Problème du concours blanc 2024 et son corrigé

Le but de ce problème est d'étudier différentes matrices qui commutent avec leur transposée, c'est à dire qui vérifient la relation $M^TM = MM^T$ (1).

Dans la suite de l'énoncé, on se contentera alors de dire que M vérifie la relation (1).

Première partie

Dans toute cette partie, toutes les matrices envisagées seront dans l'espace $\mathcal{M}_2(\mathbb{R})$.

On notera en particulier : $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- 1. Montrer que les matrices A et C vérifient la relation (1).
- 2. Calculer A^2 . En déduire que pour tout entier naturel non nul n, A^n vérifie la relation (1).
- 3. Montrer que A est inversible. Soit u l'unique endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $B=(\vec{i},\vec{j})$ est A.
- 4. Préciser les valeurs de $u(\vec{i})$ et $u(\vec{j})$ en fonction de \vec{i} et \vec{j} .

 Montrer que u est une symétrie. Préciser l'ensemble de ses vecteurs invariants.

 Dans la suite, on notera U = A + I.
- 5. Montrer que la matrice U vérifie la relation (1). Montrer : $\forall n \in \mathbb{N}^*$, $\exists \alpha_n \in \mathbb{R}$, $U^n = \alpha_n U$. En déduire que toute ses puissances U^n , $n \in \mathbb{N}^*$ vérifient (1). On notera dans la suite E_2 l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ qui vérifient (1).
- 6. Calculer les produits de la matrice A+C et de sa transposée. En déduire que E_2 n'est pas un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 7. Etant donnée une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ quelconque de $\mathcal{M}_2(\mathbb{R})$, déterminer les conditions nécessaires et suffisantes sur a, b, c et d pour que M appartienne à E_2 . On donnera les deux formes possibles des matrices de E_2 .
- 8. En déduire que E_2 est la réunion de deux sous-espaces vectoriels dont on donnera pour chacun une base
- 9. Etant données M et N deux matrices de E_2 , a-t-on nécessairement $MN \in E_2$? On pourra utiliser certaines matrices introduites précédemment dans l'énoncé.

Deuxième partie

On se place ici dans l'espace $\mathcal{M}_3(\mathbb{R})$, et on considère la base canonique de \mathbb{R}^3 que l'on note $B' = (\vec{i}, \vec{j}, \vec{k})$. On définit alors h comme l'unique endomorphisme de \mathbb{R}^3 vérifiant : $h(\vec{i}) = -\vec{k}$, $h(\vec{j}) = \vec{i}$ et $h(\vec{k}) = \vec{j}$ ainsi que $S = Mat_{B'}(h)$.

L'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec leur transposée (vérifiant la relation (1)) est noté E_3 .

- 10. Représenter la matrice S.
- 11. Déterminer S^2 et montrer que S et S^2 sont dans E_3 .
- 12. Montrer que pour tous réels a, b et c, la matrice $R = aI_3 + bS + cS^2$ appartient à E_3 .
- 13. En déduire que E_3 contient un sous-espace vectoriel de dimension 3 constitué de matrices du type décrit à la question précédente. On notera F ce sous-espace.
- 14. Montrer que F est stable par multiplication matricielle.

Troisième partie

On se place à présent dans l'espace $\mathcal{M}_4(\mathbb{R})$, et on considère la base canonique de \mathbb{R}^4 que l'on note $B'' = (\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$.

On définit la matrice
$$B$$
 par : $B = \begin{pmatrix} 1 & a & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$ où a est un réel quelconque, et on appelle u

l'unique endomorphisme de \mathbb{R}^4 tel que $Mat_{B''}(u) = B$.

L'ensemble des matrices de $\mathcal{M}_4(\mathbb{R})$ qui commutent avec leur transposée (vérifiant la relation (1)) est noté E_4 .

- 15. Déterminer les réels a tels que $B \in E_4$. Dans toute la suite, on pose a = -1.
- 16. Déterminer une base de Ker (u) et de Im (u).
- 17. Calculer $u(\vec{e_1} + \vec{e_2} \vec{e_3} \vec{e_4})$. Que remarque-t-on?
- 18. Calculer $B\begin{pmatrix}1\\0\\0\\1\end{pmatrix}$ et $B\begin{pmatrix}1\\-1\\1\\-1\end{pmatrix}$. Commenter le résultat obtenu.
- 19. On note $C = (\vec{e_2} + \vec{e_3}, \vec{e_1} + \vec{e_2} \vec{e_3} \vec{e_4}, \vec{e_1} + \vec{e_4}, \vec{e_1} \vec{e_2} + \vec{e_3} \vec{e_4})$ et on admet sans démonstration que C est une base de \mathbb{R}^4 .

