Corrigé du devoir surveillé

Exercice 1. Equations

1. Equations trigonométriques.

Résolvons les équations suivantes d'inconnue $x \in \mathbb{R}$:

$$\cos\left(2x + \frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}\tag{1}$$

$$\cos\left(2x + \frac{\pi}{6}\right) = \cos\left(\frac{5\pi}{6}\right)$$

Cette équation a donc deux types de solutions : $2x + \frac{\pi}{6} \equiv \frac{5\pi}{6} [2\pi]$ ou $2x + \frac{\pi}{6} \equiv -\frac{5\pi}{6} [2\pi]$. Après simplification, on obtient : $x \equiv \frac{\pi}{3} [\pi]$ ou bien $x \equiv \frac{\pi}{2} [\pi]$

$$\cos(5x) = \cos\left(\frac{2\pi}{3} - x\right) \tag{2}$$

$$5x \equiv \frac{2\pi}{3} - x [2\pi]$$
 ou $5x \equiv -\frac{2\pi}{3} + x [2\pi]$
$$6x \equiv \frac{2\pi}{3} [2\pi]$$
 ou $4x \equiv -\frac{2\pi}{3} [2\pi]$ ou $4x \equiv -\frac{\pi}{6} [\frac{\pi}{2}]$

$$\sin\left(\frac{5\pi}{2} - x\right) + \cos\left(2x\right) = 0\tag{3}$$

$$\cos(2x) = -\sin\left(\frac{5\pi}{2} - x\right)$$
$$\cos(2x) = \cos\left(\frac{\pi}{2} + \frac{5\pi}{2} - x\right)$$
$$\cos(2x) = \cos(\pi - x)$$

On a donc encore une fois deux types de solutions : $2x \equiv \pi - x \, [2\pi]$ ou $2x \equiv x - \pi \, [2\pi]$. Après simplification, on obtient : $x \equiv \frac{\pi}{3} \, \left[\frac{2\pi}{3} \right]$ ou $x \equiv -\pi \, [2\pi]$. On remarque que les x qui vérifient la deuxième condition vérifient aussi la première donc l'ensemble des solutions est $\left\{ \frac{\pi}{3} + \frac{2k\pi}{3} \mid k \in \mathbb{Z} \right\}$.

- 2. Equations et détermination des cosinus et sinus d'un angle.
 - (a) Résoudre dans \mathbb{R} l'équation $\cos(4t) = 0$.

Les solutions sont les $t \in \mathbb{R}$ tels que :

$$4t \equiv \frac{\pi}{2}[\pi]$$

$$t \equiv \frac{\pi}{8} [\frac{\pi}{4}]$$

(b) Résoudre dans \mathbb{R} l'équation $8x^4 - 8x^2 + 1 = 0$.

On considère le trinôme $T(X)=8X^2-8X+1$, dont le discriminant vaut $\Delta=32$ et les deux racines sont $X_1=\frac{2-\sqrt{2}}{4}$ et $X_2=\frac{2+\sqrt{2}}{4}$.

L'équation à résoudre équivaut à $T(x^2)=0$, donc les solutions sont les $x\in\mathbb{R}$ tels que $x^2=X_1$ ou $x^2=X_2$. On a quatre solutions qui forment l'ensemble :

$$\left\{ \sqrt{\frac{2-\sqrt{2}}{4}} \; ; \; -\sqrt{\frac{2-\sqrt{2}}{4}} \; ; \; \sqrt{\frac{2+\sqrt{2}}{4}} \; ; \; -\sqrt{\frac{2+\sqrt{2}}{4}} \right\}.$$

$$\left\{ \frac{\sqrt{2-\sqrt{2}}}{2} \; ; \; -\frac{\sqrt{2-\sqrt{2}}}{2} \; ; \; \frac{\sqrt{2+\sqrt{2}}}{2} \; ; \; -\frac{\sqrt{2+\sqrt{2}}}{2} \right\}.$$

