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Exercice 1. Intégrales de Wallis
Pour tout entier naturel n, on considére 'intégrale :

%
I, = /cos”t dt.
0

% pour calculer :

1. Calculer Iy, Iy et Is.
3 x

, It = [cost dt = [sint]¢ = 1, on linéarise ensuite cos®t =
0

Iy =73
[ cos(2t) + 1
I :/M dt
2
0
I — sin(2t) lt] z
4 2 1,
i
I = 1
2. Prouver que 'on a pour tout n
I _n+ 11
n+2 — 7’L+ 2 n-.
n—1 t.

Indication : on pourra intégrer par parties, avec cos™ t = cost cos

Suivant 'indication, on obtient :
ol t]og — [ sint(—sint)(n + 1) cos™ t dt

O\m\a

I 42 = [sintcos

Inyo=(n+1) [ sin®tcos™t dt

O\..mm

Into=(n+1) /(1 — cos®t) cos™ t dt
0

Lo = (n + 1)(In — Iny2)
(n+2)I,42=(n+ 1)1,

3. A laide des deux questions précédentes, prouver que ’on a pour tout n :
i

I,12. On obtient donc :

D’apreés les valeurs de Iy et I;, on vérifie immédiatement que la propriété est vraie pour n = 0.
Prouvons alors que si c’est vrai au rang n, c’est vrai au rang n+-1. On suppose donc que (n+1)I, 111, = 7,
n+2

or on sait d’aprés la question précédente que I, 2 = Z—i‘é[n, ie. I, = k]
n+2 T
DIl ——1 = —
(TL+ )n+1n+1 n+2 2
T

(n + 2)In+21n+1 = 5

Ainsi, la propriété est héréditaire et vraie pour n = 0, donc elle est vraie pour tout n € N.



4. Prouver également que 'on a pour tout n e N: I,y < I, et

7’L+1<In+1 <1
n+2~— I, —

Soit n € N. Pour tout ¢ € [0,5],ona0 < cost < 1. On en déduit, doncsin € N, que 0 < cos" !t < cos™ t.
Par croissance et positivité de I'intégrale entre 0 et 7, on en déduit 0 < I5,11 < I,,. L’inégalité de droite
est donc prouvée, on peut en effet diviser I'inégalité par I,, puisque I,, > 0 par positivité de 'intégrale.

On a alors aussi que I,42 < I,41 pour les mémes raisons. Grace a la question 2), on en déduit :
n+1
n+2

n+1 Inq1
que 24} < L=

5. Montrer que 'on a pour tout n € N :

I, < I,,4+1, et il ne reste plus qu’a diviser les deux membres de cette derniére inégalité pour obtenir

(n+1Dm 7T
mr2)2 = <(n+ 1), < >

et en déduire la limite de v/nl, quand n — +oo.
Pour obtenir I'inégalité, on multiplie simplement les trois membres de I'inégalité de la question précedente
par T, ce qui revient au méme d’aprés la question d’avant que de multiplier par (n + 1)I,,411,, et c’est

donc par cela qu’on multiplie le membre du milieu.

Elle est vraie pour tout entier, donc si n € N*, elle est aussi vraie au rang n — 1 et porte sur des nombres

positifs d’ou : - ,
(n+1)2 s nly

n—|—1
[——— < I, <\/
n+1 \/_

On en déduit aisément, par encadrement, que v/nl, — \/g .
n—oo
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s
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Exercice 2. Equations différentielles linéaires d’ordre 1

1. Déterminer la solution y € C}(R,R) de I’équation différentielle :
y +sinz y = 2sinwz,

telle que y(5) =1
Pour résoudre I’équation homogéne associée, on considére une primitive A de la fonction a telle que
a(x) = —sinz pour tout z € R. A(z) = cosz convient donc I'ensemble des solutions a valeurs réelles de
I’équation homogeéne est :

{y:x+— Ce*®%|C € R}.

Une solution particuliére de I’équation compléte est la fonction constante définie sur R par y, : z — 2.
On en déduit ’ensemble des solutions :

{y:x+— Ce*® 4 2|C € R}.

