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Corrigé du devoir à la maison

Ce devoir à la maison est l’occasion de découvrir quelques applications majeures du théorème
des accroissements finis et des développements limités à l’étude asymptotique des suites récurrentes.

1 Points fixes attractifs et répulsifs

Dans cette partie, R désigne l’ensemble des nombres réels et I est un intervalle de R non vide
et non réduit à un point. On considère une fonction f : I → I de classe C1.
Pour x ∈ I, on notera (un(x))n∈N la suite définie par :

{

u0(x) = x

∀n ∈ N, un+1 = f(un)

Soit x0 ∈ I tel que I contienne un voisinage de x0 et f(x0) = x0. On dit alors que x0 est un
point fixe de f . En particulier, la suite (un(x0))n∈N est constante égale à x0.

1. Lorsque x0 est un point fixe de f et que |f ′(x0)| < 1, on dit que x0 est un point fixe
attractif.

(a) Si x0 est un point fixe attractif de f , montrer qu’il existe α > 0 et 0 < k < 1 tels
que :

∀x ∈ ]x0 − α; x0 + α] , |f ′(x)| ≤ k.

La fonction x 7→ |f ′(x)| est continue puisque f ′ l’est.

On a donc limx→x0
|f ′(x)| = |f ′(x0)| < 1 et l’on peut choisir ǫ = 1−|f ′(x0)|

2
: on a alors

par définition de la limite un nombre α > 0 tel que [x0 − α; x0 + α] ⊂ I et ∀x ∈
[x0 − α; x0 + α], |f ′(x0)| − ǫ < |f ′(x)| < |f ′(x0)| + ǫ. En particulier, en remplaçant

ǫ par sa valeur, on obtient : |f ′(x)| < 1+|f ′(x0)|
2

donc on a bien k = 1+|f ′(x0)|
2

< 1 et
α > 0 vérifiant ce qui est demandé dans l’énoncé.

(b) Avec les notations de la question précédente, montrer que l’on a alors pour tout
x ∈ [x0 − α; x0 + α] et n ∈ N : |un(x)− x0| ≤ kn|x− x0|.

On montre ce résultat par récurrence sur n. Pour n = 0, cette inégalité est une
égalité et est vérifiée. Supposons qu’elle est vraie au rang n. On a alors |un(x)−x0| ≤
kn|x− x0| ≤ |x− x0| donc un(x0) ∈ [x0 − α; x0 + α] et on peut appliquer l’inégalité

des accroissements finis à f entre x0 et un(x) : on a donc
∣

∣

∣

f(un(x))−f(x0)
un(x0)−x0

∣

∣

∣
≤ k et donc

|un+1(x)−x0| ≤ k|un(x)−x0| ≤ k.kn|x−x0|. Ainsi, la propriété est héréditaire donc
vraie pour tout n ∈ N.

(c) On voit donc que la suite (un(x))n∈N converge vers x0 lorsque x ∈ [x0 − α; x0 + α]
parce que la suite géométrique de raison k < 1 tend vers 0, expliquant le caractère
attractif du point fixe x0.

2. Lorsque x0 est un point fixe de f et que |f ′(x0)| > 1, on dit que x0 est un point fixe
répulsif.
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(a) Si x0 est un point fixe répulsif de f , montrer qu’il existe α > 0 et k > 1 tels que :

∀x ∈ [x0 − α; x0 + α] , |f ′(x)| ≥ k.

Ici, il faut reproduire le raisonnement de la question 1.(a) avec ǫ = |f ′(x0)|−1
2

et l’on
a ainsi un intervalle [x0 − α; x0 + α] ⊂ I tel que ∀x ∈ [x0 − α; x0 + α], |f ′(x0)| − ǫ <

|f ′(x)| < |f ′(x0)| + ǫ. En particulier, en remplaçant ǫ par sa valeur, on obtient :

1 <
1+|f ′(x0)|

2
< |f ′(x)| donc on a bien k = 1+|f ′(x0)|

2
> 1 et α > 0 vérifiant ce qui est

demandé dans l’énoncé.

(b) Montrer qu’une suite un(x) ne peut alors converger vers x0 que si elle est constante
et égale à x0 à partir d’un certain rang.

Raisonnons par l’absurde en supposant qu’il existe x ∈ I tel que un(x) → x0 et tel que
pour tout n ∈ N, un(x) 6= x0. A partir d’un certain rang N , on a pour n ≥ N , un(x) ∈
[x0 − α; x0 + α]. On montre alors par récurrence que |un(x)−x0| ≥ kn−N |uN(x)−x0|
pour n ≥ N , où k > 1. Ceci est en contradiction avec la convergence de un(x) vers
x0 si uN(x) 6= x0. Ainsi, une suite (un(x))n∈N tendant vers x0 est constante à partir
d’un certain rang.