(c) En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\cos\left(\frac{3\pi}{8}\right)$

On rappelle que $\cos(2t) = 2\cos^2 t - 1$ d'où l'on déduit :

$$\cos(4t) = 2\cos^{2}(2t) - 1$$
$$\cos(4t) = 2(2\cos^{2}t - 1)^{2} - 1$$
$$\cos(4t) = 2(4\cos^{4}t - 4\cos^{2}t + 1) - 1$$

$$\cos(4t) = 8\cos^4 t - 8\cos^2 t + 1$$

De ceci, on déduit pour $t=\frac{\pi}{8}$ et $t=\frac{3\pi}{8}$, que $\cos\left(\frac{\pi}{8}\right)$ et $\cos\left(\frac{3\pi}{8}\right)$ sont des solutions de l'équation de la question précédente. Puisque $0<\frac{\pi}{8}<\frac{3\pi}{8}<\frac{\pi}{2}$, on obtient par stricte décroissance de \cos sur $[0,\pi]$:

$$1 > \cos\left(\frac{\pi}{8}\right) > \cos\left(\frac{3\pi}{8}\right) > 0.$$

Parmi les quatre solutions de l'équation de la question précédente, seules deux sont positives et l'on déduit finalement des inégalités précédentes :

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$$

$$\cos\left(\frac{3\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$$

Exercice 2. Fonctions trigonométriques réciproques

On considère la fonction f définie par :

$$f(x) = Arcsin \left(\frac{2x}{1+x^2}\right).$$

1. Montrer que f est définie sur \mathbb{R} , que f est dérivable sur]-1,1[, calculer sa dérivée f'(x) pour $x \in]-1,1[$.

On prouve d'abord que f est définie sur \mathbb{R} . Puisque Arcsin est définie sur [-1,1], on doit donc vérifier que pour tout x réel, on a :

$$-1 \le \frac{2x}{1+x^2} \le 1.$$

Puisque $x^2 + 1 > 0$, cette double inégalité équivaut à :

$$-x^2 - 1 \le 2x \le x^2 + 1$$

La première inégalité équivaut à $0 \le 2x + x^2 + 1$ i.e. $0 \le (x+1)^2$, et la deuxième à $0 \le x^2 + 1 - 2x$ i.e. $0 < (x-1)^2$. Les deux inégalités que l'on souhaitait vérifier sont donc justes.

Comme Arcsin est dérivable sur]-1,1[, on remarque que les deux inégalités précédentes sont strictes si $x \notin \{-1,1\}$, donc f est dérivable en tout point de $\mathbb{R} \setminus \{-1,1\}$, et en particulier sur] -1,1[. On calcule alors pour $x \in]-1,1[$:

$$f'(x) = \frac{2(1+x^2) - 2x \times 2x}{(1+x^2)^2} \operatorname{Arcsin}'\left(\frac{2x}{1+x^2}\right)$$

$$f'(x) = \frac{2(1+x^2) - 2x \times 2x}{(1+x^2)^2} \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}}$$

$$f'(x) = \frac{2 - 2x^2}{(1+x^2)^2} \frac{1}{\sqrt{\frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2}}}$$

$$f'(x) = \frac{2(1-x^2)\sqrt{(1+x^2)^2}}{(1+x^2)^2\sqrt{1+x^4 - 2x^2}}$$

$$f'(x) = \frac{2(1-x^2)(1+x^2)}{(1+x^2)^2\sqrt{(1-x^2)^2}}$$

$$f'(x) = \frac{2}{1+x^2}$$

2. Démontrer que :

$$\forall x \in]-1,1[,f(x)=2Arctan x.$$

On note h la fonction définie sur]-1,1[par $h:x\mapsto f(x)-2\operatorname{Arctan}(x).$

h est dérivable, sa dérivée est nulle d'après le calcul précédent. Ainsi, h est une fonction constante. Puisque h(0) = 0, on en déduit que h est la fonction nulle et le résultat attendu.