La solution qui vérifie y(5) = 1 est telle que Ce® +2 =1, c’est a dire C' = —1 et y(z) = 2 — €7,

2. (a) Déterminer une solution y : R — C de I’équation différentielle :
y' (@) +y(x) = 3BT

Cherchons une solution sous la forme y, : x — K e(?t97 ou K € C est une constante. Calculons alors,

pour x € R : ' '
Yp(@) + yp(a) = (24 ) KeBH0T 4 FeHor,
Up(@) + yp(@) = (3 + i) KT,
3 —3i
Ainsi, y, est bien une solution si (3 + i)K = 3, c’est & dire K = 515 - 10 Lot Yp 1T >

9—3 )
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(b)

Décrire ’ensemble des solutions y : R — R de ’équation différentielle :
y' 4+ 1y =3e**cosz

Une solution particuliére de cette nouvelle équation est Re (y,) puisque pour tout = € R, 3¢** cosz =
Re (3e2+)). Calculons pour 2 € R :

9—3i
yp(x) = 10 ZeQI(costrisin:c),

9cosx + 3sinx . (9sinx — 3cosx

up() = o ¢t ( 10 621> ’
9cosz + 3sinz 5,

= ¢,

Re (y) () =~

L’équation homogeéne associée a pour ensemble de solutions {y : © — Ce *|C' € R}, donc I'ensemble
des solutions de I’équation compléte est :

{ 9cosx + 3sinz o,
Yz ———————e

10 +Ce |C’€]R}.

Exercice 3. Rationnels et irrationnels.

1. Siz e Qet y € Q, montrer que z +y € Q et zy € Q.

Soient = et y dans Q, on a alors a et ¢ dans Z, b et d dans N* tels que x = 2 et y =

a

c
b d’

On en déduit que z +y = adbzbc ouad+bc € Z et bd € N* donca+b € Q.
De méme, xy = 75 ot ac € Z et bd € N* donc ab € Q.

2. Siz e Qety € R\ Q, montrer que z +y € R\ Q.
Par l’absurde, supposons que € Q et y € R\ Q, et que  + y € Q.

On aurait alors y = —1z + (z + y) ou —la € Q (car —1 et x sont rationnels) et (z +y) € Q. On en
déduirait que y € Q, ce qui est la contradiction désirée.

3. Somme de deux irrationnels.

(a)

()

Montrer que /10 est irrationnel.

Supposons par l'absurde que /10 est rationnel, on a alors deux entiers p € N et ¢ € N* tels que

V10 = b On suppose en outre que p et g n’ont pas de diviseur commun, c’est a dire que la fraction
q

P est irréductible. En élevant au carré les deux membres de I’égalité, on obtient p? = 1042.
q

Avant d’aller plus loin, rappelons le résultat suivant que nous avons démontré en cours par contrapo-
sée : si p € N vérifie que p? est pair, alors p est pair. Par contraposition, il s’agissait de montrer que si p
est impair, alors son carré est impair. Ceci se fait en écrivant qu'un entier p impair peut se mettre sous
la forme p = 2k+1 ot k € N, et que son carré est alors de la forme p? = 4k? +4k+1 = 2(2k?+2k) +1
et est donc impair.

Revenant & notre raisonnement par Pabsurde, on observe que p? = 2(3¢?) est pair, donc que p est
pair et peut s’écrire p = 2p’ avec p’ € N. On obtient alors 4p’> = 10¢® donc 2p'? = 5¢%, clest &
dire 2(p"? — 2¢%) = ¢*. On déduit de cette derniére égalité que ¢ est pair donc que g est pair. Ceci
est en contradiction avec 'hypothése que p et ¢ sont sans diviseur commun, et termine la preuve de
lirrationnalité de +/10.

Montrer que V2 + /5 est irrationnel.

