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Exercice 1. Intégrales de Wallis

Pour tout entier naturel n, on considère l’intégrale :

In =

π

2
∫

0

cosn t dt.

1. Calculer I0, I1 et I2.

I0 = π
2 , I1 =

π

2
∫

0

cos t dt = [sin t]
π

2

0 = 1, on linéarise ensuite cos2 t = cos(2t)+1
2 pour calculer :

I2 =

π

2
∫

0

cos(2t) + 1

2
dt

I2 =

[

sin(2t)

4
+

1

2
t

]
π

2

0

I2 =
π

4

2. Prouver que l’on a pour tout n :

In+2 =
n+ 1

n+ 2
In.

Indication : on pourra intégrer par parties, avec cosn t = cos t cosn−1 t.

Suivant l’indication, on obtient :

In+2 = [sin t cosn+1 t]
π

2

0 −

π

2
∫

0

sin t(− sin t)(n+ 1) cosn t dt

In+2 = (n+ 1)

π

2
∫

0

sin2 t cosn t dt

In+2 = (n+ 1)

π

2
∫

0

(1− cos2 t) cosn t dt

In+2 = (n+ 1)(In − In+2)

(n+ 2)In+2 = (n+ 1)In

3. A l’aide des deux questions précédentes, prouver que l’on a pour tout n :

(n+ 1)In+1In =
π

2
.

D’après les valeurs de I0 et I1, on vérifie immédiatement que la propriété est vraie pour n = 0.

Prouvons alors que si c’est vrai au rang n, c’est vrai au rang n+1. On suppose donc que (n+1)In+1In = π
2 ,

or on sait d’après la question précédente que In+2 = n+1
n+2In, i.e. In = n+2

n+1In+2. On obtient donc :

(n+ 1)In+1
n+ 2

n+ 1
In+2 =

π

2

(n+ 2)In+2In+1 =
π

2
.

Ainsi, la propriété est héréditaire et vraie pour n = 0, donc elle est vraie pour tout n ∈ N.
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4. Prouver également que l’on a pour tout n ∈ N : In+1 ≤ In et

n+ 1

n+ 2
≤ In+1

In
≤ 1.

Soit n ∈ N. Pour tout t ∈ [0, π2 ], on a 0 ≤ cos t ≤ 1. On en déduit, donc si n ∈ N, que 0 ≤ cosn+1 t ≤ cosn t.
Par croissance et positivité de l’intégrale entre 0 et π

2 , on en déduit 0 < In+1 ≤ In. L’inégalité de droite
est donc prouvée, on peut en effet diviser l’inégalité par In puisque In > 0 par positivité de l’intégrale.

On a alors aussi que In+2 ≤ In+1 pour les mêmes raisons. Grâce à la question 2), on en déduit :
n+ 1

n+ 2
In ≤ In+1, et il ne reste plus qu’à diviser les deux membres de cette dernière inégalité pour obtenir

que n+1
n+2 ≤ In+1

In
.

5. Montrer que l’on a pour tout n ∈ N :

(n+ 1)π

(n+ 2)2
≤ (n+ 1)I2n+1 ≤ π

2
,

et en déduire la limite de
√
nIn quand n → +∞.

Pour obtenir l’inégalité, on multiplie simplement les trois membres de l’inégalité de la question précedente
par π

2 , ce qui revient au même d’après la question d’avant que de multiplier par (n + 1)In+1In, et c’est
donc par cela qu’on multiplie le membre du milieu.

Elle est vraie pour tout entier, donc si n ∈ N∗, elle est aussi vraie au rang n− 1 et porte sur des nombres
positifs d’où :

nπ

(n+ 1)2
≤ nI2n ≤ π

2
,

√

nπ

(n+ 1)2
≤

√
nIn ≤

√

π(n+ 1)

2n
.

On en déduit aisément, par encadrement, que
√
nIn −→

n→∞

√

π
2 .

Exercice 2. Equations différentielles linéaires d’ordre 1

1. Déterminer la solution y ∈ C1(R,R) de l’équation différentielle :

y′ + sinx y = 2 sinx,

telle que y(π2 ) = 1

Pour résoudre l’équation homogène associée, on considère une primitive A de la fonction a telle que
a(x) = − sinx pour tout x ∈ R. A(x) = cosx convient donc l’ensemble des solutions à valeurs réelles de
l’équation homogène est :

{y : x 7→ Cecosx|C ∈ R} .
Une solution particulière de l’équation complète est la fonction constante définie sur R par yp : x 7→ 2.
On en déduit l’ensemble des solutions :

{y : x 7→ Cecosx + 2|C ∈ R} .

