Devoir surveillé

1 DS normal

Exercice 1. Bases

Soient $E = \{(x, y, z) \in \mathbb{R}^3 | x + y - 2z = 0 \text{ et } 2x - y - z = 0\}$ et $F\{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0\}$ deux sous-ensembles de \mathbb{R}^3 . On admettra que F est un sous-espace vectoriel de \mathbb{R}^3 . Soient a = (1, 1, 1), b = (1, 0, 1) et c = (0, 1, 1).

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une base de E.
- 3. Montrer que $\{b,c\}$ est une base de F.
- 4. Montrer que $\{a, b, c\}$ est une famille libre de \mathbb{R}^3 .
- 5. A-t-on $E \oplus F = \mathbb{R}^3$?
- 6. Soit u = (x, y, z), donner la matrice de coordonnées de u dans la base (a, b, c).

Exercice 2. Une application linéaire sur un espace de matrices

Dans cet exercice, le corps de base est noté K, pouvant désigner indifféremment \mathbb{R} ou \mathbb{C} . On note $E = \mathcal{M}_2(K)$, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ deux éléments de E. On munit E de sa base canonique :

$$\mathcal{B} = \begin{pmatrix} E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

Soit enfin f l'endomorphisme de E défini par :

$$f: E \longrightarrow E$$

$$f: M \longmapsto AM - MB$$

- 1. Calculer la matrice $F \in \mathcal{M}_4(K)$ de f dans la base canonique \mathcal{B} de E.
- 2. Montrer que f est l'application linéaire nulle si et seulement si :

$$\exists \lambda \in K, \ A = B = \lambda I_2$$

Exercice 3. Etude d'un endomorphisme nilpotent à l'aide de changements de bases

On munit \mathbb{R}^3 de sa base canonique $e=(e_1,e_2,e_3)$ et l'on considère l'endomorphisme u dont la matrice dans cette base est :

$$M = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

1

1. (a) Calculer M^2 et vérifier que $M^3 = 0$.

- (b) Calculer $(I_3 M)(I_3 + M + M^2)$, en déduire que $I_3 M$ est inversible et préciser son inverse
- 2. (a) Quelle est la dimension du noyau de u? Quel est le rang de u?
 - (b) Montrer que si $x \in \mathbb{R}^3 \setminus \text{Ker } u^2$, alors la famille $(x, u(x), u^2(x))$ forme une base de \mathbb{R}^3 . Que peut-on en déduire concernant la famille $(x, -u(x), u^2(x))$ quand $x \in \mathbb{R}^3 \setminus \text{Ker } u^2$?
- 3. On pose $e'_1 = u^2(e_3)$, $e'_2 = -u(e_3)$ et $e'_3 = e_3$.
 - (a) Montrer que la famille $e' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 . Calculer la matrice de passage P de la base e à la base e'.
 - (b) Calculer P^2 et en déduire P^{-1} .
 - (c) Préciser la matrice M' de u dans la base e'.
 - (d) On désigne par σ l'endomorphisme dont la matrice dans la base e est P. Indiquer à quel type particulier d'endomorphismes appartient σ ainsi que les sous-espaces qui lui sont associés.
 - (e) Trouver une base de \mathbb{R}^3 dans la quelle la matrice de σ est :

$$P' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

2 DSbis: Endomorphismes nilpotents

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et E un \mathbb{K} -e.v. de dimension finie non nulle. On note $O_{\mathcal{L}(E)}$ l'endomorphisme nul de E et Id_E l'endomorphisme identité de E.

Pour $n \in \mathbb{N}$ et f un endomorphisme de E, on définit par récurrence l'endomorphisme f^n par :

$$f^0 = \mathrm{Id}_E$$
 et pour tout $n \in \mathbb{N}$, $f^{n+1} = f \circ f^n$.

Un endomorphisme f de E est dit nilpotent si et seulement s'il existe $n \in \mathbb{N}^*$ tel que $f^n = O_{\mathcal{L}(E)}$.