Exercice 3. Autour du logarithme

1. Résoudre les inéquations suivantes (on précisera le domaine de définition) :

(I)
$$(2x-7)\ln(x+1) > 0$$
 (J) $\ln\left(\frac{x+1}{3x-5}\right) \le 0$.

— (I) est définie pour $x \in]-1, +\infty[$.

On réalise un tableau de signe sur cet intervalle :

x	-1		0		$\frac{7}{2}$		$+\infty$
2x-7			_		0	+	
$\ln(x+1)$		_	0		+		
$(2x-7)\ln(x+1)$		+	0	_	0	+	

On en déduit l'ensemble des solutions :] $-1,0[\cup]\frac{7}{2},+\infty[$. — (J) est définie lorsque $\frac{x+1}{3x-5}>0$. On réalise un tableau de signe :

x	$-\infty$		-1		<u>5</u> 3		$+\infty$
x + 1		_	0		+		
3x-5			_		0	+	
$\frac{x+1}{3x-5}$		+	0	_		+	

Son domaine de définition est donc $:D_{(\mathtt{J})}=]-\infty,-1[\,\cup\,]\frac{5}{3},+\infty[.$ Pour $x\in D_{(\mathtt{J})},$ elle équivaut à :

$$\begin{array}{l} \frac{x+1}{3x-5} & > 1 \\ \frac{x+1}{3x-5} - 1 & > 0 \\ \frac{-2x+6}{3x-5} & > 0 \end{array}$$

On réalise un dernier tableau de signe :

x	$-\infty$	<u>5</u> 3		3		$+\infty$
3x - 5	_	0		+		
-2x + 6		+		0	_	
$\frac{-2x+6}{3x-5}$	_		+	0	_	

L'ensemble des solutions est donc] $\frac{5}{3}$, 3[.

2. On étudie dorénavant la fonction g définie par :

$$g(x) = \frac{1}{2}x + \ln\left(\frac{x-1}{3x-4}\right).$$

(a) Résoudre l'inéquation d'inconnue $x \in \mathbb{R} \setminus \left\{ \frac{4}{3} \right\}$:

$$\frac{x-1}{3x-4} > 0.$$

x	$-\infty$		1		$\frac{4}{3}$		$+\infty$
x-1		_	0	+		+	
3x-4		_		_	0	+	
$\frac{x-1}{3x-4}$		+	0	_		+	

L'ensemble des solutions est donc :

$$D_g =]-\infty, 1[\cup] \frac{4}{3}, +\infty[.$$

(b) Préciser les limites de $g: \lim_{x \to -\infty} g(x), \lim_{x \to +\infty} g(x), \lim_{x \to 1^-} g(x), \lim_{x \to \frac{4}{3}^+} g(x).$

On a
$$\frac{x-1}{3x-4} = \frac{1-\frac{1}{x}}{3-\frac{4}{x}}$$
 donc $\lim_{x \to -\infty} \ln\left(\frac{x-1}{3x-4}\right) = \lim_{x \to +\infty} \ln\left(\frac{1-\frac{1}{x}}{3-\frac{4}{x}}\right) = \ln\left(\frac{1}{3}\right)$.

On en déduit que $\lim_{x \to -\infty} g(x) = -\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$

On remarque que
$$\lim_{x \to 1^{-}} \frac{x-1}{3x-4} = 0^{+}$$
 donc $\lim_{x \to 1^{-}} \ln \left(\frac{x-1}{3x-4} \right) = -\infty$, d'où $\lim_{x \to 1^{-}} g(x) = -\infty$.

Enfin,
$$\lim_{x \to \frac{4}{3}^+} \frac{x-1}{3x-4} = +\infty$$
 donc $\lim_{x \to \frac{4}{3}^+} \ln\left(\frac{x-1}{3x-4}\right) = +\infty$, et $\lim_{x \to \frac{4}{3}^+} g(x) = +\infty$.

