Devoir 2026
PCSI DS n°8

Corrigé du devoir surveillé
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3. Coefficients binomiaux, formules :

(i) Symétrie (Z) _ (n " k)
(if) Pascal <”i 1) _ <k " 1) . <Z>
(#4i) Formule utile k(Z) _ "(Z - 1)

4. Donner les définitions des limites :

(a) up, — L€R
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Ve>0,IN €N, VneN, N<n=|u, — | <e¢

(b) un = =00

VmeR, AN eN, VneN, N<n=u, <m



Exercice 1. Calculs de sommes
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2. Sommes binomiales.

(a)
= f: <Z> aFpr

k=0

(a +b)° = a® + 5a*b + 10a®b? + 10a20> + 5ab* + b°
(b) Soit n € N*, on note w = e
i.
& P
Sy = Z (wik) .
p=1
On distingue deux cas :

— SiwF =1, 1ie. e = 1, ce qui équivaut a _Tk” = 0[27] c’est a dire k = 0[n], alors

on a :
n
Sk:21:n,
p=1

et ceci se produit pour k =0 et kK =n donc Sy = S, = n.
— Siw™* #£ 1, donc pour k différent de 0 ou n :

i (o) () () e ()"
i (o) (12 () ) o (),

1— (wk)
3 1— e*2ik7r
Sk = (w k;) —2ikm
1l—e™n
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ii. Montrer alors que 'on a si z € C :
n
Z(z + WP =n(z" + 1).
p=1
Indication :on pourra écrire cette somme comme une double somme, puis permuter les
somimes.
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Z(z +wWh)r =3 (Z) ke, —kp
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Or w™ = ¢ 2™ = 1 donc on a :

i(z + wP)" = i (Z) 2 Sy

p=1 k=0

D’aprés la question précédente, les seuls termes non nuls de la somme sont pour k£ = 0

et kK =n donc : .
E (z+wP)" = <n>So + <n>5nz” =n+nz".
0 n

p=1

Exercice 2. Divergence de la série harmonique

n
On étudie dans cet exercice la suite (uy,)pen+ définie par : Vn € N*| w,, = > %
k=1
_1
n+1°
2. La suite (uy)nen+ est croissante donc elle admet une limite qui est un nombre I € R ou +o0.

1. On calcule upy1 —uy =

3. On définit, pour n € N*, v,, = w9y, — Uy.
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On remarque que pour k € [n+ 1,2n], on a % > %, d’ott Ton déduit :

2n 1

(]

Up >

k=n+1
v > (20— (n+1) 4 1)—
2n
Cette derniére inégalité une fois simplifiée, assure que : Vn € N*, v, > %
4. Raisonnons par 'absurde en supposant que la suite v ne tend pas vers 400, on a alors d’aprés

la premiére question un réel [ € R tel que w,, — [. On en déduit que v,, = ugy, — up, —
n—-+4o0o n—-+4o0o
[—1=0.

Ceci est contradictoire avec l'inégalité v, > % valable pour tout n € N*.