La solution qui vérifie y(π2 ) = 1 est telle que Ce0 + 2 = 1, c’est à dire C = −1 et y(x) = 2− ecosx.

2. (a) Déterminer une solution y : R → C de l’équation différentielle :

y′(x) + y(x) = 3e(2+i)x

Cherchons une solution sous la forme yp : x 7→ Ke(2+i)x où K ∈ C est une constante. Calculons alors,
pour x ∈ R :

y′p(x) + yp(x) = (2 + i)Ke(2+i)x +Ke(2+i)x,

y′p(x) + yp(x) = (3 + i)Ke(2+i)x.

Ainsi, yp est bien une solution si (3 + i)K = 3, c’est à dire K =
3

3 + i
=

9− 3i

10
et yp : x 7→

9− 3i

10
e(2+i)x.
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(b) Décrire l’ensemble des solutions y : R → R de l’équation différentielle :

y′ + y = 3e2x cosx

Une solution particulière de cette nouvelle équation est Re (yp) puisque pour tout x ∈ R, 3e2x cosx =
Re (3e(2+i)x). Calculons pour x ∈ R :

yp(x) =
9− 3i

10
e2x(cosx+ i sinx),

yp(x) =
9 cosx+ 3 sinx

10
e2x + i

(

9 sinx− 3 cosx

10
e2x

)

,

Re (yp)(x) =
9 cosx+ 3 sinx

10
e2x.

L’équation homogène associée a pour ensemble de solutions {y : x 7→ Ce−x|C ∈ R}, donc l’ensemble
des solutions de l’équation complète est :

{

y : x 7→ 9 cosx+ 3 sinx

10
e2x + Ce−x|C ∈ R

}

.

Exercice 3. Rationnels et irrationnels.

1. Si x ∈ Q et y ∈ Q, montrer que x+ y ∈ Q et xy ∈ Q.

Soient x et y dans Q, on a alors a et c dans Z, b et d dans N∗ tels que x = a
b

et y = c
d
.

On en déduit que x+ y = ad+bc
bd

où ad+ bc ∈ Z et bd ∈ N∗ donc a+ b ∈ Q.

De même, xy = ac
bd

où ac ∈ Z et bd ∈ N∗ donc ab ∈ Q.

2. Si x ∈ Q et y ∈ R \Q, montrer que x+ y ∈ R \Q.

Par l’absurde, supposons que x ∈ Q et y ∈ R \Q, et que x+ y ∈ Q.

On aurait alors y = −1x + (x + y) où −1x ∈ Q (car −1 et x sont rationnels) et (x + y) ∈ Q. On en
déduirait que y ∈ Q, ce qui est la contradiction désirée.

3. Somme de deux irrationnels.

(a) Montrer que
√
10 est irrationnel.

Supposons par l’absurde que
√
10 est rationnel, on a alors deux entiers p ∈ N et q ∈ N∗ tels que√

10 =
p

q
. On suppose en outre que p et q n’ont pas de diviseur commun, c’est à dire que la fraction

p

q
est irréductible. En élevant au carré les deux membres de l’égalité, on obtient p2 = 10q2.

Avant d’aller plus loin, rappelons le résultat suivant que nous avons démontré en cours par contrapo-
sée : si p ∈ N vérifie que p2 est pair, alors p est pair. Par contraposition, il s’agissait de montrer que si p
est impair, alors son carré est impair. Ceci se fait en écrivant qu’un entier p impair peut se mettre sous
la forme p = 2k+1 où k ∈ N, et que son carré est alors de la forme p2 = 4k2+4k+1 = 2(2k2+2k)+1
et est donc impair.

Revenant à notre raisonnement par l’absurde, on observe que p2 = 2(3q2) est pair, donc que p est
pair et peut s’écrire p = 2p′ avec p′ ∈ N. On obtient alors 4p′2 = 10q2 donc 2p′2 = 5q2, c’est à
dire 2(p′2 − 2q2) = q2. On déduit de cette dernière égalité que q2 est pair donc que q est pair. Ceci
est en contradiction avec l’hypothèse que p et q sont sans diviseur commun, et termine la preuve de
l’irrationnalité de

√
10.

(b) Montrer que
√
2 +

√
5 est irrationnel.

