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Exercice 1. Cours

1. Calcul du terme général
Exprimer en fonction de n ∈ N le terme d’indice n des deux suites suivantes définies par récurrence :

(a) La suite u vérifiant u0 = −1 et pour tout n ∈ N : un+1 = 3un + 4.
On résout l = 3l+ 4 et on trouve l = −2.
On sait que vn = un − (−2) est le terme général d’une suite géométrique de raison 3 d’où :

un + 2 = 3n(u0 + 2)

un = 3n − 2

(b) La suite v vérifiant v0 = 2, v1 = 5 et pour tout n ∈ N : vn+2 = 5vn+1 − 6vn
Le polynôme caractéristique est :

P (x) = x2 − 5x+ 6

Ce trinôme a deux racines qui sont x1 = 2 et x2 = 3.
Ainsi, on a deux réels A et B tels que :

∀n ∈ N, vn = A2n +B3n

On obtient le système d’équations suivant connaissant v0 et v1 :
{

A+B = 2
2A+ 3B = 5

On trouve A = 1 et B = 1 donc :
∀n ∈ N, vn = 2n + 3n

2. Définition des limites
Soit f : D → R. Que signifie :

(a) lim
x→2

f(x) = 3

∀ǫ > 0, ∃η > 0, ∀x ∈ D, |x− 2| ≤ η ⇒ |f(x)− 3| ≤ ǫ.

(b) lim
x→+∞

f(x) = 2

∀ǫ > 0, ∃M ∈ R, ∀x ∈ D, M ≤ x ⇒ |f(x)− 2| ≤ ǫ.

(c) lim
x→−∞

f(x) = +∞
∀M ∈ R, ∃m ∈ R, ∀x ∈ D, x ≤ m ⇒ M ≤ f(x).

Exercice 2. Approximation du nombre d’or.

On appelle nombre d’or et on note φ la solution positive réelle de l’équation d’inconnue réelle x :

x2 − x− 1 = 0.

En particulier, on a φ =
√
1 + φ.

1. Justifier, sans calculatrice, que 1 < φ < 2.
La fonction h : x 7→ x2 − x − 1 est strictement décroissante sur

]

−∞, 1
2

]

et strictement croissante sur
[

1

2
,+∞

[

. Puisque h(0) = −1, h(1) = −1 et h(2) = 1, elle ne s’annule qu’une seule fois dans R+, en un
point de l’intervalle ]1, 2[.
On considère la suite (un) définie sur N

∗ par :

u1 =
√
1, u2 =

√

1 +
√
1, u3 =

√

1 +

√

1 +
√
1
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et ainsi de suite,

un =

√

1 +

√

· · ·+
√

1 +
√
1

avec n radicaux.
On a donc pour tout entier n supérieur ou égal à 1, un+1 =

√
1 + un.

2. Représenter la fonction f : x 7→
√
1 + x sur l’intervalle [−1, 2] et les premiers termes de la suite à l’aide

de la courbe de cette fonction. (Une échelle de 5cm pour une unité serait idéale)

0 1 2−1

1

2

u0

u2

u1

φ

3. Montrer que, pour tout n ≥ 1,
1 ≤ un ≤ φ.

On vérifie simplement que [1, φ] est stable par f : soit x ∈ [1, φ], on a par croissance de f :

f(1) ≤ f(x) ≤ f(φ)

√
2 ≤ f(x) ≤ φ

donc on a bien f(x) ∈ [1, φ].
L’intervalle étant stable, tous les termes de la suite sont dans celui-ci.

4. Montrer que la suite (un) est croissante.
Soit n ∈ N

∗. On veut prouver que un+1 ≥ un, i.e.
√
1 + un ≥ un. Puisque les deux nombres sont positifs,

cela revient à prouver que :
1 + un ≥ u2

n
,

0 ≥ u2
n
− un − 1,

0 ≥ h(un).

Ceci est vrai car la croissance de h sur l’intervalle [1, φ] et le fait que un ∈ [1, φ] nous garantit que :

h(1) ≤ h(un) ≤ h(φ),

−1 ≤ h(un) ≤ 0.
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5. Démontrer que (un) converge vers φ.
Indication : on pourra utiliser le fait que si un −→

n→+∞

l ∈ R, on a aussi un+1 −→
n→+∞

l.

(un) converge vers l ∈ R car c’est une suite croissante et majorée d’après les deux questions précédentes.
Par passage des inégalités larges à la limite, on a 1 ≤ l ≤ φ.
On a aussi un+1 −→

n→∞

l, or un+1 =
√
1 + un −→

n→∞

√
1 + l. Par unicité de la limite, on en déduit que

l =
√
1 + l. φ est le seul nombre positif qui vérifie ceci donc un −→

n→∞

φ.

6. Montrer que, pour tout entier n ≥ 1,

|un+1 − φ| ≤ 1

2
|un − φ|.