(c) Justifier que g est dérivable sur D_g , et que l'on a :

$$\forall x \in D_g, \ g'(x) = \frac{3x^2 - 7x + 2}{2(3x - 4)(x - 1)}.$$

g est dérivable car la fonction $x\mapsto \frac{x-1}{3x-4}$ est dérivable sur son domaine de définition comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas, et la fonction ln est dérivable sur \mathbb{R}_+^* .

On calcule alors pour $x \in D_g$:

$$g'(x) = \frac{1}{2} + \frac{\frac{3x - 4 - 3(x - 1)}{(3x - 4)^2}}{\frac{x - 1}{3x - 4}}$$
$$g'(x) = \frac{1}{2} + \frac{\frac{-1}{(3x - 4)^2}}{\frac{x - 1}{3x - 4}}$$
$$g'(x) = \frac{1}{2} - \frac{1}{(x - 1)(3x - 4)}$$
$$g'(x) = \frac{(x - 1)(3x - 4) - 2}{2(x - 1)(3x - 4)}$$
$$g'(x) = \frac{3x^2 - 7x + 2}{2(3x - 4)(x - 1)}.$$

(d) Pour $x \in D_g$, on a (3x-4)(x-1) > 0 donc le signe de g'(x) est le même que celui de $T(x) = 3x^2 - 7x + 2$. On calcule le discriminant de ce trinôme, $\Delta = 25$ puis ses deux racines $\frac{1}{3}$ et 2. Ainsi, ce trinôme est de signe négatif pour $x \in \left[\frac{1}{3}, 2\right]$, positif ailleurs. On en déduit enfin le tableau de variations de g:

Problème

On souhaite déterminer toutes les fonctions $f: \mathbb{R}_+ \to \mathbb{R}$ vérifiant les deux propriétés suivantes :

$$\forall (x,y) \in \mathbb{R}^2_+, f(x+y) \ge f(x) + f(y) \text{ (on dit que } f \text{ est sur-additive)},$$
 (4)

$$\forall (x,y) \in \mathbb{R}^2_+, f(xy) = f(x)f(y) \text{ (on dit que } f \text{ est multiplicative)}.$$
 (5)

- 1. Soit α un réel supérieur ou égal à 1.
 - (a) Montrer que pour tout réel $x \ge 0$, $(1+x)^{\alpha} \ge 1+x^{\alpha}$.

On note

$$h: \mathbb{R}_+ \to \mathbb{R}$$

 $h: x \mapsto (1+x)^{\alpha} - 1 - x^{\alpha}$

On remarque que h est dérivable et que l'on a :

$$\forall x \in \mathbb{R}_+, \ h'(x) = \alpha (1+x)^{\alpha-1} - \alpha x^{\alpha-1}.$$

Or $\alpha - 1 \ge 0$ donc la fonction $x \mapsto x^{\alpha - 1}$ est croissante sur \mathbb{R}_+ . On en déduit que pour tout $x \in \mathbb{R}_+$, on a $h'(x) \ge 0$.

h est donc une fonction croissante, et l'on déduit du fait que h(0) = 0 que h est à valeurs positives : $\forall x \in \mathbb{R}_+, (1+x)^{\alpha} - 1 - x^{\alpha} \ge 0$.

(b) En déduire que pour tout $(x,y) \in \mathbb{R}^2_+$, $(x+y)^\alpha \ge x^\alpha + y^\alpha$.

Si x ou y vaut 0, cette inégalité est une égalité et est donc vérifiée.

Si x et y sont différents de 0, on a alors d'après la question précédente appliquée au nombre $\frac{x}{y}$:

$$\left(1 + \frac{x}{y}\right)^{\alpha} \ge 1 + \left(\frac{x}{y}\right)^{\alpha}$$
$$y^{\alpha} \left(1 + \frac{x}{y}\right)^{\alpha} \ge y^{\alpha} \left(1 + \frac{x^{\alpha}}{y^{\alpha}}\right)$$
$$\left(\left(y(1 + \frac{x}{y})\right)^{\alpha} \ge y^{\alpha} + x^{\alpha}$$
$$\left(y + x\right)^{\alpha} \ge y^{\alpha} + x^{\alpha}$$

(c) On considère la fonction $f: \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = x^{\alpha}$.