Déduire des questions précédentes $Mat_C(u)$.

En déduire l'existence d'une matrice $P \in \mathcal{M}_4(\mathbb{R})$ que l'on précisera telle que $B = P\Delta P^{-1}$, où Δ est une matrice diagonale. On ne demande pas d'expliciter la matrice P^{-1} .

20. Montrer : $\forall n \in \mathbb{N}^*$, $B^n = P\Delta^n P^{-1}$. En déduire une expression simple de B^{2p} et B^{2p+1} pour tout entier naturel p en fonction de B et B^2 .

Corrigé

Première partie

Dans toute cette partie, toutes les matrices envisagées seront dans l'espace $\mathcal{M}_2(\mathbb{R})$.

On notera en particulier :
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

1. On calcule:

$$A^TA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad AA^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad C^TC = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \qquad CC^T = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

Donc A et C vérifient la relation (1).

- 2. $A^2 = I_2$, donc les puissances de A sont faciles à décrire : on démontre aisément par récurrence sur $n \in \mathbb{N}$ que $A^{2n} = I_2$ et $A^{2n+1} = A$. Ainsi, puisque I_2 et A vérifient (1), c'est aussi le cas de A^n pour tout $n \in \mathbb{N}$.
- 3. A est inversible puisque $A^2 = I_2$, et son inverse est $A^{-1} = A$. Soit u l'unique endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $B = (\vec{i}, \vec{j})$ est A.
- 4. On a $u(\vec{i}) = \vec{j}$ et $u(\vec{j}) = \vec{i}$. $u \circ u$ est un endomorphisme de \mathbb{R}^2 de matrice dans la base canonique $A^2 = I_2$ donc $u \circ u = Id_{\mathbb{R}^2}$ et u est une symétrie. L'ensemble de ses vecteurs invariants est :

$$\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \middle| A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

$$\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \middle| \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \right\}.$$

Il s'agit donc du sous espace de dimension 1 engendré par le vecteur $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Dans la suite, on notera U = A + I.

5. On vérifie par le calcul que $U^TU=UU^T=U^2=2U$, donc la matrice U vérifie la relation (1). Montrons par récurrence (forte): $\forall n \in \mathbb{N}^*, U^n=2^{n-1}U$.

La relation est vérifiée aux rangs n = 1 et n = 2.

Supposons que $n \geq 2$, et que la relation est vérifiée au rang n. Comme $U^2 = 2U$, on a :

$$U^{n+1} = U^{n-1}U^2 = U^{n-1}2U = 2U^n = 2^nU.$$

La relation est héréditaire donc vraie pour tout $n \in \mathbb{N}$.

On a donc $(U^n)^T U^n = 2^{n-1} U^T 2^{n-1} U = 2^{2n-2} U^T U = 2^{2n-2} U U^T = 2^{n-1} U 2^{n-1} U^T = U^n (U^n)^T$, et U^n vérifie (1) pour tout $n \in \mathbb{N}$.

On notera dans la suite E_2 l'ensemble des matrices de $\mathcal{M}_2(\mathbb{R})$ qui vérifient (1).

6. Calculons les produits de la matrice A+C et de sa transposée :

 $(A+C)(A+C)^T=\begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}, \ (A+C)^T(A+C)=\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$ donc E_2 n'est pas un sous-espace vectoriel puisque $A\in E_2, \ C\in E_2$ et $A+C\notin E_2$.

7. Etant donnée une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, on a :

$$MM^{T} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$$

3

et en faisant le produit dans l'autre sens :

$$M^T M = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix},$$

donc $M \in E_2$ si et seulement si le système d'équations suivant est vérifié :

$$\begin{cases} ab + cd &= ac + bd \\ a^2 + b^2 &= c^2 + d^2 \\ c^2 + d^2 &= b^2 + d^2 \end{cases} \Leftrightarrow \begin{cases} (b - c)(b + c) &= 0 \\ (b - c)(a - d) &= 0 \end{cases}$$

Ceci est vérifié dans deux cas et deux cas seulement : si b=c, ou bien si b=-c et que a=d. Les deux formes possibles des matrices de E_2 sont $\begin{pmatrix} a & c \\ c & d \end{pmatrix}$ ou $\begin{pmatrix} d & -c \\ c & d \end{pmatrix}$.

