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Corrigé du devoir a la maison

Ce devoir a la maison est 'occasion de découvrir quelques applications majeures du théoreme
des accroissements finis et des développements limités a I’étude asymptotique des suites récurrentes.

1 Points fixes attractifs et répulsifs

Dans cette partie, R désigne I’ensemble des nombres réels et I est un intervalle de R non vide
et non réduit & un point. On considére une fonction f : I — I de classe C!.
Pour z € I, on notera (u,(z)),en la suite définie par :

uop(x) =
Vn €N, u, = f(un)

Soit xy € I tel que I contienne un voisinage de zg et f(zg) = xo. On dit alors que xy est un
point fixe de f. En particulier, la suite (u,(x))nen st constante égale a x.

1. Lorsque xy est un point fixe de f et que |f'(xo)| < 1, on dit que zy est un point fixe
attractif.

(a) Si zg est un point fixe attractif de f, montrer qu’il existe a« > 0 et 0 < k < 1 tels
que :
Vo € oy — a;z0+ o, |f'(2)] < k.

La fonction = +— | f'(x)| est continue puisque f’ est.

On a donc lim, ., | f'(x)| = |f'(z0)| < 1 et 'on peut choisir € = w : on a alors
par définition de la limite un nombre o > 0 tel que [xg — ;29 +a] C I et Vo €
[xo — a; o + @, |f'(x0)] — € < |f'(x)] < |f'(z0)| + €. En particulier, en remplagant

Lt f' (= 1+ (o)
LAt Ll 1 et

€ par sa valeur, on obtient : |f'(z)| < ' donc on a bien k =

a > 0 vérifiant ce qui est demandé dans ’énoncé.

(b) Avec les notations de la question précédente, montrer que 'on a alors pour tout
T € [rg—a;z0+ o] et n € N |u,(z) — xo| < k™z — x0].
On montre ce résultat par récurrence sur n. Pour n = 0, cette inégalité est une
égalité et est vérifiée. Supposons qu’elle est vraie au rang n. On a alors |u, () — zg| <
k" — x| < |x — x0| donc u,(z0) € [0 — ;20 + @ et on peut appliquer I'inégalité

des accroissements finis & f entre xy et u,(x) : on a donc W < k et donc

[tni1 () — o] < klug(x) — 20| < k.E"|x — x0|. Ainsi, la propriété est héréditaire donc
vraie pour tout n € N.

(¢) On voit donc que la suite (u,(x)),en converge vers g lorsque z € [z — ;2o + @
parce que la suite géométrique de raison k£ < 1 tend vers 0, expliquant le caractere
attractif du point fixe zg.

2. Lorsque zy est un point fixe de f et que |f'(x¢)| > 1, on dit que xy est un point fixe
répulsif.



(a) Si zg est un point fixe répulsif de f, montrer qu’il existe v > 0 et k > 1 tels que :
Vi € [xg — asz0 + @, |f'(z)] > k.

Ici, il faut reproduire le raisonnement de la question 1.(a) avec € = % et I'on
a ainsi un intervalle [xg — a; g + ] C I tel que Vx € [zg — ;20 + @, | f'(z0)| — € <
|f'(x)| < |f'(zo)] + €. En particulier, en remplacant € par sa valeur, on obtient :
1< w < |f'(z)| donc on a bien k = w > 1 et a > 0 vérifiant ce qui est
demandé dans 1’énoncé.

(b) Montrer qu'une suite u,(z) ne peut alors converger vers xy que si elle est constante
et égale a xg a partir d'un certain rang.
Raisonnons par I’absurde en supposant qu'il existe = € I tel que u,(z) — zq et tel que
pour tout n € N, u,,(x) # xo. A partir d'un certain rang N, on a pour n > N, u,(z) €
[zo — @; g + a]. On montre alors par récurrence que |u,(z) — x| > k"N |uy(z) — 20
pour n > N, ou k > 1. Ceci est en contradiction avec la convergence de u,(x) vers
xo si un(x) # xo. Ainsi, une suite (u,(x)),en tendant vers o est constante a partir
d’un certain rang.