Supposons par Pabsurde que v/2 + v/5 est rationnel, c’est a dire qu’il existg a et b entiers gels qge
V2445 = %. En élevant cette égalité au carré, on obtient 2+ 5+ 24/10 = Z_Q donc /10 = %.
Cette derniére écriture signifie que v/10 est rationnel, fournissant la contradiction désirée.

La proposition suivante est-elle vraie : V(z,y) € (R\ Q)*, z+y € R\ Q?

Cette proposition est fausse : en effet, /2 et —v/2 sont dans R \ @, mais leur somme est 0 € Q.

Exercice 4. FEquation différentielle originale

On se propose dans cet exercice de déterminer 'ensemble des fonctions f € C*(R, R) telles que :

(F) Yz € R, f'(x) =2f(—x) + =



. Soient « et 3 deux réels tels que :
Vr € R, acosz + Bsinz = 0.

Prouver que a = g = 0.
Pour z = 0, on obtient o = 0 puis pour x = 7, 8 = 0.
. Dans cette question, on cherche a déterminer 'ensemble S des solutions y € C?(R,R) de l'équation
différentielle :
(E) v +4y =2z + 1.

(a) Déterminer ’ensemble Sy des solutions de I’équation homogene associée a (E). L’équation homogéne
associée, y”" + 4y = 0, a pour polynéme caractéristique P(r) = 72 + 4 = (r + 2i)(r — 2i). Ainsi,
I’ensemble des solutions & valeurs réelles de cette équation homogéne est :

So = {y : 2+~ Acos(2z) + Bsin(2z)|(4, B) € R*}.

(b) Déterminer une fonction affine qui est solution de (E).

2 1
On remarque que, pour z € R, y,(z) = xz— définit une solution affine de (E) puisque y, = 0.
(c) Décrire 'ensemble S des solutions de (E) :
2 1
S = {y : @ — Acos(2z) + Bsin(2x) + Tt |(4,B) € RQ} .

. Dans cette question, on suppose que f € C1(R,R) est une fonction qui vérifie la propriété (F).
(a) Montrer que f est de classe C2.
Puisque f vérifie (F), on a : Vo € R, f/(x) = 2f(—x) +x. Puisque f est de classe C!, z +— 2f(—x) +x
aussi donc f’ est de classe C!, c’est & dire que f est de classe C2.
(b) Prouver que f est une solution de (E).
Puisque f est deux fois dérivable, on déduit de la relation (F') par dérivation :

Vz e R, f'(z) = =2f'(—z) + 1.

Si f vérifie (F'), on a aussi, si € R, en prenant —z au lieu de 2 comme réel : f/'(—x) = 2f(z) — z.
On en déduit :
Ve e R, f/(z) = -2(2f(z) — x) + 1,
Vz € R, f(z) +4f(z) = 2z + 1.
Ceci signifie que f est une solution de (E).

(¢) En déduire une expression de f.

2 1
On a donc (A, B) € R? tels que f(z) = Acos(2z) + Bsin(2z) + xz— .

. Conclure : décrire I'ensemble € des fonctions f € C1(R,R) qui vérifient la propriété (F). Il ne reste plus
qu’a voir & quelle condition portant sur (A, B) € R? une fonction f définie comme précédemment vérifie
(F). Calculons donc pour une telle fonction :

1

f'(z) = —2Asin(2z) + 2B cos(2z) + 3

—2x+1
2

2f(—xz) + x = 2Acos(2z) — 2B sin(2x)%.

2f(—x) +x = 2A cos(2z) — 2Bsin(2z) + +z,

Ainsi, f vérifie (F') si et seulement si l'on a :
1 1
Vo € R, —2Asin(2z) + 2B cos(2z) + 5= 2Acos(2z) — 2B sin(2z)§

& Ve e R,2(B — A)sin(2z) + 2(B — A) cos(2x) =0
Grace a la premiére question de cet exercice, f vérifie donc (F') si et seulement si f est de la forme
précitée avec A = B. Ainsi, on décrit :
2¢ +1
4

Q:{f:xHAcos(Qm)—l—Asin(Qw)—i— ‘AGR}.