Justifier que f est solution du problème posé.

D'après la question précédente, f est sur-additive. Or on sait que :

$$\forall x, y \in \mathbb{R}_+, (xy)^{\alpha} = x^{\alpha} y^{\alpha}.$$

On en déduit que f est multiplicative et est donc une solution du problème posé.

2. (a) Quelles sont les fonctions constantes solutions du problème étudié?

Une fonction constante en la valeur $C \in \mathbb{R}$ est solution si et seulement si $C \geq C + C$ et $C = C^2$. Ces deux conditions signifient respectivement que $C \leq 0$, et que 0 = C(C - 1). On en déduit que la seule solution constante est la fonction nulle.

Dans toute la suite du problème, on considère une fonction f non constante qui est solution de celui-ci.

(b) Montrer que l'on a alors f(0) = 0 et f(1) = 1.

On a $f(0 \times 0) = f(0)f(0)$ et $f(0+0) \ge f(0) + f(0)$ d'où l'on déduit d'une part que f(0) = 0 ou f(0) = 1, et d'autre part que $f(0) \le 0$. Ainsi, f(0) = 0.

Puisque f n'est pas constante, on a $x \in \mathbb{R}_+$ tel que $f(x) \neq 0$.

Alors $f(1 \times x) = f(1)f(x)$ d'où f(x)(1 - f(1)) = 0 et donc 1 - f(1) = 0 c'est à dire f(1) = 1.

(c) Prouver que $\forall x \in \mathbb{R}_+, \forall n \in \mathbb{N}^*, f(x^n) = f(x)^n$.

On le prouve par récurrence sur $n \in \mathbb{N}$.

Pour n = 1, $f(x^1) = f(x) = f(x)^1$ donc la propriété est vraie.

On suppose dorénavant que $f(x^n) = f(x)^n$ pour un entier $n \in \mathbb{N}^*$. On a alors :

$$f(x^{n+1}) = f(x^n \times x) = f(x^n)f(x) = f(x)^n f(x) = f(x)^{n+1}.$$

La propriété étant héréditaire, elle est vraie pour tout entier $n \in \mathbb{N}^*$.

(d) Prouver que $\forall x \in \mathbb{R}_+^*, f(x) \neq 0$ et $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$.

Pour $x \in \mathbb{R}_+^*$, on a en effet :

$$f\left(x \times \frac{1}{x}\right) = f(1)$$

$$f(x)f\left(\frac{1}{x}\right) = 1$$

On en déduit que $f(x) \neq 0$ et que $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$

(e) Prouver enfin que $\forall x \in \mathbb{R}_+^*, f(x) \in \mathbb{R}_+^*$.

Si $x \in \mathbb{R}_+$, on a $f(x) = f(\sqrt{x} \times \sqrt{x}) = f(\sqrt{x}) \times f(\sqrt{x}) = f^2(\sqrt{x}) \ge 0$ donc $f(x) \in \mathbb{R}_+$.

(f) Montrer que f est croissante.

Soient $x, y \in \mathbb{R}$ tels que $x \leq y$. Alors on a $y - x \geq 0$ et :

$$f(y) = f(x + (y - x)) \ge f(x) + f(y - x)$$

Or $f(y-x) \in \mathbb{R}_+$ donc $f(x) + f(y-x) \ge f(x)$ et l'on conclut : $f(y) \ge f(x)$.

- 3. On considère encore dans ces dernières questions une fonction f non constante qui est solution du problème.
 - (a) Justifier que $\ln(f(2))$ est bien défini et que $\ln(f(2)) \ge \ln(2)$.

 $\ln(f(2))$ est bien défini car $f(2) \in \mathbb{R}_+^*$ d'après la question 2(d).

$$f(2) = f(1+1) \ge f(1) + f(1) = 2$$

Donc on a $f(2) \ge 2$ d'où $\ln(f(2)) \ge \ln(2)$ par croissance de ln.