8. E₂ est la réunion de deux sous-espaces vectoriels, admettant respectivement pour bases

$$\left(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right)\,\mathrm{et}\,\left(\begin{pmatrix}0&-1\\1&0\end{pmatrix},\begin{pmatrix}1&0\\0&1\end{pmatrix}\right)$$

9. Etant données M et N deux matrices de E_2 , $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ et $N = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ par exemple, on constate que $MN = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \notin E_2$ donc le produit de deux matrices de E_2 n'est pas nécessairement dans E_2 .

Deuxième partie

On se place ici dans l'espace $\mathcal{M}_3(\mathbb{R})$, et on considère la base canonique de \mathbb{R}^3 que l'on note $B'=(\vec{i},\vec{j},\vec{k})$. On définit alors h comme l'unique endomorphisme de \mathbb{R}^3 vérifiant : $h(\vec{i})=-\vec{k},\ h(\vec{j})=\vec{i}$ et $h(\vec{k})=\vec{j}$ ainsi que $S=Mat_{B'}(h)$.

L'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec leur transposée (vérifiant la relation (1)) est noté E_3 .

- 10. Représentons la matrice $S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$.
- 11. Calculons $S^2 = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$, $S^T S = S S^T = I_3$ et $(S^2)^T S^2 = S^2 (S^2)^T = I_3$ donc S et S^2 sont dans E_3 .
- 12. Calculons, pour trois réels a, b et c, avec $R = aI_3 + bS + cS^2$:

$$R^{T}R = (aI_3 + bS^{T} + c(S^{2})^{T})(aI_3 + bS + cS^{2})$$

$$R^{T}R = a^{2}I_3 + abS + acS^{2} + baS^{T} + b^{2}I_3 + bcS + ca(S^{T})^{2} + cbS^{T} + c^{2}I_3$$

$$R^{T}R = (a^{2} + b^{2} + c^{2})I_3 + (ab + bc)(S + S^{T}) + ac(S^{2} + (S^{T})^{2})$$

$$RR^{T} = (aI_{3} + bS + cS^{2})(aI_{3} + bS^{T} + c(S^{T})^{2})$$

$$RR^{T} = a^{2}I_{3} + abS^{T} + ac(S^{T})^{2} + baS + b^{2}I_{3} + bcS^{T} + caS^{2} + cbS + c^{2}I_{3}$$

$$RR^{T} = (a^{2} + b^{2} + c^{2})I_{3} + (ab + bc)(S + S^{T}) + ac(S^{2} + (S^{T})^{2})$$

On a donc : $\forall (a, b, c) \in \mathbb{R}^3, aI_3 + bS + cS^2 \in E_3$.

13. E_3 contient donc $F = \text{Vect}(I_3, S, S^2)$. Les matrices I_3 , S et S^2 forment une famille libre, donc ce sous-espace est de dimension 3.

14. Montrer que F est stable par multiplication matricielle : Soient $R_1 = a_1I_3 + b_1S + c_1S^2$ et $R_2 = a_2I_3 + b_2S + c_2S^2$ deux éléments de F, on a alors

$$R_1R_2 = a_1a_2I_3 + a_1b_2S + a_1c_2S^2 + b_1a_2S + b_1b_2S^2 + b_1c_2S^3 + c_1a_2S^2 + c_1b_2S^3 + c_1c_2S^4$$

Or $S^3 = -I_3$ donc $S^4 = -S$ et l'on peut simplifier :

$$R_1 R_2 = (a_1 a_2 - b_1 c_2 - b_2 c_1) I_3 + (a_1 b_2 + a_2 b_1 - c_1 c_2) S + (a_1 c_2 + b_1 b_2 + c_1 a_2) S^2$$

Donc $R_1R_2 \in F$ et F est bien stable par multiplication matricielle.

Troisième partie

On se place à présent dans l'espace $\mathcal{M}_4(\mathbb{R})$, et on considère la base canonique de \mathbb{R}^4 que l'on note $B'' = (\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$.

On définit la matrice B par : $B = \begin{pmatrix} 1 & a & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$ où a est un réel quelconque, et on appelle u

l'unique endomorphisme de \mathbb{R}^4 tel que $Mat_{B''}(u) = B$.

