Corrigé du devoir surveillé

Exercice 1. Étude de fonctions

1. On étudie dans cette première partie la fonction f définie par :

$$f: \mathbb{R} \setminus \left\{ \frac{1}{2} \right\} \to \mathbb{R}$$

$$f(x) = \frac{x^2 - 4x + 2}{2x - 1}.$$

(a) f est définie sur $D_f = \mathbb{R} \setminus \{\frac{1}{2}\}$, et dérivable sur ce domaine puisque quotient de deux fonctions dérivables avec un dénominateur qui ne s'annule pas :

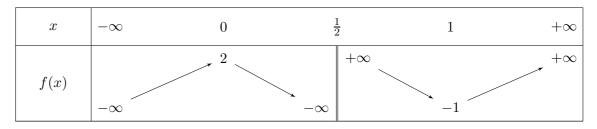
$$f'(x) = \frac{(2x-4)(2x-1) - 2(x^2 - 4x + 2)}{(2x-1)^2}$$

$$f'(x) = \frac{2x^2 - 2x}{(2x - 1)^2}$$

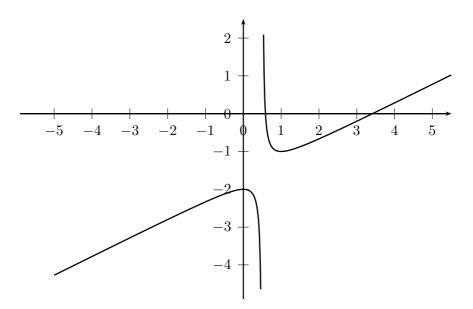
(b) $T(x) = 2x^2 - 2x$ admet pour racines 0 et 1, donc est négatif sur [0,2], strictement positif ailleurs. On en déduit le tableau de signe de f' dont le dénominateur est un carré strictement positif :

x	$-\infty$		0		$\frac{1}{2}$	1		$+\infty$
f'(x)		+	0	_	_	0	+	

(c) Dressons le tableau de variations de f:



(d) Allure de la courbe de f:



2. Dans cette partie, on considère la fonction $g: \mathbb{R} \setminus \left\{-\frac{1}{2}\right\} \to \mathbb{R}$ définie pour tout $x \neq -\frac{1}{2}$ par :

$$g(x) = \frac{x(x^2 + 1)}{2x + 1}$$

- (a) Le numérateur de l'expression de g ainsi que son dénominateur sont dérivables : il s'agit de fonctions polynômes. Le dénominateur ne s'annule pas sur $\mathbb{R} \setminus \{-\frac{1}{2}\}$ donc g est dérivable sur cet ensemble où elle est définie.
- cet ensemble où elle est définie. (b) On a $g'(x) = \frac{4x^3 + 3x^2 + 1}{(2x+1)^2} = \frac{(x+1)(4x^2 - x + 1)}{(2x+1)^2}$

On en déduit le tableau de signe de g'.

x	$-\infty$		-1		$-\frac{1}{2}$		$+\infty$
g'(x)		_	0	+		+	

(c) g admet pour limite $+\infty$ en $-\infty$ et $+\infty$, et l'on peut observer que $\frac{g(x)}{x}$ n'a pas de limite finie en $+\infty$ ni $-\infty$ donc il n'y a pas de droite asymptote à la courbe C_g au voisinage de $+\infty$ ou de $-\infty$.

En $-\frac{1}{2}$ à gauche, une rapide étude de signe nous indique que le dénominateur de g tend vers 0 en étant négatif et son numérateur tend vers -2 donc $\lim_{x\to -\frac{1}{2}^-}g(x)=+\infty$. De même avec

le signe opposé, on a $\lim_{x \to -\frac{1}{2}^+} g(x) = -\infty$.

Les deux parties de la courbe C_g admettent donc la même asymptote verticale en ce point, d'équation $x = -\frac{1}{2}$.

(d) Dressons le tableau de variations de g:

Exercice 2. Une fonction associée à l'inverse

On note $g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ la fonction définie par :

$$\forall x \in \mathbb{R} \setminus \{-1\}, g(x) = \frac{2x+3}{2x+2}.$$

1. On fait subir au graphe C_g de g les translations de vecteur (1,0) puis (0,-1). Déterminer l'expression de la fonction h dont on a ainsi obtenu le graphe. Après la translation de vecteur (1,0), on obtient la fonction :

