Programme des colles du 03/11 au 07/11

1. Fonctions usuelles

- (a) Trigonométrie:
 - Cercle trigonométrique, fonctions cosinus et sinus
 - Angles associés : -x, $\frac{\pi}{2} x$, $\pi + x$
 - Congruences et résolution d'équations du type $\cos x = \cos y$ ou $\sin x = \sin y$.
 - Fonction tangente : définition, imparité, π -périodicité, représentation graphique
 - Formules $\cos(a+b)$, $\cos(a-b)$, $\sin(a+b)$, $\sin(a-b)$
 - Trois formules pour cos(2a), une formule pour sin(2a)
 - Formules de linéarisation de $\cos(a)\cos(b)$, $\sin(a)\sin(b)$, $\sin(a)\cos(b)$.
- (b) Fonctions trigonométriques réciproques
 - Définition de la fonction arccos, représentation graphique et étude de la dérivabilité.
 - Définition de la fonction arcsin, représentation graphique et étude de la dérivabilité.
 - Définition de la fonction arctan, représentation graphique et étude de la dérivabilité.
- (c) Logarithme et exponentielle
 - Logarithme défini comme la primitive de l'inverse sur \mathbb{R}_+^* qui s'annule en 1.
 - Propriétés du logarithme : logarithme d'un produit, de l'inverse, d'un quotient, d'une puissance entière naturelle ou relative.
 - Exponentielle.
 - Fonctions du type $f_a: x \mapsto x^a$ définies sur \mathbb{R}_+^* :
 - Si a > 0, fonctions qui se prolongent par continuité en 0 par $f_a(0) = 0$, croissantes. Elles sont dérivables sur \mathbb{R}_+^* , $f_a' = af_{a-1}$.
 - Si a < 0, elles sont décroissantes et dérivables sur \mathbb{R}_{+}^{*} , avec une limite infinie en 0.
 - Règles de calcul avec les puissances. Si les expressions ont un sens, on a pour x, y, a et b réels :

i.
$$x^a \times x^b = x^{a+b}$$

ii.
$$x^a \times y^a = (xy)^a$$

iii.
$$(x^a)^b = x^{ab}$$

iv.
$$x^{-a} = \frac{1}{x^a}$$

v.
$$\ln(x^a) = a \ln(x)$$

2. Complexes

- Définition, addition et multiplication.
- Conjugaison et propriétés, interprétation géométrique.
- Module d'un complexe, interprétation en termes de distance.
- Inégalité triangulaire : savoir prouver que pour tous $z, w \in \mathbb{C}, |z+w| \leq |z| + |w|$.

Le cas d'égalité est aussi à connaître, mais pas sa preuve

- Pour $z, w \in \mathbb{C}$, $||z| |w|| \le |z + w|$.
- Généralisation à n complexes z_1, z_2, \cdots, z_n et cas d'égalité : $\left|\sum_{k=1}^n z_k\right| \leq \sum_{k=1}^n |z_k|$
- Applications à la trigonométrie
 - Factorisations : angle moitié pour $1 \pm e^{i\theta}$, angle moyen pour $e^{ip} \pm e^{iq}$ et formules pour $\cos p \pm \cos q$, $\sin p \pm \sin q$.
 - Formules d'Euler, linéarisation, triangle de Pascal pour le développement de $(a+b)^n$.
 - Formule de Moivre.
 - Sommes trigonométriques à savoir calculer pour $x \neq 0[2\pi]$:

$$C_n = 1 + \cos x + \cos(2x) + \dots + \cos(nx),$$

$$S_n = \sin x + \sin(2x) + \dots + \sin(nx).$$

- Représentation trigonométrique et argument d'un complexe non nul.
- Argument d'un produit, d'un quotient.
- Transformation d'une fonction $f: \mathbb{R} \to \mathbb{R}$ du type $f: x \mapsto a\cos(x) + b\sin(x)$ en
 - $f: x \mapsto A\cos(x-\phi)$
- Factorisation par $(z-\alpha)$ d'une expression polynomiale en z qui s'annule pour $z=\alpha$.
- Racines carrées d'un complexe non nul : sous forme polaire, sous forme algébrique.