2 La méthode de Newton

Soit g de classe C? sur un intervalle I. On suppose que I’équation g(x) = 0 a une solution z
a l'intérieur de l'intervalle I, dont on ne connait pas la valeur exacte. La méthode de Newton
consiste, partant d’une valeur uy proche de xg, a tracer la tangente a la courbe de g en le point
d’abscisse © = uy. Cette tangente a C, en le point d’abscisse ug croise I’axe des abscisses en un
point u; a condition que ¢'(ug) # 0, et 'on peut recommencer le méme processus en remplacant
U par u.

1. Exprimons en fonction de uy, de g et de ¢’ I'équation de la tangente a C, en le point

d’abscisse x = uqg :
y — g(uo) = (z — uo)g'(uo)

2. Le point d’intersection u; avec les abscisses de la tangente vérifie donc :

—g(uo) = (u1 — uo)g'(uo)

Uy = Uy — g/(uo)
9'(uo)
Soit f la fonction définie par @
g(x
frx—ux 7@
3. Si ¢'(xg) # 0, cette fonction f est bien définie sur un voisinage [zo — a; zg + ] de z ou
¢’ ne s’annule pas ( encore une fois, il suffit de poser € = L;O)‘ et appliquer la continuité

de ¢’ en zy ). Comme g est de classe C?, f est de classe C' sur Uintervalle [zy — ;g + @,
elle est dérivable de dérivée :

/
=1 -
f ) 9" ()
1
o) = 9(x)g"(x)
9*(x)
En particulier, on a f'(zg) = 0 puisque g(z¢) = 0, et z( est donc un point fixe attractif

de f.



4. La suite (u,(x)),en converge ainsi vers xy pour tout = dans un intervalle ouvert centré
sur xo d’apres la question 1 de la partie 1.

3 Vitesse de convergence vers un point fixe super-attractif

On reprend dans cette derniere partie les notations et hypotheses de la premiere partie, et 'on
suppose que xy est un point fixe super-attractif de f, c’est a dire que f(xg) = x¢ et f'(z9) = 0.
1. Le but de cette question est de montrer que si ¢ > 0 et que x € [xg — a;x9 + af, on aura
a partir d'un certain rang N € N : Vn > N, |u,(z) — zo| < ¢"
(a) Par continuité de la fonction f’en xo, on a pour € = £ un intervalle [zy — 3;zo + 3]
ou S > 0 tel que :

q
Vo € [xg — By x0 + 0], |f'(7)] < 5
(b) On a alors d’apres la question 1.b de la premiere partie :

q)n ‘1 10‘ n
< €rT— X — - — .

On choisit alors N de sorte que |z — x| < 2% et I'on obtient ainsi le résultat attendu.
2. Dans cette question, on suppose que f admet un développement limité d’ordre 2 en le
point z.
(a) Puisque f est dérivable de dérivée nulle en z et qu'elle admet un DLs(xg), ce
développement limité est de la forme :

f(2) =2smy To + alx — x0)* 4 0 ((x — xO)Z)

f(z) — @0
oy oW
On pose alors € = 1 dans la définition de la limite, sachant que {ﬁ’;j;g a pour limite

a en le point xy. On a alors pour K = |a| + 1 > 0, un nombre 6 > 0 tel que :

Vo € [wg — 620 + 6], | f(2) — 2] < K|z — 20]?
1
Si I'on choisit v = min{d, E}, on a finalement :
Vo € [z0 — v;20 + 7], [f(2) = 20| < K|z — 20f? < |2 — 20l

(b) Montrons par récurrence que l'on a pour tout = € [zg — ;20 + 7], n € N:
un(z) € [To — 1520 + 7] €t |un(z) — 20| < £|K(z — 20)]*".
Pour n = 0, le résultat est évident. Admettons le résultat au rang n et appliquons le
résultat de la question précédente puisque u,(x) € [rg — v; 20 + 7] :

[f (un(2)) = 2ol < Kun(z) — wof* < [un(w) — 20|

1 D\ 2
MM@%wdSK(ﬁK@—%W> < lun() — 20|

|2n+1

1
[ns1(2) — @0 < Z|K(z —20)[7 " < |un(z) — ol

Ce qui prouve bien que u, 1(zo) € [ro — 7;To + 7] et I'inégalité souhaitée au rang
n+ 1.