L'ensemble des matrices de $\mathcal{M}_4(\mathbb{R})$ qui commutent avec leur transposée (vérifiant la relation (1)) est noté E_4 .

15. Déterminer les réels a tels que $B \in E_4$.

Calculons:

$$B^TB = \begin{pmatrix} 1 & -1 & 1 & 1 \\ a & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & a+1 & 0 & 0 \\ a+1 & a^2+1 & a-1 & a+1 \\ 0 & a-1 & 2 & 0 \\ 0 & a+1 & 0 & 4 \end{pmatrix}$$

$$BB^{T} = \begin{pmatrix} 1 & a & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 & 1 \\ a & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 + a^{2} & 0 & 0 & a + 1 \\ 0 & 2 & -2 & 0 \\ 0 & -2 & 2 & 0 \\ a + 1 & 0 & 0 & 4 \end{pmatrix}$$

Ligne 1 colonne 2 du résultat, on voit qu'une condition nécessaire pour avoir $B \in E_4$ est que a+1=0 donc a=-1. Réciproquement, si a=-1, on observe que $B \in E_4$. Dans toute la suite, on pose a=-1.

16. Calculons Ker
$$(u) = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \middle| \begin{array}{ccc} x - y + z + t & = & 0 \\ -x + t & = & 0 \\ x - t & = & 0 \\ x + y - z + t & = & 0 \end{array} \right\}$$

A l'aide du pivot de Gauss, on obtient un système équivalent avec trois équations $x=0,\,y=z$ et t=0.

Ainsi, Ker
$$(u) = \text{Vect} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

D'après le théorème du rang, $\operatorname{Im}(u)$ est donc de dimension 3.

Or Im (u) est l'espace engendré par les colonnes de B dans \mathbb{R}^4 . Comme la troisième colonne est l'opposée de la deuxième, Im (u) est engendré par la famille des colonnes n°1, 2 et 4 de

$$B: \left(\begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix} \right).$$

Cette famille est une base de $\operatorname{Im}(u)$ puisqu'elle est génératrice de cardinal 3.

- 17. Calculons $u(\vec{e_1} + \vec{e_2} \vec{e_3} \vec{e_4}) = -2\vec{e_1} 2\vec{e_2} + 2\vec{e_3} + 2\vec{e_4}$. En notant $v = \vec{e_1} + \vec{e_2} \vec{e_3} \vec{e_4}$, on a donc u(v) = -2v.
- 18. Calculonsr $B \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ et $B \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \\ -2 \end{pmatrix}$. Pour ces deux vecteurs, l'image par u est égale à leur double.
- 19. On note $C = (\vec{e_2} + \vec{e_3}, \vec{e_1} + \vec{e_2} \vec{e_3} \vec{e_4}, \vec{e_1} + \vec{e_4}, \vec{e_1} \vec{e_2} + \vec{e_3} \vec{e_4})$ et on admet sans démonstration que C est une base de \mathbb{R}^4 .

On déduit des questions précédentes
$$Mat_C(u) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
.

En notant
$$P = Mat_{B''}(C) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix}$$
 la matrice de passage de la base B'' à la base C ,

on a $B = PMat_C(u)P^{-1}$, où $Mat_C(u)$ est une matrice diagonale.

20. On prouve par récurrence : $\forall n \in \mathbb{N}^*, \ B^n = PMat_C(u)^n P^{-1}$.

Ceci est vrai au rang 1.

Supposons que c'est vrai au rang n, on a alors

$$B^{n+1} = B^n \\ B = PMat_C(u)^n \\ P^{-1} \\ PMat_C(u) \\ P^{-1} = PMat_C(u)^n \\ Mat_C(u) \\ P^{-1} = PMat_C(u)^{n+1} \\ P^{-1} \\ PMat_C(u)^n \\ Mat_C(u) \\ P^{-1} = PMat_C(u)^n \\ Mat_C(u)^n \\ Mat$$

et la propriété est héréditaire.

On remarque enfin que $\forall n \in \mathbb{N}^*$, $Mat_C(u)^{n+2} = 4Mat_C(u)^n$ et l'on en déduit aisément que $B^{n+2} = 4B^n$.

Ainsi, on montre par récurrence sur l'entier naturel p que $B^{2p} = 4^{p-1}B^2$ et $B^{2p+1} = 4^pB$.