2 La méthode de Newton

Soit g de classe C2 sur un intervalle I. On suppose que l’équation g(x) = 0 a une solution x0

à l’intérieur de l’intervalle I, dont on ne connait pas la valeur exacte. La méthode de Newton
consiste, partant d’une valeur u0 proche de x0, à tracer la tangente à la courbe de g en le point
d’abscisse x = u0. Cette tangente à Cg en le point d’abscisse u0 croise l’axe des abscisses en un
point u1 à condition que g′(u0) 6= 0, et l’on peut recommencer le même processus en remplaçant
u0 par u1.

1. Exprimons en fonction de u0, de g et de g′ l’équation de la tangente à Cg en le point
d’abscisse x = u0 :

y − g(u0) = (x− u0)g
′(u0)

2. Le point d’intersection u1 avec les abscisses de la tangente vérifie donc :

−g(u0) = (u1 − u0)g
′(u0)

u1 = u0 −
g(u0)

g′(u0)

Soit f la fonction définie par

f : x 7→ x−
g(x)

g′(x)
.

3. Si g′(x0) 6= 0, cette fonction f est bien définie sur un voisinage [x0 − α; x0 + α] de x0 où

g′ ne s’annule pas ( encore une fois, il suffit de poser ǫ = |g′(x0)|
2

et appliquer la continuité
de g′ en x0 ). Comme g est de classe C2, f est de classe C1 sur l’intervalle [x0 − α; x0 + α],
elle est dérivable de dérivée :

f ′(x) = 1−
g′2(x)− g(x)g′′(x)

g′2(x)

f ′(x) =
g(x)g′′(x)

g′2(x)

En particulier, on a f ′(x0) = 0 puisque g(x0) = 0, et x0 est donc un point fixe attractif
de f .
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4. La suite (un(x))n∈N converge ainsi vers x0 pour tout x dans un intervalle ouvert centré
sur x0 d’après la question 1 de la partie 1.

3 Vitesse de convergence vers un point fixe super-attractif

On reprend dans cette dernière partie les notations et hypothèses de la première partie, et l’on
suppose que x0 est un point fixe super-attractif de f , c’est à dire que f(x0) = x0 et f ′(x0) = 0.

1. Le but de cette question est de montrer que si q > 0 et que x ∈ [x0 − α; x0 + α], on aura
à partir d’un certain rang N ∈ N : ∀n ≥ N , |un(x)− x0| ≤ qn

(a) Par continuité de la fonction f ′ en x0, on a pour ǫ = q

2
un intervalle [x0 − β; x0 + β]

où β > 0 tel que :

∀x ∈ [x0 − β; x0 + β] , |f ′(x)| ≤
q

2
.

(b) On a alors d’après la question 1.b de la première partie :

|un(x)− x0| ≤ |x− x0|
(q

2

)n

=
|x− x0|

2n
qn.

On choisit alors N de sorte que |x−x0| ≤ 2N et l’on obtient ainsi le résultat attendu.

2. Dans cette question, on suppose que f admet un développement limité d’ordre 2 en le
point x0.

(a) Puisque f est dérivable de dérivée nulle en x0 et qu’elle admet un DL2(x0), ce
développement limité est de la forme :

f(x) =x→x0
x0 + a(x− x0)

2 + o
(

(x− x0)
2
)

f(x)− x0

(x− x0)2
=x→x0

a+ o (1)

On pose alors ǫ = 1 dans la définition de la limite, sachant que f(x)−x0

(x−x0)2
a pour limite

a en le point x0. On a alors pour K = |a|+ 1 > 0, un nombre δ > 0 tel que :

∀x ∈ [x0 − δ; x0 + δ] , |f(x)− x0| ≤ K|x− x0|
2

Si l’on choisit γ = min{δ,
1

K
}, on a finalement :

∀x ∈ [x0 − γ; x0 + γ] , |f(x)− x0| ≤ K|x− x0|
2 ≤ |x− x0|.

(b) Montrons par récurrence que l’on a pour tout x ∈ [x0 − γ; x0 + γ] , n ∈ N :

un(x) ∈ [x0 − γ; x0 + γ] et |un(x)− x0| ≤
1
K
|K(x− x0)|

2n .

Pour n = 0, le résultat est évident. Admettons le résultat au rang n et appliquons le
résultat de la question précédente puisque un(x) ∈ [x0 − γ; x0 + γ] :

|f(un(x))− x0| ≤ K|un(x)− x0|
2 ≤ |un(x)− x0|

|un+1(x)− x0| ≤ K

(

1

K
|K(x− x0)|

2n
)2

≤ |un(x)− x0|

|un+1(x)− x0| ≤
1

K
|K(x− x0)|

2n+1

≤ |un(x)− x0|

Ce qui prouve bien que un+1(x0) ∈ [x0 − γ; x0 + γ] et l’inégalité souhaitée au rang
n+ 1.
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