $p \in [0, \nu(f) - 1]$ telle que $u_p = u_{p+1}$, la suite serait stationnaire dès l'indice $p < \nu(f)$ d'après la question précédente donc on aurait u_p Dim E, ce qui entrainerait Ker $f^p = E$ donc $f^p = 0$. Cette dernière assertion contredirait la minimalité de $\nu(f)$.

Puisque $u_0 = 0$ et que la suite est strictement croissante sur $[0, \nu(f)]$, on a donc :

$$\sum_{k=0}^{\nu(f)-1} u_{k+1} - u_k \ge \sum_{k=0}^{\nu(f)-1} 1,$$

$$u_{\nu(f)} - u_0 \ge \nu(f),$$

$$\text{Dim } E \ge \nu(f).$$

3. Commutant d'un endomorphisme nilpotent maximal.

Soit f un endomorphisme nilpotent de E tel que $\nu(f) = \text{Dim } E$.

On note n cet entier égal à la dimension de E et à l'indice de nilpotence de f, et C(f) l'ensemble des endomorphismes de E commutant avec f.

(a) Montrer que C(f) est un s.e.v. de $\mathcal{L}(E)$.

 $O \in C(f)$ puisque 0f = f0 = 0.

Si g et h sont dans C(f), λ et μ dans \mathbb{K} , on a alors :

$$f(\lambda g + \mu h) = \lambda f g + \mu f h,$$

$$f(\lambda g + \mu h) = \lambda g f + \mu h f,$$

$$f(\lambda g + \mu h) = (\lambda g + \mu h) f,$$

donc $\lambda g + \mu h \in C(f)$.

(b) Soit $g \in C(f)$.

- i. Justifier qu'il existe $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0_E$. Puisque $f^{n-1} \neq 0$ par définition de l'indice de nilpotence, on a bien l'existence d'un tel x_0 .
- ii. Montrer que la famille de vecteurs $B=(x_0,f(x_0),\cdots,f^{n-1}(x_0))$ est une base de E. On montre que cette famille est libre par l'absurde; supposons donc que l'on a $(\lambda_0,\cdots,\lambda_{n-1})\in\mathbb{K}^n$ non tous nuls tels que :

$$\lambda_0 x_0 + \lambda_1 f(x_0) + \dots + \lambda_{n-1} f^{n-1}(x_0) = 0.$$

On en déduit pour $k \in [0, n-1]$ le plus petit entier tel que $\lambda_k \neq 0$, en composant avec f^{n-1-k} :

$$\lambda_k f^k(x_0) + \lambda_{k+1} f^{k+1}(x_0) + \dots + \lambda_{n-1} f^{n-1}(x_0) = 0,$$

$$f^{n-1-k} \left(\lambda_k f^k(x_0) + \lambda_{k+1} f^{k+1}(x_0) + \dots + \lambda_{n-1} f^{n-1}(x_0) \right) = 0,$$

$$\lambda_k f^{n-1}(x_0) + \lambda_{k+1} f^n(x_0) + \dots = 0,$$

$$\lambda_k f^{n-1}(x_0) = 0.$$

Donc $\lambda_k = 0$ fournit la contradiction désirée.

iii. On note $a_0, a_1, \dots, a_{n-1} \in \mathbb{K}$ les coordonnées de $g(x_0)$ dans la base B. Exprimer, pour $k \in [0, n-1]$, $g(f^k(x_0))$ comme combinaison linéaire des vecteurs de B.

$$g\left(f^{k}(x_{0})\right) = f^{k}\left(g(x_{0})\right)$$
$$g\left(f^{k}(x_{0})\right) = f^{k}\left(a_{0}x_{0} + a_{1}f(x_{0}) + \dots + a_{n-1}f^{n-1}(x_{0})\right)$$
$$g\left(f^{k}(x_{0})\right) = a_{0}f^{k}(x_{0}) + a_{1}f^{k+1}(x_{0}) + \dots + a_{n-1-k}f^{n-1}(x_{0})$$

iv. En déduire que $g = a_0 Id + a_1 f + \dots + a_{n-1} f^{n-1}$. On note $\phi = g - (a_0 Id + a_1 f + \dots + a_{n-1} f^{n-1})$.

La question précédente nous assure que l'on a :

$$\forall k \in [0, n-1], \phi(f^k(x_0)) = 0$$

Ainsi, ϕ est une application linéaire par laquelle tous les vecteurs de la base B ont pour image le vecteur nul. On a donc $\phi = 0$.

On en déduit que :

$$g = a_0 Id + a_1 f + \dots + a_{n-1} f^{n-1}$$

(c) Conclure que $C(f) = \text{Vect } (Id, f, f^2, \dots, f^{n-1})$. Il est facile de vérifier que $\text{Vect } (Id, f, f^2, \dots, f^{n-1}) \subset C(f)$ par double distributivité du produit de composition des endomorphismes.

La réciproque, $C(f) \subset \text{Vect } (Id, f, f^2, \dots, f^{n-1})$ a été prouvée à la question précédente.

(d) Déterminer la dimension de C(f).

La famille $(Id, f, f^2, \dots, f^{n-1})$ est libre : en effet, si $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ sont tels que :

$$\lambda_0 Id + \lambda_1 f + \dots + \lambda_{n-1} f^{n-1} = 0,$$

alors on peut en déduire en calculant l'image de x_0 par cette appluication linéaire :

$$\lambda_0 x_0 + \lambda_1 f(x_0) + \dots + \lambda_{n-1} f^{n-1}(x_0) = 0,$$

et l'on peut conclure que tous les $(\lambda_k)_{k \in \llbracket 0, n-1 \rrbracket}$ sont nuls.

Ainsi, la famille $(Id, f, f^2, \dots, f^{n-1})$ est une base de C(f) qui est de dimension n.