On calcule pour n ∈ N :

|un+1 − φ| =
∣

∣

∣

√
1 + un −

√

1 + φ
∣

∣

∣
,

|un+1 − φ| =
∣

∣

∣

∣

∣

(√
1 + un −√

1 + φ
) (√

1 + un +
√
1 + φ

)

(√
1 + un +

√
1 + φ

)

∣

∣

∣

∣

∣

,

|un+1 − φ| =
∣

∣

∣

∣

∣

un − φ
(√

1 + un +
√
1 + φ

)

∣

∣

∣

∣

∣

,

|un+1 − φ| ≤ |un − φ|
2

.

7. En déduire que, pour tout n ≥ 1,

|un − φ| ≤ 1

2n−1
.

On prouve enfin ceci par récurrence. Pour n = 1, ceci découle du fait que u1 = 1 et φ ∈ [1, 2].
Supposons maintenant que c’est vrai pour n ∈ N

∗. On déduit de la question précédente :

|un+1 − φ| ≤ 1

2
|un − φ| ≤ 1

2

1

2n−1
=

1

2n
.

La propriété est héréditaire donc vraie pour tout n ∈ N
∗.

Exercice 3. NON BIS Limites

1. Limites avec la partie entière
Étudier les limites à droite en 0 des fonctions suivantes :

f : x 7→
⌊

1

x

⌋

, g : x 7→ x

⌊

1

x

⌋

On rappelle que si y ∈ R, on a ⌊y⌋ ≤ y < ⌊y⌋+ 1 d’où l’on déduit :

y − 1 < ⌊y⌋ ≤ y

En particulier, ici, on obtient pour x > 0 :
— 1

x
− 1 ≤ f(x) donc on déduit de lim

x→0+

1

x
− 1 = +∞ que l’on a aussi lim

x→0+
f(x) = +∞

— x( 1
x
− 1) ≤ g(x) ≤ x 1

x

1− x ≤ g(x) ≤ 1

D’où lim
x→0+

g(x) = 1 par encadrement.

2. Sans limite
Démontrer que la fonction suivante n’a pas de limite en 0 :

h : R∗ → R

h : x 7→ cos

(

1

x

)

.

Soit un = 1

2nπ
et vn = 1

2nπ+π
pour n ∈ N∗.

On a alors un −→
n→∞

0 et vn −→
n→∞

0 mais h(un) = 1 −→
n→∞

1 tandis que h(vn) = −1 −→
n→∞

−1 donc h n’a

pas de limite en 0, sinon cette limite serait à la fois égale à 1 et −1.
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Exercice 4. BIS Plus petite période

Soit f : R → R une fonction continue périodique non constante. On veut prouver que f admet une plus petite
période, c’est-à-dire qu’il existe T > 0 tel que

— f(x+ T ) = f(x) pour tout x ∈ R

— pour tout 0 < τ < T , il existe x ∈ R avec f(x+ τ) 6= f(x).
On pose

A = {τ > 0 : ∀x ∈ R, f(x+ τ) = f(x)}.
1. Justifier que A admet une borne inférieure que l’on notera T .

A est non vide puisque f est périodique, et A est minorée par 0 donc A admet une borne inférieure.

2. Démontrer que T > 0.
Suivant l’indication, on raisonne par l’absurde et l’on suppose que T = 0, on a donc si n ∈ N

∗ pour
ǫ = 1

n
> 0 un élément tn ∈ A tel que 0 < tn ≤ 1

n
.

Soit alors x ∈ R.
— On note un =

⌊

x

tn

⌋

tn pour n ∈ N
∗. On sait pour un réel y que y − 1 ≤ ⌊y⌋ ≤ y.

On en déduit :
(

x

tn
− 1

)

tn ≤ un ≤ x

tn
tn

x− tn ≤ un ≤ x

Puisque tn −→
n→∞

0, on a donc par encadrement un −→
n→∞

x

— Si n ∈ N
∗, montrons par récurrence sur k que l’on a pour tout k ∈ N :

f(ktn) = f(−ktn) = f(0).

Pour k = 0, cette propriété est évidente.
Prouvons l’hérédité. On suppose la prpriété vérifiée au rang k. Or on sait que f(ktn) = f(ktn + tn)
puisque tn ∈ A. On a donc bien f ((k + 1)tn) = f(0) par hypothèse de récurrence.
On a aussi f(−(k+1)tn) = f(−(k+1)tn+ tn), c’est à dire f(−(k+1)tn) = f(−ktn) d’où l’on déduit
aussi que f(−(k + 1)tn) = f(0) par hypothèse de récurrence.
Ainsi, la propriété est vraie pour tout entier naturel k et l’on en déduit, si l ∈ Z, que l’on a f(ltn) =
f(0). En particulier, f(un) = f(0)

— Concluons : on a un −→
n→∞

x et f continue donc f(un) −→
n→∞

f(x). Ceci entraîne que f(x) = f(0). f

est donc constante, ce qui est la contradiction recherchée.

3. Démontrons que T est une période pour f : par définition de la borne inférieure, on a pour tout n ∈ N
∗

un élément τn de A tel que T ≤ τn ≤ T + 1

n
de sorte que τn −→

n→∞

T .

Soit x ∈ R. On a puisque τn ∈ A :f(x+ τn) = f(x). Par continuité de f , on a donc en passant à la limite
quand n tend vers +∞ :f(x+ T ) = f(x).
Ainsi, f est T -périodique.
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