Supposons par l’absurde que
√
2 +

√
5 est rationnel, c’est à dire qu’il existe a et b entiers tels que

√
2+

√
5 =

a

b
. En élevant cette égalité au carré, on obtient 2+ 5+2

√
10 =

a2

b2
donc

√
10 =

a2 − 7b2

2b2
.

Cette dernière écriture signifie que
√
10 est rationnel, fournissant la contradiction désirée.

(c) La proposition suivante est-elle vraie : ∀(x, y) ∈ (R \Q)
2
, x+ y ∈ R \Q ?

Cette proposition est fausse : en effet,
√
2 et −

√
2 sont dans R \Q, mais leur somme est 0 ∈ Q.

Exercice 4. Equation différentielle originale

On se propose dans cet exercice de déterminer l’ensemble des fonctions f ∈ C1(R,R) telles que :

(F ) ∀x ∈ R, f ′(x) = 2f(−x) + x.
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1. Soient α et β deux réels tels que :

∀x ∈ R, α cosx+ β sinx = 0.

Prouver que α = β = 0.

Pour x = 0, on obtient α = 0 puis pour x = π
2 , β = 0.

2. Dans cette question, on cherche à déterminer l’ensemble S des solutions y ∈ C2(R,R) de l’équation
différentielle :

(E) y′′ + 4y = 2x+ 1.

(a) Déterminer l’ensemble S0 des solutions de l’équation homogène associée à (E). L’équation homogène
associée, y′′ + 4y = 0, a pour polynôme caractéristique P (r) = r2 + 4 = (r + 2i)(r − 2i). Ainsi,
l’ensemble des solutions à valeurs réelles de cette équation homogène est :

S0 =
{

y : x 7→ A cos(2x) +B sin(2x)|(A,B) ∈ R2
}

.

(b) Déterminer une fonction affine qui est solution de (E).

On remarque que, pour x ∈ R, yp(x) =
2x+ 1

4
définit une solution affine de (E) puisque y′′p = 0.

(c) Décrire l’ensemble S des solutions de (E) :

S =

{

y : x 7→ A cos(2x) +B sin(2x) +
2x+ 1

4
|(A,B) ∈ R2

}

.

3. Dans cette question, on suppose que f ∈ C1(R,R) est une fonction qui vérifie la propriété (F ).

(a) Montrer que f est de classe C2.

Puisque f vérifie (F ), on a : ∀x ∈ R, f ′(x) = 2f(−x)+x. Puisque f est de classe C1, x 7→ 2f(−x)+x

aussi donc f ′ est de classe C1, c’est à dire que f est de classe C2.

(b) Prouver que f est une solution de (E).

Puisque f est deux fois dérivable, on déduit de la relation (F ) par dérivation :

∀x ∈ R, f ′′(x) = −2f ′(−x) + 1.

Si f vérifie (F ), on a aussi, si x ∈ R, en prenant −x au lieu de x comme réel : f ′(−x) = 2f(x) − x.
On en déduit :

∀x ∈ R, f ′′(x) = −2(2f(x)− x) + 1,

∀x ∈ R, f ′′(x) + 4f(x) = 2x+ 1.

Ceci signifie que f est une solution de (E).

(c) En déduire une expression de f .

On a donc (A,B) ∈ R2 tels que f(x) = A cos(2x) +B sin(2x) +
2x+ 1

4
.

4. Conclure : décrire l’ensemble Ω des fonctions f ∈ C1(R,R) qui vérifient la propriété (F ). Il ne reste plus
qu’à voir à quelle condition portant sur (A,B) ∈ R2 une fonction f définie comme précédemment vérifie
(F ). Calculons donc pour une telle fonction :

f ′(x) = −2A sin(2x) + 2B cos(2x) +
1

2
,

2f(−x) + x = 2A cos(2x)− 2B sin(2x) +
−2x+ 1

2
+ x,

2f(−x) + x = 2A cos(2x)− 2B sin(2x)
1

2
.

Ainsi, f vérifie (F ) si et seulement si l’on a :

∀x ∈ R,−2A sin(2x) + 2B cos(2x) +
1

2
= 2A cos(2x)− 2B sin(2x)

1

2

⇔ ∀x ∈ R, 2(B −A) sin(2x) + 2(B −A) cos(2x) = 0

Grâce à la première question de cet exercice, f vérifie donc (F ) si et seulement si f est de la forme
précitée avec A = B. Ainsi, on décrit :

Ω =

{

f : x 7→ A cos(2x) +A sin(2x) +
2x+ 1

4

∣

∣ A ∈ R

}

.
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