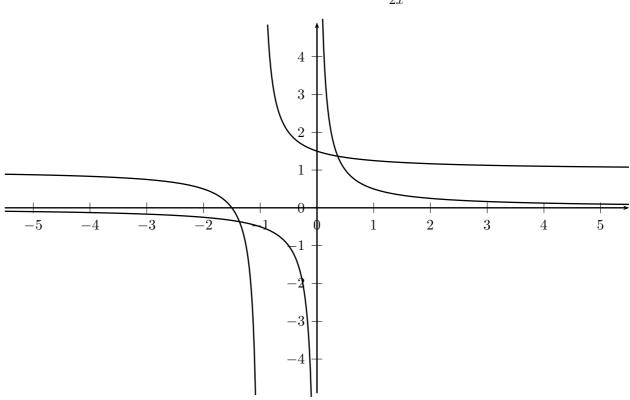
$$j: \mathbb{R}^* \to \mathbb{R}$$

$$j: x \mapsto g(x-1) = \frac{2x+1}{2x} = 1 + \frac{1}{2x}$$

Après la translation de vecteur (0, -1), on obtient la fonction :

$$h: \mathbb{R}^* \to \mathbb{R}$$

$$h: x \mapsto j(x) - 1 = \frac{1}{2x}$$



- 2. Montrer que C_h , puis C_g admettent chacune un centre de symétrie que l'on précisera. On remarque que h est une fonction impaire, on en déduit que C_h est symétrique par rapport au point de coordonnées (0,0).
 - Puisque l'on peut retrouver C_g en faisant subir la translation de vecteur (-1,1) à C_h , on en déduit que C_g est symétrique par rapport au point de coordonnées (-1,1).

Exercice 3. Une fonction périodique

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $\forall x \in \mathbb{R}, f(x) = |2x| - 2x$.

1. Montrer que 1 est une période de f. Soit $x \in \mathbb{R}$. On sait qu'il existe un unique entier $k \in \mathbb{Z}$ tel que $k \le 2x < k+1$ et c'est cet entier qui vaut |x| = k. On a alors $k+2 \le 2x+2 < k+3$, d'où l'on déduit que $\lfloor 2x+2 \rfloor = k+2 = \lfloor 2x \rfloor +2$.

Enfin, on a donc:

$$f(x+1) = \lfloor 2(x+1) \rfloor - 2(x+1),$$

$$f(x+1) = \lfloor 2x+2 \rfloor - 2x - 2,$$

$$f(x+1) = \lfloor 2x \rfloor + 2 - 2x - 2,$$

$$f(x+1) = f(x).$$

f est bien périodique de période 1.

2. Est-ce la plus petite période de f? On va prouver que $\frac{1}{2}$ est aussi une période de f. Soit $x \in \mathbb{R}$. Comme précédemment, on sait qu'il existe un unique entier $k \in \mathbb{Z}$ tel que $k \leq 2x < k+1$ et c'est cet entier qui vaut $\lfloor x \rfloor = k$. On a alors $k+1 \leq 2x+1 < k+2$, d'où l'on déduit que |2x+1| = k+1 = |2x|+1.

Enfin, on a donc:

$$f(x + \frac{1}{2}) = \lfloor 2(x + \frac{1}{2}) \rfloor - 2(x + \frac{1}{2}),$$

$$f(x + \frac{1}{2}) = \lfloor 2x + 1 \rfloor - 2x - 1,$$

$$f(x + \frac{1}{2}) = \lfloor 2x \rfloor + 1 - 2x - 1,$$

$$f(x + \frac{1}{2}) = f(x).$$

Puisque $\frac{1}{2}$ est aussi une période de f, 1 n'est pas la plus petite.

Exercice 4. Exercice bonus

Soient a, b et c trois réels tels que l'on a:

$$\forall x \in [-1, 1], |ax^2 + bx + c| \le 1$$

1. Montrer que a, b et c vérifient nécessairement : $|a| \le 2, |b| \le 1$ et $|c| \le 1$.

En choisissant x = 0, on obtient immédiatement $|c| \le 1$.

Pour x = 1 et x = -1, on obtient $|a + b + c| \le 1$ et $|a - b + c| \le 1$.

Ainsi, $|a+b+c-(a-b+c)| \le |a+b+c| + |a-b+c| \le 2$, i.e. $|2b| \le 2$ et donc $|b| \le 1$.

On a aussi $|a+b+c+a-b+c| \le |a+b+c| + |a-b+c| \le 2$, i.e. $|2a+2c| \le 2$, soit $|a+c| \le 1$. Ainsi, $|a| = |a+c+(-c)| \le |a+c| + |c| \le 2$.

2. Montrer alors que l'on a :

$$\forall x \in [-1, 1], |2ax + b| < 4$$

Ici, il s'agit de remarquer qu'une fonction affine comme $x \mapsto 2ax + b$ est ainsi comprise entre -4 et 4 sur l'intervalle [-1,1] si et seulement si ses valeurs en -1 et 1 le sont.

Il s'agit donc de prouver $|2a + b| \le 4$ et $|-2a + b| \le 4$.

On réutilise (x = 1) $|a + b + c| \le 1$: $|a + b + c| + (-c)| \le |a + b + c| + |c| \le 2$ donc $|a + b| \le 2$. D'où $|a + a + b| \le |a| + |a + b| \le 4$.

De même, (x = -1) $|a - b + c| \le 1$: $|a - b + c + (-c)| \le |a - b + c| + |c| \le 2$ donc $|a - b| \le 2$. D'où $|a + a - b| \le |a| + |a + b| \le 4$.

3. Montrer que 4 est la plus petite constante telle que le résultat de la deuxième question reste vrai : pour a=2, b=0 et c=-1, l'inégalité ci-dessus est une égalité en -1 et 1.