- 1. Deux exemples.
 - (a) Dans cette question, $E = \mathbb{K}^n$ et l'on note $\phi : \mathbb{K}^n \to \mathbb{K}^n$ l'application définie par :

$$\phi: (x_1, x_2, \cdots, x_n) \mapsto (0, x_1, \cdots, x_{n-1}).$$

- i. Justifier que ϕ est un endomorphisme de \mathbb{K}^n , donner la matrice de ϕ dans la base canonique de \mathbb{K}^n .
- ii. Déterminer la dimension de l'image et du noyau de l'endomorphisme ϕ .
- iii. Montrer que ϕ est nilpotent.
- (b) Dans cette question, $E = \mathbb{K}_n[X]$ avec $n \in \mathbb{N}^*$. Soit $\Delta : \mathbb{K}_n[X] \to \mathbb{K}_n[X]$ l'application définie par :

$$\Delta: P(X) \mapsto P(X+1) - P(X).$$

- i. Justifier que Δ est un endomorphisme de $\mathbb{K}_n[X]$.
- ii. Soit $P \in \mathbb{K}_n[X]$. Déterminer le degré de $\Delta(P)$ en distinguant les cas selon que P est ou non un polynôme constant.
- iii. Déterminer le noyau, le rang puis l'image de Δ .
- iv. Montrer que Δ est un endomorphisme nilpotent.

2. Etude générale

- (a) Soient f et q des endomorphismes de E.
 - i. Justifier que si f est nilpotent et que f et g commutent, alors $f \circ g$ est nilpotent.
 - ii. Justifier que si $f \circ g$ est nilpotent, il en est de même de $g \circ f$.
 - iii. On suppose que f est nilpotent, donc que $f^n = 0_{\mathcal{L}(E)}$ pour un certain entier n non nul. Montrer que Id f est inversible d'inverse :

$$Id + f + f^2 + \dots + f^{n-1}.$$

- (b) Soit f un endomorphisme nilpotent de E. Justifier l'existence d'un plus petit entier $n \in \mathbb{N}^*$ tel que $f^n = 0_{\mathcal{L}(E)}$. Cet entier est appelé l'indice de nilpotence de f, on le notera $\nu(f)$.
- (c) Soit f un endomorphisme nilpotent de E. L'objectif de cette question est de prouver que $\nu(f) \leq \text{Dim } E$. A cette fin, on note pour tout $p \in \mathbb{N} : N_p = \text{Ker } f^p$.
 - i. Déterminer $N_{\nu(f)}$.
 - ii. Montrer que pour tout $p \in \mathbb{N}$, $N_p \subset N_{p+1}$.

- iii. Montrer que s'il existe $p \in \mathbb{N}$ tel que Dim $N_p = \text{Dim } N_{p+1}$, alors pour tout $q \in \mathbb{N}$, $N_p = N_{p+q}$.
- iv. Conclure.
- 3. Commutant d'un endomorphisme nilpotent maximal.

Soit f un endomorphisme nilpotent de E tel que $\nu(f) = \text{Dim } E$.

On note n cet entier égal à la dimension de E et à l'indice de nilpotence de f, et C(f) l'ensemble des endomorphismes de E commutant avec f.

- (a) Montrer que C(f) est un s.e.v. de $\mathcal{L}(E)$.
- (b) Soit $g \in C(f)$.
 - i. Justifier qu'il existe $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0_E$.
 - ii. Montrer que la famille de vecteurs $B = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.
 - iii. On note $a0, a_1, \dots, a_{n-1} \in \mathbb{K}$ les coordonnées de $g(x_0)$ dans la base B. Exprimer, pour $k \in [0, n-1]$, $g(f^k(x_0))$ comme combinaison linéaire des vecteurs de B.
 - iv. En déduire que $g = a_0 Id + a_1 f + \cdots + a_{n-1} f^{n-1}$.
- (c) Conclure que $C(f) = \text{Vect } (Id, f, f^2, \dots, f^{n-1}).$
- (d) Déterminer la dimension de C(f).