(b) Justifier : $\forall x > 0, \exists ! q \in \mathbb{Z}, \ 2^q \leq x < 2^{q+1}$. Soit $x \in \mathbb{R}_+^*$, cette double inégalité équivaut par stricte croissance de la fonction ln à :

$$q \ln(2) < \ln(x) < (q+1) \ln(2)$$

$$q \le \frac{\ln(x)}{\ln(2)} < q + 1$$

On sait en effet qu'il existe un unique $q \in \mathbb{Z}$ vérifiant ceci, il s'appelle la partie entière de $\frac{\ln(x)}{\ln(2)}$.

(c) Soit x > 0 un réel et p un entier naturel.

On convient de noter q_p l'unique entier relatif tel que $2^{q_p} \le x^p < 2^{q_p+1}$.

i. Déterminer la limite du rapport $\frac{q_p}{p}$ lorsque p tend vers $+\infty$.

On a en appliquant la fonction ln qui est croissante :

$$\ln(2^{q_p}) < \ln(x^p) < \ln(2^{q_p+1})$$

$$q_p \ln(2) \le p \ln(x) \le (q_p + 1) \ln(2)$$

$$\frac{q_p}{p} \le \frac{\ln(x)}{\ln(2)} \le \frac{(q_p + 1)}{p}$$

La deuxième inégalité nous donne $\frac{\ln(x)}{\ln(2)} - \frac{1}{p} \leq \frac{q_p}{p}$ et l'on a donc :

$$\frac{\ln(x)}{\ln(2)} - \frac{1}{p} \le \frac{q_p}{p} \le \frac{\ln(x)}{\ln(2)}.$$

On en déduit que $\frac{q_p}{p}$ tend vers $\frac{\ln(x)}{\ln(2)}$ lorsque p tend vers $+\infty$.

ii. En observant l'encadrement $f(2)^{q_p} \leq f(x)^p \leq f(2)^{q_p+1}$, justifier :

$$\frac{q_p}{p} \le \frac{\ln(f(x))}{\ln(f(2))} \le \frac{q_p + 1}{p}.$$

L'encadrement observé provient de la croissance de f et sa multiplicativité. Il suffit de le passer à la fonction ln pour en déduire :

$$q_p \ln(f(2)) \le p \ln(f(x)) \le (q_p + 1) \ln(f(2))$$

On en déduit la double inégalité voulue en divisant tout par $p \ln(f(2))$.

iii. Si $x \neq 1$, en déduire que $\frac{\ln(f(x))}{\ln(x)} = \frac{\ln(f(2))}{\ln(2)}$.

On peut en effet conclure de la question précédente l'encadrement :

$$\frac{\ln(f(x))}{\ln(f(2))} - \frac{1}{p} \le \frac{q_p}{p} \le \frac{\ln(f(x))}{\ln(f(2))}.$$

On en déduit que $\frac{q_p}{p}$ tend vers $\frac{\ln(f(x))}{\ln(f(2))}$ lorsque p tend vers $+\infty$ d'où : $\frac{\ln(f(x))}{\ln(\ln(f(2)))} = \frac{x}{\ln(2)}$ donc $\frac{\ln(f(x))}{\ln(x)} = \frac{\ln(f(2))}{\ln(2)}$.

(d) On pose $\alpha = \frac{\ln(f(2))}{\ln(2)} \ge 1$. Justifier que :

$$\forall x \in \mathbb{R}_+, \ f(x) = x^{\alpha}.$$

On a en effet si $x \in \mathbb{R}_+^*$: $\frac{\ln(f(x))}{\ln(x)} = \alpha$ d'où :

$$\ln(f(x)) = \ln(x^{\alpha})$$

et donc $f(x) = x^{\alpha}$ en passant à l'exponentielle.

Pour x = 0, on a bien $f(0) = 0 = 0^{\alpha}$.